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1 Introduction

Recently there has been a growing interest in detecting
patterns and analyzing trends in data that are generated con-
tinuously, often delivered in some fixed order and at a rapid
rate, in the form of adata stream[5, 6]. When the stream
consists of spatial data, its geometric “shape” can convey
important qualitative aspects of the data set more effectively
than many numerical statistics. In a stream setting, where
the data must be constantly discarded and compressed, spe-
cial care must be taken to ensure that the compressed sum-
mary faithfully captures the overall shape of the point dis-
tribution. We propose a novel scheme, ClusterHulls, to rep-
resent theshapeof a stream of two-dimensional points.

ClusterHull

Given an on-line, possibly unbounded stream of 2-D
points, we propose a scheme for summarizing its spatial
distribution or shapeusing a small, bounded amount of
memorym. Our scheme, calledClusterHull, represents the
shape of the stream as a dynamic collection of convex hulls,
with a total of at mostm vertices. The algorithm dynam-
ically adjusts both the number of hulls and the number of
vertices in each hull to represent the stream using its fixed
memory budget. Thus, the algorithm attempts to capture
the shape by decomposing the stream of points into groups
or clusters and maintaining an approximate convex hull of
each group. Depending on the input, the algorithm adap-
tively spends more points on clusters with complex (po-
tentially more interesting) boundaries and fewer on simple
clusters.

We implemented ClusterHull and experimented with
both synthetic and real data to evaluate its performance.
In all cases, the representation by ClusterHull appears to
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be more information-rich than those by other clustering
schemes such as CURE [4],k-medians, or LSEARCH [3],
even when the latter are enhanced with some simple ways
to capture cluster shape. For example, in Figure 1 below,
we compare the output of our ClusterHull algorithm with
those produced byk-median and CURE. The top row shows
the input data (left), and output of ClusterHull (right) with
memory budget set tom = 45 points. The middle row
shows two possible outputs ofk-median, one with45 clus-
ter centers and another with5 cluster centers each with 9
sample points. The bottom row shows the similar outputs
of CURE:45 cluster centers on the left, and5 cluster cen-
ters each with 9 sample points on the right. One can see that
both the boundary shape and the densities of the point clus-
ters are quite accurately summarized by the cluster hulls.
Thus, our general conclusion is that ClusterHull can be a
useful tool for summarizing geometric data streams.

Related Work

Inferring shape from an unordered point cloud is a well-
studied problem that has been considered in many fields,
including computer vision, machine learning, pattern anal-
ysis, and computational geometry, and most extensively as
clustering in databases [1, 2]. However, the classical al-
gorithms from these areas require full access to data, and
are generally based on minimizing some statistical function,
making them unsuited for our problem of extracting the ge-
ometric shapes in data stream setting.

Among the clustering schemes that work for data
streams, BIRCH [8] appears to work well for spherical-
shaped clusters of uniform size, but performs poorly when
the data are clustered into groups of unequal sizes and dif-
ferent shapes [4]. The CURE clustering scheme proposed
by Guha et al. [4] is better at identifying non-spherical clus-
ters; in addition, because it maintains sample points for
each cluster, one can also infer some information about the
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Figure 1. Illustration of ClusterHull.

geometry of the cluster. Therefore, CURE is one of the
schemes we use to compare against ClusterHull.

In [3], Guha et al. propose two stream variants ofk-
center clustering: streamk-median and LSEARCH (lo-
cal search). Through experimentation, they argue that the
stream versions of these algorithms produce better quality
clusters than BIRCH, although the latter is computationally
more efficient. Since we are more concerned with the qual-
ity of the shape, we also report on experimental results com-
paring ClusterHull withk-median and LSEARCH.

2 Shape as a Cluster of Hulls

Our algorithm represents the point stream as a collection
of convex hulls. The convex hulls need not be disjoint, but
together these hulls are limited tom vertices, which is our
memory budget. We divide this memory budget into two
pools: a fixed pool ofk groups, each with a constant number
of vertices; and a shared pool ofO(k) points, from which
different cluster hulls draw additional vertices. The num-
berk has the same role as the parameter fed tok-medians
clustering—it is set to some number at least as large as the
number of native clusters expected in the input.

At a high level, our algorithm works as follows. Suppose
that the current point setS is partitioned amongk convex
hullsH1, . . . , Hk. Each convex hullH is evaluated using a
cost functionw(H), which has the following general form:

w(H) = area (H) + µ · (perimeter (H))2, (1)

whereµ is a constant, chosen empirically.1 The total cost of
the partitionH = {H1, . . . ,Hk} isw(H) =

∑
H∈H w(H).

The algorithm attempts to maintain a partition of the point
stream withminimumtotal cost, using its fixedO(k) mem-
ory budget.

When a new pointp arrives in the stream, the algorithm
checks ifp either lies inside a hullHi or is close enoughto
it; please see the expanded version of this paper for a formal
definition of “close enough,” which is defined using a ring
of uncertainty triangles. If so, then we simply discardp.
Otherwise, we create a new hull, containing justp, and add
it toH. If H now has more thank hulls, then we merge two
of the hulls inH, where the merging hulls are chosen so as
to minimizethe totalincreasein the cost function.

Since the size (number of vertices) of the convex hulls
can be very large, we use an approximate convex hull rep-
resentation [5]. For each hull, the algorithm uses extreme
points along certain sampling directions as the vertices of
the approximate hull. After the merge, we carry out are-
finementprocess to ensure that the new hull representation
is within our error bounds. Finally, if the total memory us-
age exceedsm, then we carry out anunrefinementprocess
that discards some sampling directions.

3 Experimental Analysis

We now briefly report on our experimental evaluation of
ClusterHull. When comparing our scheme withk-median
clustering [3], we used an enhanced version of the latter.
The algorithm is allowed to keep a constant number of sam-
ple points per cluster, which can be used to deduce the ap-
proximate shape of that cluster. We rank-medians cluster-
ing usingk clusters and total memory (number of samples)
equal tom. CURE already has a parameter for maintaining
samples in each cluster, so we used that feature.

For these experiments, we used the area-perimeter cost
(Equation 1) to compute the hulls, withµ = .05 for all data
sets. To visualize the output, we also shade the hulls gen-
erated by our algorithm according to their densities (darker
regions are more dense).

3.1 West Nile virus spread

Our first data set,westnile(Figure 2 (a)), contains about
68, 000 points corresponding to the locations of theWest
Nile virus cases reported in the US, as collected by the CDC
and the USGS [7]. We randomized the input order to elim-
inate any spatial coherence that might give an advantage to

1A comprehensive discussion of the intuition behind the cost function
is provided in the full version of the paper. We point out that the perimeter
is squared in this expression to match units: if the perimeter term entered
linearly, then simply changing the units of measurement would change
the relative importance of the area and perimeter terms, which would be
undesirable.
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(a) (b)

(c) (d)

Figure 2. Results forwestniledata set.

our algorithm. We ran ClusterHull to generate output of
total sizem = 256 (Figure 2 (b)). The clustering algo-
rithmsk-medians and CURE were used to generate clusters
with the same amount of memory. Both algorithms were
ran withk = 27 clusters (same as ClusterHull) and10 sam-
ple points for each cluster (totalm > 256). Figures 2 (c)
and 2 (d) show the corresponding outputs fork-medians and
for CURE. Visually the output of ClusterHull looks strik-
ingly similar to the input set, offering the analyst a faithful
yet compact representation of the geometric shapes of im-
portant regions.

3.2 The circles and the ellipse data sets

In this experiment, we compared ClusterHull withk-
median and CURE on two synthetic data sets. The circles
set containsn = 10, 000 points generated inside 3 circles
of different sizes. We ran the three algorithms with a to-
tal memorym = 64 (for k-median and CURE,k = 5, 14
samples per hull). The output of ClusterHull is shown in
Figure 3 (a); the output ofk-median is shown in (b); and
the output of CURE is shown in (c).

The ellipse data set containsn = 10, 000 points dis-
tributed among ten ellipse-shaped clusters. Figures 3 (d),
(e), and (f), respectively, show the outputs of ClusterHull,
k-median, and CURE on this set with memorym = 128
(for k-median and CURE,k = 10, 13 samples per hull).

In all cases, ClusterHull output is more accurate, visually
informative, and able to compute the boundary of clusters
with remarkable precision. The outputs of other schemes
are ambiguous, inaccurate, and lacking in details of the
cluster shape boundary. For the circles data, thek-median
does a poor job in determining the true cluster structure.
For the ellipse data, CURE does a poor job in separating the
clusters. (CURE needed a much larger memory—a window
size of at least 500—to correctly separate the clusters.)

(a) (d)

(b) (e)

(c) (f)

Figure 3. Results forcirclesandellipsedatasets.
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