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Abstract. We consider the problem of planning a shortest tour through
a collection of neighborhoods in the plane, where each neighborhood is
a disk whose radius is an i.i.d. random variable drawn from a known
probability distribution. This is a stochastic version of the classic travel-
ing salesman problem with neighborhoods (TSPN). Planning such tours
under uncertainty, a fundamental problem in its own right, is motivated
by a number of applications including the following data gathering prob-
lem in sensor networks: a robotic data mule needs to collect data from
n geographically distributed wireless sensor nodes whose communication
range r is a random variable influenced by environmental factors.
We propose a polynomial-time algorithm that achieves a factorO(log log n)
approximation of the expected length of an optimal tour. In data mule
applications, the problem has an additional complexity: the radii of the
disks are only revealed when the robot reaches the disk boundary (trans-
mission success). For this online version of the stochastic TSPN, we
achieve an approximation ratio of O(log n). In the special case, where
the disks with their mean radii are disjoint, we achieve an O(1) approx-
imation even for the online case.

1 Introduction

Planning under uncertainty is a central problem in many domains. In this paper,
we consider a variant of the classical TSP problem under a stochastic scenario.
Our setting requires planning an optimal tour that visits each of the n regions
in the plane, called neighborhoods, under the Euclidean metric. The regions in
our problem are disks D
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= (c
i

, r
i

), where c
i

is the (fixed) center and r
i

denotes
the (random) radius of disk D

i

. The disk radii are random variables drawn inde-
pendently and identically from some probability distribution, and so a random
instance of the problem involves an arbitrary set of disks, with varying radii and
an arbitrary overlap pattern. Our problem is to minimize the expected length
of the tour visiting these disks; the problem is clearly NP -hard because it sub-
sumes the classical Euclidean TSP by setting the mean and the variance of the
probability distribution to zero.

The TSP with stochastic neighborhoods is motivated by natural applica-
tions where the target sites can be “visited” from afar—for instance, inspecting
an asset or transferring data over wireless channels. One can imagine that a



“visibility-based” monitoring of a set of distributed assets leads to a stochas-
tic neighborhood problem since many unpredictable factors may influence the
“lighting”, changing the range of visual inspection. In distributed sensor net-
works, the use of “robotic data mules” is growing in acceptance due to energy
constraints and the di�culty of transporting data over multiple hops [5, 28].
However, the wireless range of radio transceivers exhibits significant fluctuations
and randomness [24], which naturally leads to a stochastic version of the TSP
with connected neighborhoods. Indeed, these type of applications entail another
source of complexity: the precise value of the disk radius (communication range)
is only revealed when the tour reaches the site. Thus, the problem involves both
the stochastic and the online element. In this paper, we will consider both the
o✏ine and the online versions of the TSP with stochastic neighborhood. We
begin with some notation and an informal definition of the problem.

Let D = {D
1

, D
2

, . . . , D
n

} be a set of n random disks in the plane, where
each disk D

i

= (c
i

, r
i

) has a fixed center c
i

, but its radius r
i

is a random
variable drawn independently and identically from a probability distribution
with mean µ. The probability distribution can be arbitrary subject only to the
following weak constraints: (1) its domain is the positive reals, (2) it attains its
maximum at µ and decays monotonically on either side of the mean, and (3) the
probability of observing a radius r decreases quickly as r goes from µ to 0. In
particular, if F (x) is the cumulative probability function, then we require that
F (µ/↵)  O(e�↵). (See Section 2 for more details on the distribution.) Given
such a collection of disks, let L⇤ be the length of an optimal tour of D, which is
a random variable, and let E [L⇤ ] be the expected value of this random variable
over all realizations of the disk neighborhoods D. In the o✏ine case, we assume
that the algorithm knows the input instance at the start of the tour, while in
the online case the radii of the disks are revealed only when the tour reaches
each disk. We prove the following three results in this paper:

1. We can compute a TSP tour through n stochastic disks whose expected
length is within factor O(log log n) of E [L⇤ ] in polynomial time.

2. If the radii of the stochastic disks are revealed online, our algorithm achieves
an O(log n) approximation of E [L⇤ ].

3. If the disks are disjoint when they all appear with radius µ, then the ap-
proximation factor improves to O(1) in both o✏ine and online cases.

Related Work

There is a long history of research on probabilistic or stochastic traveling sales-
man problems. For instance, the celebrated result of Bearwood et al. [3] shows
that (in the limit) the optimal TSP through n i.i.d. random points in [0, 1]2

has length ⇥(
p
n). Bertsimas and Jaillet [4, 19] consider a setting where each

point in a given set has an (independent) activation probability. They compute
a single a priori tour, and on any random instance the tour is simply short-cut,
visiting only the active points. Their objective is to find the a priori tour mini-
mizing the expected cost over all random instances. Recent work on the a priori
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TSP and a related universal TSP includes [14, 17, 25, 26]. Another interesting
thread includes 2-stage stochastic optimization [16, 27], where a part of the in-
put (partial distribution) is revealed in the first stage, when the resources can
be acquired more cheaply; the rest of the input is revealed in the second stage,
when the resources are more expensive. The goal is to optimize the expected
cost of building a network structure [8, 13, 18, 20].

The research most relevant to our work concerns the TSP problem with
neighborhoods (TSPN), first introduced by Arkin and Hassin [1]. The prob-
lem is known to be APX-hard when the neighborhoods are general overlapping
polygons [7, 15], and hence the approximation algorithms have focused on either
disjoint or “fat” neighborhoods. In particular, if the regions are disjoint disks of
identical size, then there exists a PTAS [9]. If the regions are disjoint, fat poly-
gons of comparable size, there also exists a PTAS [12]. Other results include a
quasipolynomial-time approximation scheme (QPTAS), in any fixed dimension,
when the regions are fat and disjoint [6]; an O(1)-approximation for disjoint,
convex, and fat regions of arbitrary diameters [7], a PTAS under the assumption
of bounded overlap [22], and an O(1)-approximation for disjoint neighborhoods
of any size and shape [23]. Without the assumption of disjointness, the approx-
imation results have tended to assume regions with comparable diameters. In
particular, the best results include a constant factor approximation when the
regions are connected polygons [9], convex and fat [10, 11], or it is required to
visit each neighborhood at one of a finite subset of points.

When the regions are neither disjoint nor of roughly the same size, the best
approximation ratio known is O(log n) [10, 21]. In our setting, the stochastic
disks can have arbitrarily large radii and overlap in arbitrary ways, and so the
prior work does not give an approximation ratio better than O(log n). When the
radii are revealed online, no prior work seems to be known. In our stochastic
setting, instead of comparing the performance of the algorithm for every single
realization, we are interested in the expected performance over all the realizations.

2 Technical Preliminaries for the Stochastic TSP

Let D = {D
1

, D
2

, . . . , D
n

} be a set of n random disks in the plane, where each
disk D

i

= (c
i

, r
i

) has a fixed center c
i

and a random radius r
i

drawn from a
probability distribution � with mean µ (we highlight that the disk radii are
identically distributed). Our analysis relies on a few assumptions about �. In
particular, we assume that (1) the domain of � is the positive reals, and (2)
� attains its maximum at µ and then decays monotonically on either side of
the mean. Finally, a reasonable probability distribution for the radius must be
scale invariant : the probability of observing r should depend only on the ratio

µ/r, independent of the distance scale. Thus, instead of a bound on the variance
of �, we assume that the cumulative probability function satisfies F (µ/↵) 
O(e�↵), for ↵ > 1. In other words, we require that the ratio µ/r follow a light-
tailed distribution [2]: Normal, exponential, and many other natural distribution
are light-tailed. We do not require the distribution to be symmetric, and the
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radii can assume arbitrarily large values above the mean µ. (The assumption of
a light-tailed distribution also conforms with the empirical observation of the
transmission range in wireless sensors, where the probability of transmission
failure drops quickly within the reference distance from the sensor [24].)

With the disk centers fixed, we may view the set D as an n-dimensional
random vector R = (r

1

, r
2

, . . . , r
n

). Let IR denote the set of all the possible
instances (realizations) of the vector R. Each I 2 IR uniquely identifies a partic-
ular instance of our TSP with neighborhoods. The probability distribution of R,
denoted �R, can be obtained from the marginal distributions of the radii. That
is, for an instance I = (x

1

, x
2

, . . . , x
n

), we have �R(I) = �R(x
1

, x
2

, . . . , x
n

) =Q
n

i=1

�(x
i

), where
R
x1

· · ·
R
xn

�(x
1

) · · ·�(x
n

) dx
1

· · · dx
n

= 1 .

The expected value of R is the vector µ(n), where each of the n disks has the
radius equal to the mean value µ. This particular instance plays an important
enough role in our analysis that we reserve a special symbolM for it. The optimal
TSPN tour for the instance M is called Opt(M).

Let the random variable L⇤ measure the length of the shortest tour over the
sample space D. The expected value of L⇤ can be computed as follows:

E [L⇤ ] =

Z 1

0

· · ·
Z 1

0

L⇤(x
1

, . . . , x
n

) · �R(x
1

, . . . , x
n

) dx
1

. . . dx
n

,

where L⇤(I) denotes the value of L⇤ for instance I.
Given any polygonal path or cycle T , we use |T | to denote its Euclidean

length, i.e., the sum of the lengths of its segments. To simplify our presentation,
we also assume a fixed start point s

0

for the tour that lies at least 2µ away from
all the disk centers. This technical assumption, which does not a↵ect the general
validity of our results, helps us ignore some special cases, such as when all disks
have a common intersection in the instance M , causing |T (M)| = 0.

2.1 Bounding the Expected Optimal

We begin with a theorem establishing the importance of the instance M , where
all disks occur with mean radii. It basically shows that optimal of the mean is a

good lower bound on the mean of the optimal. Due to the page limit, this along
with other proofs are omitted in this extended abstract.

Theorem 1. |Opt(M)|  2E [L⇤ ].

2.2 The High Level Strategy and a Partial Order of Disks

All of our stochastic TSP algorithms employ the following three-step strategy:
first, we compute an O(1) approximation T (M) for the mean-radius instance
M—that is, |T (M)| = O(|Opt(M)|); second, we subdivide T (M) into several
blocks and assign a subset of the disks to each block; finally, for a random instance
I, we construct a tour by visiting disks in the block order given by T (M). (We
note that following the same path as T (M) does not necessarily visit all the
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disks, since their radii in I could be smaller than the mean value. So, the block
order is just a high-level clue about how “subsets” of disks should be visited.)

In the rest of this section, we describe the first (and simplest) of these three
steps, while the other steps are the focus of next section. Our algorithm for
approximating the TSP for instance M is based on some classical ideas for
approximating the TSP of disks. In particular, if the neighborhoods are convex
regions of equal diameter in the plane, then a polynomial algorithm is known for
a constant factor approximation of the TSP visiting all the neighborhoods [1, 9].
The approximation algorithm works by choosing a representative point in each
convex region and finding an almost optimal tour of these points.

In this spirit, consider the instance M , which has n (possibly intersecting)
disks, each of radius µ. We call a set of vertical lines a line cover, if each disk is
intersected by at least one of these lines. A line cover with the minimum number
of lines is easily computed by a simple greedy scan: the first line is chosen to pass
through the rightmost point of the leftmost disk; remove all the disks intersected
by this line, and repeat until all the disks are covered. We can make two simple
observations: first, each disk is intersected by precisely one line in the cover,
which we call the covering line of this disk; and second, two adjacent lines of
the cover are at least 2µ apart. See Figure 1(a). For each disk D

i

, the point
where the covering line of D

i

meets its horizontal diameter is selected as its
unique representative point. Following the algorithm of [1, 9], we then compute
a (1 + ✏)-approximate tour of these representative points. Call this tour T (M).
Then, by Theorem 1, we have the important result that T (M) = O(E [L⇤ ]).

Unfortunately, by itself, T (M) is not a good tour for a random instance I—in
fact, it may not even visit some of the disks whose radius in I is smaller than µ.
However, we show that it provides a good high-level clue about the rough order in
which to visit the disks in any random instance. Let us fix an orientation of T (M),
say clockwise, and let A = {a

1

, . . . , a
n

} denote the sequence of representative
points of disks in M in the order they are visited by T (M), starting with the first
disk visited following the initial point s

0

. Recall that all the n representatives lie
on the covering lines, which have a minimum separation of 2µ. We now partition
the sequence A into chunks of consecutive points A

1

, A
2

, . . . , A
m

, such that each
chunk contains points that belong to the same covering line and are consecutive
along the tour T (M). W.l.o.g., let A

0

consist of the singleton initial point s
0

.
We note that the representative points of a covering line may be partitioned into
more than one such chunk. See Figure 1(b) for an example.

Let `
i

, for i = 1, 2, . . . ,m, be the line segment joining the lowest and the
highest (by y-coordinate) point in A

i

. Clearly, `
i

covers all the points in A
i

, and
thus visits the mean radius disks associated with them. We will use these chunks
A

i

to divide T (M) into m blocks B
1

, . . . , B
m

, where B
i

is the portion of T (M)
visiting the points in A

i

together with the line segment connecting the last point
in A

i�1

to the first point in A
i

. That is, B
i

is the part of T (M) starting after
its last contact with `

i�1

and ending right after its last contact with `
i

. See
Figure 1(c). Since the minimum distance between `

i

and `
i+1

is 2µ, we can lower
bound the length of the B

i

by 2µ+ |`
i

|; the initial block |B
1

|, being an exception,
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(a) (c)

> 2µ

Am

A
2

(b)

µ

A
1

|`i|

Bi

Ri

s
0

`i

`i�1

`i+1

Fig. 1. (a) A set of covering lines; (b) a possible structure of T (M) (c) a block Bi and
rectangle Ri.

is lower bounded by µ + |`
1

|, since s
0

is at least µ away from its closest disk.
From Theorem 1 and the fact that |T (M)| =

P
m

i=1

|B
i

|, we have

Observation 1
P

m

i=1

|B
i

| = O(E [L⇤ ]).

We say that all the disks covered by `
i

are assigned to the block B
i

, and these
blocks form the desired partial order on our input disks: all disks assigned to
block i precede any disk assigned to block j if i < j. By construction, the centers
of all the disks assigned to block B

i

lie within the rectangle R
i

of dimensions
|`
i

|⇥2µ, with vertical axis `
i

(see Figure 1(c)). We will argue that for any random
instance, by visiting all the disks of each block in the partial order imposed by
blocks, we obtain a tour that achieves a O(log log n) factor approximation of
the expected optimum. Before discussing the strategy to visit the disks in each
block, we note a simple geometric property of the optimal disk tour. The proof
is simple: the optimal tour must be polygonal, has at most one vertex per disk,
and cannot self-intersect—otherwise it can be shortcut, violating optimality.

Lemma 1. The optimal TSPN tour of any instance I is a polygonal cycle with

at most n vertices that does not self-intersect.

W

P
OPT

Fig. 2. The portion ofOpt
contained in W

Suppose Opt is an optimal tour of n disks in the
plane, and consider an axis-aligned square W , called
a window, entirely inside the minimum bounding box
of the disks. Focus on tour fragment P = Opt \W ,
namely, the portion of Opt contained in W , which
may be composed of multiple disconnected pieces, as
shown in Figure 2. Then P must visit all the disks
completely contained in W . The following lemma
shows that P together with the boundary of W is
lower bounded by the shortest tour that visits all the
disks contained in W , up to a constant. In particular, suppose Opt0 is the op-
timal tour for the subset of disks contained completely inside W .

Lemma 2. |Opt0|  2(|P |+ |W |), where |W | is the perimeter of W .
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Our discussion so far applies to the general stochastic TSPN problem: com-
puting the approximately optimal tour for the mean instance M , the partial
ordering of disks and the block partition all only require knowledge of the mean
radius and the disk centers. However, the last key step that computes a good
approximation tour for each block B

i

crucially depends on whether we know the
radii of the random instance beforehand or not. Therefore, the following discus-
sion now separately considers the o✏ine and the online versions of the problem:
in the former, the radii of the random instances are known to the algorithm at
the beginning, while in the latter the algorithm only learns the radius of a disk
D

i

when the tour reaches the boundary of D
i

.

3 Stochastic O✏ine Tour

In this section, we describe an algorithm for visiting the stochastic disks in the
o✏ine setting: the salesman knows the disk radii of the given instance before
starting the tour. We show how to construct a tour whose expected length is
within factor O(log log n) of the expected optimal.

In light of the discussion of the previous section, we only need to focus on
constructing approximately optimal tours for each block B

i

, for i = 1, . . . ,m,
because their concatenation leads to an overall tour with length close to E [L⇤ ].
We first recall that the centers of all the disks assigned to B

i

lie within the
(closed) rectangle R

i

with dimensions |`
i

|⇥ 2µ, and centered at the midpoint of
`
i

. We partition R
i

into 2µ⇥ 2µ squares; (the last “square” may be a rectangle
of width 2µ and height smaller than 2µ). We construct the tour separately for
each of these squares, visiting the disks whose centers lie in the square. The
concatenation of these subtours gives the final tour. With this preamble, the
next subsection considers the following key problem: given n disks whose centers
lie inside a square of side length 2µ, construct a tour visiting them. We then
explain and analyze the algorithm to combine these subtours in subsection 3.2.

3.1 Constructing a Subtour within a Square

Let D = {D
1

, . . . , D
n

} be a random instance of the stochastic TSPN problem
where the centers of all the disks lie inside a square R of dimensions 2µ ⇥ 2µ,
where µ is the mean radius of the disks. We show how to construct a tour visiting
these disks with expected length O(log log n) times the expected optimal. We
begin with an idea used in the work of Elbassioni et. al. [10] for the deterministic
TSPN problem on intersecting neighborhoods.

First, let D
in

✓ D denote the set of disks contained in the interior of R. If
D

in

= ;, then the boundary of R visits all the disks, and this is an easy case.
Otherwise, D

in

6= ;, and we proceed as follows. We let N
2

(D
i

) ✓ D denote the
2-neighborhood of disk D

i

= (c
i

, r
i

), which is the set of disks in D within distance
2r

i

of c
i

. That is, N
2

(D
i

) is the set of disks that intersect a disk of radius 2r
i

cen-
tered at c

i

. We call the disk D
i

the core of N
2

(D
i

). We use the 2-neighborhoods
to form a disjoint cover of D

in

, by the following iterative algorithm.
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Initially, N = ;. Choose the disk D
i

2 D with the smallest radius, and add
the 2-neighborhood N

2

(D
i

) to N , with D
i

as its core. Remove all the disks of
N

2

(D
i

) from D, and iterate until D is empty. Clearly, each disk D
j

2 D
in

is
assigned to N at some point, and we identify it with the core disk D

i

whose 2-
neighborhood addedD

j

toN . Without loss of generality, supposeD
1

, D
2

, . . . , D
k

are the core disks selected by the covering algorithm in this order. Clearly, by
the disk selection rule, any two core disks are disjoint, that is, D

i

\D
j

= ;, for
1  i, j  k, and the radii are in increasing order, namely, r

1

 r
2

 · · ·  r
k

.

Lemma 3. Let N 0(D
i

) ✓ N
2

(D
i

) be the set of disks added to N when D
i

is

chosen as core. Then there is a tour of length at most O(r
i

) visiting all the disks

of N 0(D
i

).

Let Opt0 denote an optimal tour that visits all the disks of D
in

. The following
key lemma gives a lower bound on |Opt0| for any instance of the problem in
terms of just the radii of core disks. An analogue of this Lemma can also be
found in [10] (and also in [22], in a slightly more general form).

Lemma 4. Let {D
1

, . . . , D
k

}, for k � 2, be the set of core disks whose 2-

neighborhoods form the disjoint partition of Din. Then, |Opt0| �
P

k�1

i=1

⇣
ri

dlog ke

⌘
.

Remark: The lower bound of the preceding lemma is tight in the worst-case.
We can construct a set of core disks for which the optimal tour is at most 1/ log k
times the sum of radii. In [22] a similar lower bound is presented for fat regions.

Lemma 5. The number of disks selected as a core in a disjoint partition of Din

whose radius exceeds µ/ log n is at most O(log2 n).

Lemma 6. In any random instance I 2 IR, the expected number of disks D
i

2
Din with radius smaller than µ/ log n is a constant.

The next theorem shows how to construct a tour of D using the tour of D
in

.
Please see the appendix for the proof.

Theorem 2. In polynomial time, we can compute a tour T (D) visiting all the

disks of D such that E [ |T (D)| ]  µ + O(log log n E [ |Opt0| ]), where Opt0

denotes the optimal tour on Din.

3.2 Combining the Subtours

We now stitch together these subtours spanning the disks whose centers lie in
2µ⇥ 2µ size squares to construct the final tour. See Figure 3 for illustration. In
particular, suppose S

i

= {R
i1

, R
i2

, . . .} is the partition of the rectangle R
i

into
these 2µ ⇥ 2µ squares, and let T

ij

be the O(log log n)-optimal tour (obtained
using Theorem 2) for the disks whose centers lie in R

ij

, where R
ij

2 S
i

. Let T
i

be the path obtained by concatenating the tours T
ij

, for {j : R
ij

2 S
i

}, where
i = 1, . . . ,m, adding at most O(|`

i

|+µ) to the length. Finally, combine the paths
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2µ

`i `i+1

2µ

`i `i+1

Bi

Bi+1

Ri Ri+1

Fig. 3. Two blocks Bi and Bi+1, and the paths replacing them.

T
i

, for i = 1, . . . ,m, to obtain a tour over D, by connecting the boundary of R
i

with the boundary of R
i+1

. These connections add at most
P

m

i=1

O(B
i

) to the
tour length. (Figure 3 illustrates this construction for blocks B

i

and B
i+1

.) It
is easy to modify the resulting walk into a traveling salesman tour by doubling
and shortcutting. Let T (D) denote the resulting tour. The following theorem
establishes the main result of this section.

Theorem 3. In polynomial time, we can compute a tour T (D) visiting the set

D of stochastic disks, such that E [ |T (D)| ] = O(log log n) · E [L⇤ ].

4 Stochastic Online Tour

We now consider the online version of the TSP with stochastic disks, where the
salesman learns the radius of each stochastic disk only on arriving at the bound-
ary of the disk—in the data gather application, the disk radius is revealed when
the robot is able to communicate with the sensor node. We propose an O(log n)-
approximation algorithm for the online version. In the special case where the
mean radii disks are nearly disjoint, we achieve an O(1)-approximation, both for
the online and the o✏ine setting. (In practice, this is the more likely case.)

Our online algorithm also follows the same outline as the o✏ine case, but
uses a di↵erent (and simpler) scheme to visit all the disks inside each rectangle
R

i

. In particular, recall that the centers of the disks assigned to a block B
i

lie
inside or on the boundary of the rectangle R

i

with dimensions 2µ ⇥ |`
i

|. We
divide each R

i

, for i = 1, . . . ,m, into dlog n · |`
i

|/µe horizontal strips of height
(at most) µ/ log n. See Figure 4(a). We now replace each segment `

i

of the mean
radius tour T (M) with a path that traverses the horizontal line segments of
length 2µ in the middle of the strips one by one. Consider a disk D

i

= (c
i

, r
i

)
whose center lies inside the current strip, and is not visited by the path so far.
The tour expects to intersect that disk when it reaches the point with the same
x-coordinate as c

i

; if it fails to reach it, then it makes a detour towards c
i

until
it reaches the boundary of D

i

and immediately returns to its position before the
detour. We now analyze the expected length of this tour.

Let T
i

be the path that replaces the block B
i

. Figure 4(b) shows this path,
which starts at the last point of B

i�1

and ends at the first point of B
i+1

, assuming
an orientation of the tour T (M).
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2µ

µ
logn

`i

`i�1

`i+1

(a) (b)

µ
logn

|`i|

Fig. 4. (a) Partition of rectangle Ri into strips; (b) the path replacing Bi.

Lemma 7. E [T
i

] = O( log n ) · |B
i

|.

Theorem 4. If the radii of the set D of random disks are revealed online, we can

compute in polynomial time a tour T (D), where E [ |T (D)| ] = O(log n) · E [L⇤ ].

Proof. Let T (D) be the union of the paths T
i

, for i = 1, . . . ,m, where T
i

ends at
the point where T

i+1

begins. The tour T visits all the disks, and by Theorem 1
and Observation 1, we have the following, which completes the proof.

E [ |T (D)| ] =
mX

i=1

E [ |T
i

| ] = O(log n)·
mX

i=1

|B
i

| = O(log n)·|T (M)| = O(log n)·E [L⇤ ].

Almost Disjoint Mean Radius Disks Finally, if the disks are not “too overlap-
ping” in the instance M , we can obtain a simple O(1)-approximate tour of D.
We say that the set D has depth c if no point lies in the common intersection of
more than c disks, as they appear in M . We note that even with this assumption,
a random instance of the problem may still have arbitrarily large intersection
depths. Nevertheless, we can prove the following result.

Theorem 5. If the stochastic set D has a constant depth, then we can compute

in polynomial time a tour T (D) such that E [ |T (D)| ] = O(1) · E [L⇤ ].
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