
Bandwidth-Constrained Allocation in Grid
Computing

Anshul Kothari?, Subhash Suri??, and Yunhong Zhou ? ? ?

No Institute Given

Abstract. Grid computing systems pool together the resources of many
workstations to create a virtual computing reservoir. Users can “draw”
resources using a pay-as-you-go model, commonly used for utilities (elec-
tricity and water). We model such a system as a capacitated graph, and
study a basic allocation problem: given a set of jobs, each demanding
computing and bandwidth resources and yielding a profit, determine
which feasible subset of jobs yields the maximum total profit.

1 Introduction

Nearly all leading computer hardware vendors (IBM, Sun, Hewlett-Packard)
have recently announced major initiatives in on-demand or grid computing.
These initiatives aim to deliver computing resources as utilities (electricity or
water)—users “draw” computing power or disk storage from a “reservoir” and
pay only for the amount they use. Despite their different names (IBM’s On-
Demand computing, Sun’s N1 computing and HP’s Adaptive Infrastructure),
the motivation behind these technologies is the same: many users (scientific labs,
industries) often need extremely high computing power, but only for short peri-
ods of time. Examples include software testing of new systems or applications,
verification of new chip designs, scientific simulations (geological, environmental,
seismic), molecular modeling etc. Building and managing dedicated infrastruc-
ture is expensive, especially if its use is sparse and bursty. In addition, a vast
amount of computing and disk capacity at enterprises is idle for large fraction of
the time. These new initiatives aim to harness this power by creating a virtual
computing reservoir.

In an unrelated effort, peer to peer computing (P2P) also envisions a world
wide computer , which aims to combine all the informational resources of the
web (computing power, storage, data) through a loosely coupled network of
? Department of Computer Science, University of California, Santa Barbara,

CA 93106. Email: kothari@cs.ucsb.edu. Supported in part by National Science Foun-
dation grants IIS-0121562 and CCR-9901958.

?? Department of Computer Science, University of California, Santa Barbara,
CA 93106. Email: suri@cs.ucsb.edu. Supported in part by National Science Founda-
tion grants IIS-0121562 and CCR-9901958.

? ? ? Hewlett-Packard Laboratories, 1501 Page Mill Road, 5U-64, Palo Alto, CA 94304.
Email: yunhong.zhou@hp.com.

peers [7]. The efforts of on-demand or grid computing are aimed at much smaller,
enterprise level organizations, where a cluster of workstations and storage devices
act as a shared resource pool. These two technologies may appear superficially
similar, at least in their current form, yet they differ in some important ways: grid
has a centralized administration, P2P does not; grid assumes reliable, robust,
trustworthy machines, P2P does not. For the purpose of this paper, we will focus
on the “grid computing” model and study a natural algorithmic problem of task
scheduling; however, our problem setting applies more broadly.

The current grid systems only provide the CPU or disk units; there is no
bandwidth guarantee. Many scientific simulations, as well as real-time applica-
tions like financial services, involve sustained high data transfer rates, and thus
require a guaranteed application level bandwidth. The bandwidth is a different
type of resource: it’s a link resource, whereas computing cycles and disk units
are node resources. We consider the following natural problem in this setting:
given a set of tasks, each requesting some computing and some bandwidth re-
sources and yielding a profit if chosen, determine which subset of jobs yields the
maximum profit, given the current resources of the grid. We will only consider
the offline version of the problem, leaving the online case as a future direction.

We model the resource pool (grid) as an undirected graph G = (V, E), with n
nodes and m edges, where each node v ∈ V has a computing resource C(v), and
each link (u, v) has a bandwidth B(u, v). (We assume that the computing re-
sources are expressed in a common unit, such as normalized CPU cycles.) We are
given a set of k jobs, J1, J2, . . . , Jk. The job Ji is specified by a triple 〈ci, bi, pi〉,
where ci, bi are the computing and the bandwidth resource needed by Ji, and
pi is the profit for this job if chosen. Let Ci(vk) denote the computing resource
that vk contributes to Ji, and let Bi(u, v) ∈ {0, bi} denote the bandwidth that
(u, v) reserves for Ji. If job Ji is accepted, then we must have (i)

∑
k Ci(vk) ≥ ci,

namely, ci units of the computing resource are allocated to Ji, and (ii) the set of
edges {(u, v) | Bi(u, v) = bi} spans Vi. That is, the set of nodes that contribute
computing resources for Ji must be connected by a subset of links with reserved
bandwidth bi. (Acceptance of a job is a binary decision: either it is accepted, or
it is rejected; it cannot be partially accepted.) An index set of jobs J is feasible
if neither the computing nor the bandwidth resource capacity is violated, that
is,

∑
i∈J Ci(vk) ≤ C(vk), for all nodes vk ∈ V , and

∑
i∈J Bi(u, v) ≤ B(u, v),

for all links (u, v) ∈ E. See Figure 1 for an example. The total profit for the
accepted jobs is

∑
i∈J pi. The goal of the allocation problem is to determine the

feasible subset of jobs that yields the maximum profit.

Our Results

Without the bandwidth constraint, the allocation problem in the grid computing
is the integer knapsack problem: the CPU pool is the knapsack, and each job is an
item. Integer knapsack is (weakly) NP-complete, but one can solve it optimally
in pseudo-polynomial time. (One can reasonably assume that the total number
of computing units is polynomially bounded in n.)

We begin our investigation by studying when does the network bandwidth
even become a bottleneck in grid computing. To this end, let bmax denote the
maximum bandwidth requested by any job, and let Bmin denote the minimum
capacity of any link in G. Our first result shows that as long as no job requests
more than half the minimum link bandwidth, namely, bmax ≤ 1

2Bmin, the band-
width guarantee can be provided essentially for free (Theorem 1). In this case,
therefore, an optimal allocation can be computed in (pseudo) polynomial time.

We next show that 1
2Bmin forms a sharp boundary: if job bandwidths are

even slightly larger than 1
2Bmin, then the allocation problem becomes strongly

NP-complete. Under the reasonable assumption that bmax ≤ Bmin (i.e. no link
is a bottleneck for any single job), we present an efficient approximation scheme
that guarantees at least one-third of the maximum profit.

The allocation problem turns out to be hard if we allow bmax > Bmin; that is,
the jobs demand bandwidths in excess of some of the link capacities. In this case,
we show that even a path topology network is intractably hard. We present an
O(log B) approximation scheme for the path topology, where all the bandwidths
requested by the jobs lie in the range [1, B]. As part of our path topology solution,
we also develop a new algorithm for the strongly NP-complete multiple knapsack
problem, improving the (2+ε)-approximation scheme of Chekuri and Khanna [3]
with running time O(nk log 1

ε + n
ε4). Instead, we give a simple 2-approximation

algorithm with worst-case running time O((n + k) log(n + k)).

2 Allocation in Grid Computing

The underlying resource pool (grid) is modeled as an undirected graph G =
(V, E), with n nodes and m edges, where each node v ∈ V has a computing
resource C(v), and each link (u, v) has a bandwidth B(u, v). A job Ji, for i =
1, 2, . . . , k, is specified by a triple 〈ci, bi, pi〉, where ci, bi are the computing and
the bandwidth resource needed by Ji, and pi is the profit. Let Ci(vk) denote
the computing resource that vk contributes to Ji, and let Bi(u, v) ∈ {0, bi}
denote the bandwidth that (u, v) reserves for Ji. (Note that computing resources
are aggregated across multiple nodes, but the bandwidth resource is binary.
Unless a link contributes full bi units of the bandwidth, it cannot be used for
communication between nodes allocated to Ji.) See Figure 1 for an example.

If job Ji is accepted, then we must have (i)
∑

k Ci(vk) ≥ ci, namely, ci

total units of the computing resource are allocated to Ji, and (ii) the set of
edges {(u, v) | Bi(u, v) = bi} spans Vi. That is, the set of nodes that contribute
computing resources for Ji must be connected by a subset of links with reserved
bandwidth bi. An index set of jobs J is feasible if neither the computing nor the
bandwidth resource capacity is violated, that is,

∑
i∈J Ci(vk) ≤ C(vk), for all

nodes vk ∈ V , and
∑

i∈J Bi(u, v) ≤ B(u, v), for all links (u, v) ∈ E. The total
profit for the accepted jobs is

∑
i∈J pi. The goal of the allocation problem is to

determine the feasible subset of jobs that yields the maximum profit.
We begin our investigation by asking when does the network bandwidth even

become a bottleneck. Surprisingly, there turns out to be a rather sharp boundary.

1

3

2

11 1
10 10 510

5
v

x yu w

5

5

5 5

10 10

2

2

1 1 1

10

(i) Input network (ii) Job allocations

Fig. 1. An example with 3 jobs, J1 = 〈20, 10, p1〉, J2 = 〈10, 1, p2〉, J3 = 〈10, 2, p3〉.
Figure (i) shows the input network. Numbers below the nodes denote the resource units
available at that node; numbers next to links denote bandwidth. Figure (ii) shows an
allocation where all 3 jobs are satisfied; the filled nodes contribute resource units.

Let bmax be the maximum requested bandwidth of any job, and let Bmin be the
minimum bandwidth of any link in G.

Theorem 1. Suppose that bmax ≤ 1
2Bmin holds. Then, the allocation problem

can be solved optimally in time O(k|C|+ n + m), where |C| is the total number
of computing units available, and n,m are the number of nodes and edges in
the network. One can also achieve (1 + ε) approximation of the optimal in time
polynomial in k, 1/ε and linear in n and m.

Proof. We take all the jobs and solve a 0/1 knapsack problem, where we simply
aggregate the computing resources of all the nodes in the graph. Job i has size
ci and value pi; the knapsack capacity is |C|. Let W be the set of winning jobs
(solution of the knapsack), and let p(W) be their total profit. Clearly, the optimal
solution of the resource allocation problem cannot have profit larger than p(W).
In the following, we show how to allocate all the jobs of W in G.

Construct any spanning tree T of G. Each link of this tree has capacity at
least Bmin. We root this tree arbitrarily at a node r, and perform a pre-order
walk of T . We allocate jobs of W to the nodes encountered in the pre-order; when
a node’s capacity is depleted, we move to the next node. It is easy to see that
no link of the tree is shared by more than 2 jobs, and all the jobs are allocated.

The running time is dominated by the knapsack problem, which takes O(k|C|)
time using the dynamic programming. If (1 + ε) approximation is needed, we
can use a fully polynomial approximation scheme, whose running time is poly-
nomial in k and 1/ε; the O(n + m) time is for constructing a spanning tree and
traversing it. This completes the proof.

Surprisingly, letting the job bandwidth exceed 1
2Bmin even slightly makes the

problem strongly intractable.

Theorem 2. The optimal allocation problem is strongly NP-Complete even if
the job bandwidths satisfy the condition 1

2Bmin + ε ≤ bmax ≤ Bmin.

Proof. We reduce the well-known 3-partition problem [8], which is strongly NP-
Complete, to our allocation problem. The 3-partition problem is the following:

Instance: Integers m, d and xi, for i = 1, 2, · · · , 3m satisfying
∑

i xi = md and
d
4 < xi < d

2 ∀i.
Question: Is there a partition of x’s into m disjoint (3-element) subsets A1,

A2, · · ·, Am such that
∑

i∈Aj
xi = d, for j = 1, 2, · · · ,m.

Given an an instance of the 3-partition problem, we construct a tree (of height
one) with 3m + 1 nodes u0, v1, · · · , v3m. The node u0 is root and the other 3m
nodes are its children. The node vi has xi units of the resource; the root node has
zero units of the resource. Each link has a bandwidth B. We create m identical
jobs 〈d, 1

2B + ε, p〉. One can show that all m jobs can be allocated exactly when
the input 3-partition instance has a feasible solution.

In the next section, we present a constant factor approximation scheme when
bmax ≤ Bmin. That is, no network link is a bottleneck for any single job. In the
subsequent section, we address the general grid model without any constraint
on the network link bandwidth.

3 An Approximation Scheme when bmax ≤ Bmin

We construct a spanning tree, T , of the input network G, rooted at an arbitrary
node r. Since each link of G has bandwidth at least Bmin, all edges of T have
bandwidth at least Bmin ≥ bmax. For a node v, we let Tv denote the subtree
rooted at v. Let C(Tv) denote the total (remaining) resource units at the nodes
in Tv. That is, C(Tv) =

∑
u∈Tv

C(u). Similarly, for a subset of nodes S ⊆ V ,
let C(S) denote the total resource units available at the nodes of S. The input
set of jobs is J1, J2, . . . , Jk. We assume that ci ≤

∑
v∈V C(v); otherwise job Ji

clearly cannot be satisfied. Our algorithm can be described as follows.

Algorithm Approx

1. Sort the input jobs in descending order of pi/ci (profit per compute cycle).
Process jobs in the sorted order. Let Ja = 〈ca, ba, pa〉 be the next job.

2. If ca ≤ C(Tr), do Step 3; else do Step 4. (Recall that r is the root of the
spanning tree T .)

3. Find the best fit node v in the current tree; that is, among all nodes u for
which C(Tu)− ca ≥ 0, v minimizes C(Tu)− ca.
– Among the children nodes of v, choose a set S such that ca ≤ C(S) ≤ 2ca.

Allocate the set S (and their descendants) to job Ja, and delete these
nodes from the tree.

– If no such S exists, we allocate all the children of v plus the appropriate
fraction of v’s resources to the job Ja; in this case, we delete all the
children of v from T , and update the remaining resource units C(v) for
the node v.

– Add Ja to the set Z, which contains all the accepted jobs.
4. Let p(Z) be the total profit of all the jobs accepted in Z. If p(Z) ≥ pa, we

output Z, otherwise, we output the single job {Ja}.
end Algorithm

Theorem 3. The algorithm Approx computes a feasible set of jobs whose profit
is at least 1/3 of the optimal. The algorithm can be implemented in worst-case
time O(m + k log k + n(k + log n)).

Proof. Suppose Ja is the first job that is rejected by the algorithm. Let Z be the
current set of accepted jobs when Ja is encountered. Let CZ be the total number
of resource units demanded by jobs in Z; that is, CZ =

∑
i∈Z ci. By the best

fit rule, whenever we accept a job in Z, it wastes at most an equal amount of
resource. Since Ja could not be allocated, we have the following inequality:

2CZ + ca > C(T), (1)

where C(T) is the total number of resource units initially available in the system.
Let dZ denote the average unit price for the jobs in Z. That is,

dZ =
∑

i∈Z pi∑
i∈Z ci

Let d be the average unit price of Z ∪ Ja, and let d∗ be the average unit
price of the jobs in an optimal solution. Since our algorithm considers jobs in
the decreasing unit price order, we have dZ ≥ d ≥ d∗. Thus,

2p(Z) + pa = dZCZ + d(CZ + ca) ≥ d∗C(T) ≥ OPT

Since our algorithm chooses max{Z, Ja}, it follows that 3 max{p(Z), pa} ≥ OPT .
The bound on the worst-case running time follows easily from the description of
the algorithm.

The analysis of Approx is tight. The following is an example where the al-
gorithm’s output approaches one third of the optimal. Consider the tree network
shown in Figure 2. Assume there are 4 jobs. Jobs J1 and J2 are 〈M+ε, 1,M+2ε〉,
while jobs J3 and J4 are 〈2M − 3, 1, 2M − 3〉. The bandwidth of each link in the
tree is also 1. All four jobs can be feasibly allocated, by assigning nodes u, x to
J1, nodes v, y to J2, node w and half of r to J3, and node z and half of r to J4.
The total profit is 6M − 6 + 4ε.

We now consider the performance of Approx. The algorithm will process
jobs in the order {J1, J2}, {J3, J4}. The algorithm will allocate J1 to nodes w
and x and J2 to nodes y and z, and will fail to schedule the other jobs. The total
profit is 2M + 4ε, which approaches 1/3 of the optimal as M grows.

A natural question is whether the resource allocation problem becomes easier
for tree topologies, within the cluster computing model. Unfortunately, that is

1 1

M M M M

1 1

1 1 1 1

w x y z

r

u v

2M−6

Fig. 2. Tightness of Approx. Nodes u, v have 1 unit of resource; nodes w, x, y, z have
M units, and the root has 2m− 6 units. All links have capacity 1.

not the case, as the reduction of Theorem 2 already establishes the hardness for
the trees. If the topology is further restricted to a path, however, the problem
can be solved optimally in (pseudo) polynomial time.

Theorem 4. If the network topology is a path and the input satisfies bmax ≤
Bmin, then the allocation problem can be solved optimally in (pseudo) polynomial
time.

4 The Global Grid Model

In the previous section, we assumed that the minimum network link bandwidth
is at least as large as the maximum job bandwidth; that is, bmax ≤ Bmin. This is
a realistic model for the grid computing at an enterprise level, where a collection
of workstations are joined by high bandwidth links. However, when one envisions
a larger, Internet scale grid, then this assumption no longer seems justified. In
this section, we consider the allocation for this “global grid” model.

Suppose that the link bandwidths are in some arbitrary range [Bmin, Bmax],
and the jobs can request an arbitrary bandwidth (even b > Bmax); if a job re-
quests bandwidth greater than Bmax, then it must be allocated to a single node.
We call this the global grid model for ease of reference. The allocation problem
in the global grid appears to be significantly harder than in the previous model.
The latter is clearly a special case of the former, and so the intractability theo-
rems of the preceding sections all apply to the global grid as well. In the global
grid, however, even the path topology is intractable. We use a reduction from
the multiple knapsack problem [3], which unlike the single knapsack problem is
strongly NP-Complete.

Lemma 1. The optimal allocation problem in the global grid model is strongly
NP-complete even if the network topology is a path.

Thus, the special case of the problem when the network consists of isolated
nodes is equivalent to the multiple knapsack problem. We start our discussion
with an approximation algorithm for this case.

4.1 Isolated Nodes: 2-Approximation of Multiple Knapsack

Suppose all jobs request bandwidth greater than the maximum link capacity
in the network (or, equivalently, if all links have zero bandwidth), then the
network reduces to a set of isolated nodes. Our problem is equivalent to the
well-known Multiple Knapsack problem. Chekuri and Khanna [3] have given an
O(nO(log(1/ε)/ε8)) time approximation scheme for the multiple knapsack problem.
They also gave a (2 + ε)-approximation scheme with running time O(nk log 1

ε +
n
ε4). In the following, we show that a simple greedy algorithm achieves a factor
2 approximation in time O((n + k) log(n + k)).

Let S = {a1, a2, . . . , ak} be the set of items, where item ai has size s(ai)
and profit p(ai). Given a subset A ⊆ S, let s(A) and p(A) denote the total
size and total profit of the set of items in A. Let K = {1, 2, . . . , n} be the set
of knapsacks, where the jth knapsack has capacity cj . We assume that that
knapsacks are given in non-decreasing order of capacity; that is, c1 ≤ c2 ≤
· · · ≤ cn. The items are given in non-increasing order of unit price; that is,
p(ai)/s(ai) ≥ p(ai+1)/s(ai+1).

Algorithm MKP-Approx

1. Let L be the list of the remaining items, initialized to S.
2. Initialize greedy solution G = ∅.
3. Consider the knapsacks in sorted order. Let knapsack j be the next one.

(a) Let Lj ⊆ L be the subset of items such that s(x) ≤ cj , for x ∈ Lj .
(b) Greedily (descending unit price) add items of Lj to the knapsack j. Let

fj be the first item to exceed the remaining capacity of knapsack j.
(c) Let Aj ⊆ Lj be the set of items that have been added to the knapsack

when fj is encountered.
(d) If p(Aj) ≥ p(fj), add Aj to greedy solution G; otherwise add fj to G.
(e) Remove Aj and fj from L.

4. Return G.

Due to limited space, we omit the proof of the following theorem.

Theorem 5. The algorithm MKP-Approx achieves a 2-approximation of the
Multiple Knapsack Problem in time O((n+k) log(n+k)), where n and k are the
number of knapsacks and items.

4.2 An Approximation Scheme for Path Topology

Our main result for the global grid is an O(log B) factor approximation scheme,
where all jobs have bandwidths in the range [1, B]. We begin with some simple
observations.

Let v1, v2, . . . , vn denote the nodes of the path, in the left to right order.
Suppose in some allocation vi (resp. vj) is the leftmost (resp. rightmost) node
contributing the computing resources to a job J . Then, we call [i, j] the span of
J . We say that two spans [i, j] and [i′, j′] are partially overlapping if they overlap

but neither contains the other. In other words, [i, j] and [i′, j′] partially overlap
if i < i′ ≤ j < j′ or i′ < i ≤ j′ < j. We say that job J1 = 〈c1, b1, p1〉 is nested
inside job J2 = 〈c2, b2, p2〉 if the span of J1 is contained inside the span of J2.
The following two elementary lemmas will be useful in our approximation.

Lemma 2. There always exists a maximum profit allocation in which no two
jobs have partially overlapping spans.

Lemma 3. If job J1 = 〈c1, b1, p1〉 is nested inside job J2 = 〈c2, b2, p2〉, then
b1 > b2, and there is some link in the span of J2 whose bandwidth is strictly
smaller than b1.

We can draw two simple conclusions from the preceding lemmas: (1) if all the
jobs require the same bandwidth, then there is an optimal non-nesting solution;
and (2) if the maximal bandwidth required by any job is no more than the
minimum bandwidth of any link, then again there is an optimal non-nesting
solution. In both these cases, we can obtain an optimal (pseudo) polynomial
algorithm, using the single 0/1 knapsack solution. In the more general setting,
we have the following:

Lemma 4. If each link in the path network has bandwidth capacity either 0 or
B, then we can get a (2 + ε)-approximation in polynomial time.

Proof. We partition the input jobs into two classes: big jobs, which need band-
width more than B, and small jobs, which need bandwidth at most B. Clearly,
the big jobs cannot be served by multiple nodes, while the small jobs can be
served by multiple nodes if they are connected with bandwidth B links. Our
approximation algorithm works in the following way.

First we consider big jobs and solve it by using the multiple knapsack problem
(MKP) with approximation ratio (1+ε/2) [3]. We then consider small jobs. The
network links with bandwidth 0 partition the path into multiple subpaths, where
each subpath is joined by links of capacity B. A small job can only be satisfied
by nodes within one subpath. We now consider each subpath as a bin with its
capacity equal to the sum of capacities for all the nodes contained in it. We
apply another (1 + ε/2)-approximation MKP algorithm to this problem and get
another candidate solution. Of the two solutions, we pick the one with the larger
profit. The following argument shows that this algorithm achieves approximation
ratio (2 + ε).

Consider an optimal solution; it consists of some small jobs and some big
jobs. Let Πs and Πb, respectively, denote the total profit of the optimal solution
contributed by small and big jobs. Thus OPT = Πs + Πb ≤ 2max{Πs,Πb}.
If A denotes the total profit for our algorithm, then Πs ≤ (1 + ε/2)A. Similarly,
by considering the large jobs, we get Πb ≤ (1 + ε/2)A. By combining these
inequalities together, we get OPT ≤ (2 + ε)A. This completes the proof.

In order to prove our main result for the path topology in the grid model, we
first partition the set of jobs into log B classes such that each job has roughly

the same amount of bandwidth requirement. Let us suppose that all the jobs in
the set have their bandwidth requirement between b and 2b.

Lemma 5. Suppose that all the jobs have bandwidth requirement in the range
[b, 2b]. The maximum profit realizable by the best nesting solution is at most
twice the maximum profit realizable by a non-nesting solution. Thus, limiting
our search to the non-nesting solutions costs at most a factor of two in the
approximation.

Proof. Consider an optimal solution for the problem, where jobs may nest ar-
bitrarily with each other. Consider the containment partial order among these
jobs: J < J ′ if the span of J is contained in the span of J ′; in case of ties, the
lower indexed job comes earlier in the partial order. Let s0 be the set of maximal
elements in this partial order—these are the jobs whose spans are not contained
in any other job’s span. Let s1 denote the set of remaining jobs. Let Π0 denote
the total profit of s0 in the optimal solution, and let Π1 be the profit of the s1

jobs. We argue below that either all jobs in s0 or all jobs in s1 can be allocated
with non-nesting spans.

The spans of all the jobs in s0 are clearly non-nesting (by definition). Next,
observe that any link that lies in the span of a job in s1 must have bandwidth
at least 2b, since this link is shared by at least two jobs, and every job has
bandwidth at least b. Since the bandwidth needed by any job is at most 2b,
using arguments like the one in Lemma 2, we can re-allocate resources among
the jobs of s1 so that no two jobs nest. Thus, there exist an alternative non-
nesting solution with profit at least max{J0, J1}, which gives at least 1/2 the
profit of the optimal solution.

Due to lack of space, we omit the proof of the following lemma. It uses a
modified version of the single-processor job scheduling algorithm of Bar-Noy et
al. [1].

Lemma 6. Given a set of jobs J1, J2, . . . , Jk, and a path network (v1, . . . , vn),
in polynomial time, we can compute a 2-approximation of the best non-nesting
solution of the resource allocation problem.

We can summarize the main result of this section in the following theorem.

Theorem 6. Consider the resource allocation problem in the grid model for a
n-node path topology. Suppose there are k jobs, each requiring bandwidth in the
range [1, B]. Then, there is a polynomial time O(log B)-approximation algorithm.

Proof. We first partition all the requests into log B classes such that all jobs in
one class have bandwidth requirement within a factor of two. When all band-
width requests are in the range [b, 2b] for some b, by Lemma 5, we can consider
only non-nesting solutions at the expense of factor two in the approximation
quality. For each of these log B classes of jobs, we run the approximation algo-
rithm described in Lemma 6, which yields a factor 2-approximation of the best
non-nesting solution. By choosing the best solution from the log B classes, we
guarantee an approximation ratio of O(log B).

5 Related Work

Several grid systems have been developed, such as Globus [6], Legion [2], Con-
dor [9] and SETI@Home [13], yet many interesting resource allocation problems
in these systems remain to be addressed. Resource allocation schemes for grid
computing include the market-based resource sharing as proposed by Chun and
Culler [4], where all the jobs receive some resource, only the amount differs based
on the offered price; the SPAWN model of Waldspurger et al. [11] essentially
run parallel auctions for the different resources; the artificial economy model of
Wolski et al. [12] uses supply and demand to set the prices. None of these models
have any theoretical performance guarantees, or handle resource allocation with
explicit bandwidth constraints.

Our resource allocation problem superficially resembles the multiple knapsack
problem, but it differs considerably from the latter because in our problem jobs
can be allocated across several different nodes if the bandwidth constraint is
satisfied. Indeed, the multiple knapsack problem is a rather special case of the
resource allocation problem (i.e. disjoint nodes topology).

For the special case of path topology, the resource allocation problem is
similar to Job Interval scheduling problem (JISP), where the input for each job
is its length and a set of intervals, in which it can be scheduled. The objective
is to maximize the number of scheduled jobs. JISP is strongly NP-Complete [8]
and Chuzhoy et al. [5] gave a 1.582 approximation algorithm for it. Our model
differs from JISP because there is no notion of profit associated with jobs in JISP.
A more general version of JISP called real time scheduling (RTP) associates a
weight with each job, and the objective is to maximize the total weight. BarNoy
et al. [1] gave a 2-approximation algorithm for the the case of single machine.
In section 4.2, we reduced the allocation problem for the path topology to RTP.
This reduction however only works when there exist an optimal solution in which
no link is used by more than one job, as RTP does not allow preemption. The
scheduling techniques used in RTP can be applied to only path topologies as it
is not at all clear how to reduce more general topologies to RTP.

6 Concluding Remarks

We studied an allocation problem motivated by grid computing and peer-to-
peer systems. These systems pool together the resources of many workstations
to create a virtual computing reservoir. Users can “draw” resources using a pay-
as-you-go model, commonly used for utilities (electricity and water). As these
technologies mature, and more advanced applications are implemented using
computational grids, we expect providing bandwidth guarantees for the applica-
tions will become important. With that motivation, we studied the bandwidth-
constrained allocation problems in grid computing.

Several open problems are suggested by this work. Is it possible to obtain a
polynomial time (1+ε)-approximation scheme when bmax ≤ Bmin? If not, what is
the best approximation factor one can achieve in polynomial time? In the global

grid model, can one achieve a constant factor approximation independent of B?
Extend our results to more general topologies than the path in the global grid
model? Develop competitive algorithms for the online versions of the allocation
problems.

References

1. A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput
of multiple machines in real-time scheduling. In Proc. of the 31st ACM Symp. on
Theory of Computing, pages 622 – 631, 1999.

2. S. Chapin, J. Karpovich, and A. Grimshaw. The legion resource management
system. In Workshop on Job Scheduling Strategies for Parallel Processing., 1999.

3. C. Chekuri and S. Khanna. A ptas for the multiple knapsack problem. In Proc. of
11th Annual Symposium on Discrete Algorithms., pages 213–222, 2000.

4. B. Chun and D. E. Culler. Market-based proportional resource sharing clusters.
Technical report, UC Berkeley, Computer Science, 2000.

5. J. Chuzhoy, R. Ostrovsky and Y. Rabani. Approximation algorithms for the job
interval scheduling problem and realted scheduling problems. In Proc. of 42nd
Annual Symposium on Foundation of Computer Science., pages 348–356, 2001.

6. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A resource management architecture for metacomputing systems. In
Workshop on Job Scheduling Strategies for Parallel Processing., 1998.

7. I. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-to-peer
and grid computing. 2nd International Workshop on Peer-to-Peer Systems, 2003.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

9. M. Litzkow, M. Ivny, and M. Mutka. Condor—a hunter of idle workstations. In
Proc. of 8th International Conference on Distributed Computing., 1988

10. S. Martello and P. Toth. Knapsack Problems—Algorithms and Computer Imple-
mentations. John Wiley and Sons, New York, 1991..

11. C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and W. Stornetta. Spawn—a
distributed computational economy. IEEE Trans. on Software Engineering., 1992.

12. R. Wolski, J. Plank, J. Brevik, and T. Bryan. Analyzing market-based resource
allocation strategies for the computational grid. Int. Journal of High Performance
Computing Applications, 2001.

13. http://setiathome.ssl.berkeley.edu. Seti@home.

