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Recent work has shown that, despite the minimal information provided by a binary proximity
sensor, a network of these sensors can provide remarkably good target tracking performance. In

this paper, we examine the performance of such a sensor network for tracking multiple targets.
We begin with geometric arguments that address the problem of counting the number of distinct
targets, given a snapshot of the sensor readings. We provide necessary and sufficient criteria

for an accurate target count in a one-dimensional setting, and provide a greedy algorithm that
determines the minimum number of targets that is consistent with the sensor readings. While
these combinatorial arguments bring out the difficulty of target counting based on sensor readings
at a given time, they leave open the possibility of accurate counting and tracking by exploiting the

evolution of the sensor readings over time. To this end, we develop a particle filtering algorithm
based on a cost function that penalizes changes in velocity. An extensive set of simulations,
as well as experiments with passive infrared sensors, are reported. We conclude that, despite
the combinatorial complexity of target counting, probabilistic approaches based on fairly generic

models of trajectories yield respectable tracking performance.
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crete Mathematics]: Counting Problems; G.3 [Probability and Statistics]: Probabilistic
Algorithms
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Additional Key Words and Phrases: Target Tracking, Sensor Networks, Binary Sensing, Counting
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1. INTRODUCTION

We investigate the problem of tracking targets using a network of binary proximity
sensors. Each sensor produces a single bit of output, which is 1 when one or more
targets are in its sensing range and 0 otherwise. These sensors are not able to
distinguish individual targets, decide how many distinct targets are in the range,
or provide any location-specific information. Despite the minimal information pro-
vided by an individual binary sensor, a collaborative network of these sensors has
been shown in prior work [Shrivastava et al. 2006; 2009] to yield respectable per-
formance when tracking a single target: the resolution with which the target can
be localized is inversely proportional to ρRd−1, where ρ is the sensor density, R is
the sensing range, and d is the dimension of the space. In this paper, we investi-
gate the problem of multiple target tracking with binary sensors, without a priori
knowledge of the number of targets.
We have chosen to focus on the simple and minimalistic setting of binary sensors

because the cost and power consumption of sensor nodes is a severe constraint in
large-scale deployments, and both can be significantly reduced by restricting the
nodes to provide binary output. Thus, by constraining ourselves to a binary sensing
model, we can work with low-power, low-cost sensor nodes that can form the basis
for a highly scalable architecture for wide area surveillance. This information can,
of course, be augmented by a small number of more capable sensors (e.g., cameras),
although we do not explore such enhancements in this paper.
Examples of sensor modalities that are suitable for low-cost nodes include [Aky-

ildiz et al. 2002] Seismic, Acoustic, Passive infrared (PIR), Active infrared, Ultra
wide band radar imaging, Millimeter wave radar, Magnetometer and Ultrasonic.
For many types of sensors, it is possible to use simple thresholding to get a binary
reading or perform onboard signal processing for rough classification. The former
option requires drastically reduced processing, and leads to significant power sav-
ings. As an example, for acoustic sensing (e.g., the Knowles EA-21842 sensor) and
magnetometer sensing (e.g., the Honeywell HMC1002 sensor), the power consump-
tion can be reduced five-fold by using binary mode rather than classification mode.
In our lab-scale experiments, we employ PIR sensors due to their good performance,
low cost, and ease of systems integration [Moghavvemi and Seng 2004].
As shown in [Shrivastava et al. 2009], the binary sensing model is analogous to

coarse-grained analog-to-digital conversion that filters out rapid variations in the
target’s trajectory. This motivates algorithms that attempt to track only “lowpass”
versions of the trajectory. For multiple targets, however, we encounter significant
additional difficulties, since we cannot tell how many targets are within a sensor’s
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range when it outputs a 1. Our first task in this paper, therefore, is to understand
how well we can count the number of targets, given a snapshot of the sensor read-
ings. We employ geometric arguments to characterize when an accurate count is
possible, and provide a lower bound on the number of targets, based on a greedy
algorithm for explaining the sensors’ observations with the minimum number of
targets. While these arguments bring out the difficulty of target counting and lo-
calization based on a snapshot, they do not preclude the possibility of accurate
counting and tracking when we account for the evolution of the sensor readings in
time, using a model for the targets’ behavior. To this end, we develop a particle
filtering algorithm which employs a cost function penalizing changes in velocity. It
is shown by simulations that the particle filter algorithm is effective in tracking tar-
gets even when their trajectories have significant overlap. The algorithm is general
enough to incorporate a simple model for non-ideal sensing, and provides accept-
able tracking performance for our experimental system with PIR sensors even when
one of the sensors fails.
For a large part of the paper, we restrict our attention to one-dimensional sys-

tems. This enables us to gain fundamental insight, as well as to easily display
multiple trajectories on two-dimensional space-time plots. However, many of our
geometric target counting arguments, and also the particle filtering algorithm, gen-
eralize to higher dimensions: we comment on the generalization of the geometric
target counting arguments to higher dimensions as we go along, while the devel-
opment of the particle filter algorithm is itself general, and its application to a
two-dimensional system is validated through a sample simulation study.
Our focus in this paper is on the efficacy of collaborative tracking rather on the

communication protocols used by the sensor nodes. Thus, we assume that all of the
sensor readings are available at a centralized processor, which can then estimate the
targets’ locations and trajectories. Distributed implementations of our algorithms,
in which neighbors collaborate to estimate segments of trajectories, are possible,
but are not considered here.
The rest of the paper is organized as follows. Section 2 discusses the problem of

target counting based on a snapshot of the sensor readings. In Section 3, we describe
our particle filtering algorithm. Section 4 provides simulation results, while Section
5 describes our experimental set-up and results. We end with the conclusions in
Section 6.

Related Work

The problem of tracking multiple targets using sensor networks has been explored
in many prior references [Reid 1979; Shalom and Li 1979; Oh et al. 2005; Jung
and Sukhatme 2002; Oh et al. 2005; Liu et al. 2004; Shin et al. 2003]. Owing to
its simplicity and minimal communication requirements, the specific use of binary
proximity sensors for tracking applications has also drawn considerable attention
of late. However, most of the work related to binary sensing has been applied to
the case of tracking a single target [Aslam et al. 2003; Kim et al. 2005; Shrivastava
et al. 2009]. The tracking techniques employed in the large-scale deployment in
[Arora et al. 2004] can be loosely interpreted in terms of a binary sensing model,
even though a variety of sensing modalities and a variety of targets are considered.
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Reference [Oh and Sastry 2005] contains a distributed tracking algorithm for a
binary sensor network, but assumes perfect knowledge about the number of targets
and their identities, unlike the present work.
In our work, we investigate both target counting and tracking. Prior work on

counting targets includes [Fang et al. 2002], but it assumes more detailed sensing
capabilities than our simple binary model. The classical framework for tracking is
based on Kalman filtering, with a linear model for the sensor observations corrupted
by Gaussian noise; for example, [McErlean and Narayanan 2002] investigates the
use of Kalman filtering for distributed tracking. In recent years, the use of particle
filters, which can handle more general observation models, has become popular
[Arulampalam et al. 2002]. However, most prior work on the use of particle filters
for tracking in sensor networks [Coates 2004; Khan et al. 2003; 2005] assumes a
richer sensing model than the binary model we consider. Exceptions are the prior
work in [Shrivastava et al. 2006; 2009] on the use of particle filters for tracking
a single target using binary sensing, and also the preliminary results from our
conference publication [Singh et al. 2007]. In this paper, we build on [Singh et al.
2007], providing new analytical design criteria that assist in the efficient and reliable
operation of our particle filter algorithm, and present a more detailed simulation-
based analysis to evaluate the performance of the algorithm. In addition, we include
simulation results and new theoretical proofs for two dimensions ([Singh et al. 2007]
only considered a one-dimensional setting).

2. SNAPSHOT BASED INFERENCE : TARGET COUNTABILITY

We begin our investigation by asking under what circumstances an algorithm can
reliably determine the number of distinct targets in the field, given a snapshot of
the sensor readings. In order to develop fundamental geometric insights, we restrict
attention in this section to an idealized model in which each sensor’s coverage area is
a circular disk of radius R: each sensor detects a target without fail if it falls within
this disk, and does not produce false positives or negatives. While we develop our
basic ideas and theorems in one dimension, we comment on their relevance and
extensions to higher dimensions as appropriate.

2.1 Target Counting with Binary Sensing

Some spatial separation among the targets is clearly a necessary precondition for
accurately disambiguating among different targets, but what does that mean, and
how much separation is enough? For instance, is the following simple condition
adequate: each target moves sufficiently (arbitrarily) far from the remaining tar-
gets at some point during the motion. Let us call this the condition of individual
separation. Unfortunately, as the following simple result shows, this alone is not
enough to count the number of targets accurately.

Theorem 1. Even arbitrarily large individual separation is not sufficient to re-
liably count a set of targets using binary sensors.

Proof. We give a construction in one dimension establishing the claim. Imagine
a group of m targets moving at uniform speed along a straight line L. Initially, all
targets are together and appear as one target to the sensor field. Now let target 1

ACM Journal Name, Vol. v, No. n, mm 20yy.



Multiple Target Tracking With Binary Proximity Sensors · 5

speed up and move away from the rest of the group. Once it moves sufficiently far
to the right, we can infer that there are at least two targets. Next, target 1 stops
and waits until the rest of the group meets up with it, and then they all resume
their motion. Then, target 2 separates from the rest of the group and repeats
the action of target 1, and so on. One can easily see that in this scenario, every
target achieves large individual separation from the rest, and yet no binary sensing-
based algorithm can ever decide whether there are two targets or m targets, for an
arbitrary value of m.

On the other hand, if the group of targets has pairwise separation more than 4R,
then binary sensing permits precise counting of targets.

Theorem 2. Suppose every pair in a set of targets has separation more than
4R in d-dimensional Euclidean space, where R is the sensing range, and suppose
that the average sensor density (per unit area) is ρ. Then, using binary proximity
sensors, we can precisely determine the number of distinct targets as well as localize
each target within spatial error at most Θ(1/ρRd−1).

Proof. Suppose there are m targets, and let Si be the set of sensors that sense
target i. Because each sensor’s range has radius R, by the assumption of pairwise
target separation, we must have Si ∩ Sj = ∅, for any two targets i and j. (This
follows because the union of two overlapping ranges has diameter less than 4R,
while any two targets are assumed to be more than 4R apart.) As a result, the
“on” sensors are naturally partitioned into m groups, one per target: all sensors in
the ith group are on precisely because of one target. Thus, the target sensed by
the ith group Si can be localized to the common intersection of all the ranges in Si

and the complement of the ranges of all the “off” sensors. The prior analysis for
single target localization [Shrivastava et al. 2009] shows that the diameter of this
intersection region (which need not be connected) is Θ(1/ρRd−1). This completes
the proof.

In some sense, the preceding example and the theorem settle the “easy” case:
when the objects are pairwise far apart, they can be counted as well as localized
quite precisely, but individual separation does not help in tracking. We now delve
into the more complex (and interesting) situation when these easy conditions do
not hold. We point out that there is no local fundamental limit based purely on
minimum separation among targets: two targets no matter how close can always be
disambiguated if two sensors with non-overlapping sensing ranges detect them. At
the same time, simply increasing the sensor density to disambiguate nearby targets
does not seem possible either. (However, as prior work [Shrivastava et al. 2009]
shows, the “localization” of an individual target does improve linearly with the
increasing density.) It seems that we need a more global argument to understand
the limit of target counting.
We now focus on one-dimensional space: much of the difficulty in the binary

sensing model has less to do with the dimension of the ambient space and more to
do with the “interference” between the influence of different targets on the sensor
readings. Any impossibility or hardness results we prove in one dimension naturally
hold in higher dimensions as well.
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ON

OFF OFF

g1 g2
ON

Fig. 1. A sample illustration for the feasible target space (F ). Here, g1 and g2 represent the

contributions of the ‘ON’ sensors to F .

2.2 The Geometry of Target Counting

We begin with some geometric preliminaries. Suppose we have N binary proximity
sensors deployed along a line. Each sensor’s range is then an interval of length 2R.
We use the notation Ci to denote the interval covered by sensor i (that is, sensor
i outputs a 1 if and only if a target falls in Ci). We assume that the domain of
interest is covered by the union of the {Ci}, i.e., that there are no gaps in coverage.
Any positioning of targets along the line leads to a vector of binary outputs from

the sensors. In particular, we have contiguous groups of “on-sensors” separated by
groups of “off-sensors.” Geometrically, the on-sensors inform us about the intervals
on the line where the targets might be, and the off-sensors tell us about the regions
where there are no targets. If we let I be the set of sensors whose binary output is
1 and Z be the set of sensors whose output is 0, then all the targets must lie in the
region F , which we call the feasible target space:

F =
∪
i∈I

Ci −
∪
j∈Z

Cj

The region F is a subset of the line, whose connected components are unions
of portions of the sensing ranges of the on-sensors. In particular, for sensor i, the
portion of its sensing range that appears in F is gi = Ci −

∪
j∈Z Cj , namely, the

part not clipped by the off-sensors. An example is shown in Figure 1. The feasible
target space is simply the union of these (overlapping) subintervals: F =

∪
i∈I gi.

The feasible target space has an interesting geometric structure. While each on
or off sensor contributes exactly one bit, the information content of the off sensors
seems richer, especially in localizing the targets: the 1 bit only tells us that there is
at least one target somewhere in the sensor’s range, the 0 bit assures us that there
is no target anywhere in the sensor’s range. This observation leads to the following
geometric property of the region F .

Lemma 1. Any two connected components of the feasible target space F are sep-
arated by at least distance 2R.

Proof. Choose a point x that is between two connected components of F . Since
x must lie in the range of some sensor, and x ̸∈ F , that sensor must have binary
output 0. A sensor with binary output zero eliminates length 2R of the line for
possible locations of the targets, and so the “gap” containing the point x must be
at least as wide as 2R.
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ON

Case 1

ON

OFF

ON
ON

Case 2

Fig. 2. Positively independent sensors: Case 1 shows two sufficiently far apart on sensors, Case 2
shows two on sensors separated by an off sensor.

Fundamental Counting Resolution

We now use this geometric framework to establish a theorem on the fundamental
limit of target counting. Towards that goal, let us define two sensors to be positively
independent if (i) they both have binary output 1, and (ii) either their sensing
ranges are disjoint or they belong to different connected components of the feasible
target space F . (Note that the independence property is defined with respect to
a particular instant, for a given vector of sensor outputs.) In other words, as
illustrated in Figure 2, two sensors are positively independent if they are both
detecting targets and are either sufficiently far apart (case 1) or are separated by
an off sensor (case 2). Then, the following result gives a necessary and sufficient
condition for correctly counting the number of targets along a line.

Theorem 3. A set of k targets on a line can be counted correctly if and only if
there exist k (pairwise) positively independent sensors.

Proof. We recall that by definition independent sensors have output 1. The
“if” part of the claim is therefore immediate: due to their independence, no two
sensors can be on because of the same target, and so there must be at least k
targets. In order to show the “only if” part, we argue that if k independent sensors
do not exist, then the counting is not guaranteed to be correct. In other words, the
sensors cannot distinguish between two scenarios, one with k targets and one with
fewer than k targets, thereby violating the correctness.
Without loss of generality, let us number the targets 1, . . . , k in the left-to-right

order along the line, and generate a list of sensors s1, s2, . . . , sj as follows. Let
s1 be the leftmost sensor with binary output 1. In general, let si be the leftmost
sensor with output 1 that is independent of si−1. Since we have assumed that k
independent sensors do not exist, we must have j < k. By the pigeon-hole principle,
therefore, there must be a sensor among s1, s2, . . . , sj whose range in F includes
at least 2 targets. We now observe that the binary outputs of none of the sensors
will be affected if we translated all the targets to the right until each target was at
the rightmost point of their independent sensor’s range gi. The sensor with two or
more targets clearly has a redundancy, and the binary outputs will not change if
one of those targets was eliminated. It follows that the counting algorithm cannot
distinguish between the case of k targets and the k− 1 targets. This completes the
proof.
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Step 1

Step 2

s3

g3
s2

g2

g4

s5

g5

s1

g1

s4

s5
g5

off
s̄

s4

g4

Fig. 3. Illustration of the greedy scheme in Theorem 4. s̄ indicates an off sensor, while other

sensors are on. The interval h in Step 1 is g1, while in Step 2, it is g4.

Remark on Counting Resolution

By the previous theorem, the number of distinct targets that can be “resolved” at
any snapshot of the sensing output equals the number of positively independent
sensors. Each such sensor is either distance 2R away from its left neighbor (if that
neighbor is in the same connected component), or it is preceded by a sensor with
binary output 0, which guarantees that no target is present in its coverage area
of length 2R. This can be interpreted “geometrically” to mean that in a space
of length 2ℓR, at most ℓ + 1 targets can be resolved. Thus, irrespective of sensor
density, we can only hope to achieve the counting resolution of about 1 target per
distance 2R. The payoff of a higher density deployment comes either in tracking
widely separated targets or in resolving two closely spaced targets.

2.3 A Lower Bound on the Target Count

Given the ambiguity in the mapping between sensor readings and target locations,
it is of interest to ask what the simplest explanation for a given snapshot of sensor
readings is. This Occam’s razor viewpoint translates to determining the minimum
number of targets consistent with the sensor readings. Interestingly, in one dimen-
sion, this minimum number matches precisely the maximum number of independent
sensors used in Theorem 3.

Theorem 4. Given a one-dimensional field of binary proximity sensors, let F
be the feasible target space corresponding to their signals at a particular time. Let
T be a minimal set of targets consistent with F and let S be a maximum set of
positively independent sensors for F . Then, we must have |T | = |S|.
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Proof. Let s1, s2, . . . , sm be the sensors with binary output 1, and let g1, g2, . . . , gm
be the intervals they contribute to F , (Recall that gi is just the range of si clipped
by the off sensors’ ranges.) We can now think of T as the minimum number of
points needed to “hit” all the intervals g1, g2, . . . , gm, and S as the maximum num-
ber of pairwise non-overlapping intervals in this collection. That these quantities
are equal can be seen by the following simple greedy scheme, illustrated in Figure 3:

sort the intervals g1, g2, . . . , gm in the increasing order of their right
endpoints; pick the first interval (call it h) in this order and add it to S;
delete all intervals that overlap with h; pick the next available interval;
and repeat until no more intervals are left.

A simple analysis shows that this greedy scheme finds the maximum possible non-
overlapping intervals in the set, and this correctly returns S. It is also clear that
by putting a target at the right endpoint of each of these intervals, we get the
minimum possible set T : since intervals of S are disjoint, we clearly need at least
one member in T for each member in S; that this is also sufficient follows because
the only intervals not considered are the ones that overlap with members of S at
their right endpoints, where the target point is placed. This shows that |T | = |S|,
and the proof is finished.

The previous theorem establishes a pleasing fact that a minimal target hypothesis
is consistent with the fundamental limit of target countability using binary sensors.
The greedy algorithm in the proof of the theorem can also be used to determine a
set of target locations that provides a minimal explanation for the readings. The
algorithm is highly efficient as well: it requires a single sorting and a scan, so takes
O(n log n) time, if n is the number of sensors.
The ideas of the minimum target set T as well as the maximum independent

sensor set S extend naturally to two or more dimensions, although computing them
becomes provably intractable (NP-complete). In two or more dimensions, however,
they do not always have the same value, although the inequality |S| ≤ |T | is always
satisfied. That is, the maximum number of independent sensors is a lower bound
on the minimum number of targets that are consistent with F . See Appendix A
for detailed proofs.
Having analyzed the intrinsic limits of target counting using sensor snapshots, we

now move on to the problem of tracking the targets across multiple snapshots. One
possible approach to do this is to exploit our preceding geometric results to per-
form snapshot based inferences at each time instant, and then piece the snapshots
together. For instance, we could use our greedy algorithm to determine a set of
target locations that provides a minimal explanation for the readings at each time
instant, and then merge them across time to obtain a set of possible target trajecto-
ries. In a worst-case scenario, where the targets move along arbitrary (adversarial)
paths with arbitrarily changing velocities, we cannot hope to do any better than
this. However, in a more benign and practical setting where the targets’ motion
exhibits a certain degree of temporal correlations, we can possibly count and track
the targets more accurately by exploiting these correlations. Specifically, instead of
taking a greedy minimalistic approach, we can rather work with a potentially large
pool of candidate trajectories (obtained by sampling the feasible target spaces), and
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hope that on letting these trajectories evolve over time, only a subset of them (that
actually correspond to the true target paths) would exhibit the desired temporal
correlations. In the following section, we develop a particle filter algorithm that
does precisely this, and show through simulations and lab-scale experiments that
it is quite effective in tracking multiple targets.

3. TRACKING ACROSS SNAPSHOTS : PARTICLE FILTER ALGORITHM

We consider a centralized model in which a tracker node collects the information
gathered by all the sensors over a certain interval of time, and processes the collected
data to estimate the trajectories. This centralized architecture may be the most
practical option in many settings, given the minimal communication needed to
convey the binary sensor readings. However, there are many possible approaches
for obtaining distributed or hierarchical versions of our algorithms, and some of
these may be fruitful topics for future work.
Before providing details of the particle filter algorithm, we first provide a formal

problem statement. Suppose that there are Q targets, moving in a field of binary
proximity sensors. Each sensor reports its 1-bit reading, regarding the presence
or absence of targets within its range, at the discrete set of time instants t ∈
{1, 2, . . . , T}. Based on the sensor readings, let the set of feasible target spaces be
F = {F [t]}, where F [t] denotes the feasible target space at instant t. Denote the
location of the qth target at the time instant t by xq[t], for q ∈ {1, . . . , Q}. The
true trajectory of the qth target is given by the set of its locations at the T time
instants, that is, {xq[t] : t ∈ {1, . . . , T}}. Given the set F , and without any prior
information about the number of targets Q, we wish to generate estimates of the
target trajectories, denoted by {yq[t] : t ∈ {1, . . . , T}}, where yq[t] is an estimate of
the location of the qth target at instant t.
The particle filter approach for tracking a single target has been used before in

[Shrivastava et al. 2009]. We next provide an outline of this approach, discuss its
limitations in the setting of multiple targets, and then present a modified version
tailored to the multiple targets problem.

3.1 Tracking A Single Target

The particle filter algorithm for a single target (Q = 1 known beforehand) works as
follows. We begin at t = 1, and proceed step by step to t = T , while maintaining a
(large) set of K candidate trajectories (or particles) at each instant. Each of the K
particles at an intermediate time t is a candidate for the estimated trajectory till
time t, i.e., a candidate for {y1[t′] : t′ ∈ {1, . . . , t}}. Let us denote the kth particle
at time t by Pt

k, for 1 ≤ k ≤ K. For each k, Pt
k is a vector of length t, and let it

be specified by the set of locations (x̂k[1], · · · , x̂k[t]). For instance, at t = 3, each
particle would be a vector of length 3, and would be a candidate for an estimate of
the true target path for the first three time instants. The algorithm is initialized
by picking K points in a uniform manner from the set F [1] to get the set of K
particles at the first time instant {P1

k}. Each of these is extended to t = 2 by
picking a point randomly (in a uniform manner) from the set F [2]. This generates
the set {P2

k}. Now, given K particles at time t ≥ 2, the K particles at time t + 1
are obtained in the following manner. Each of the particles Pt

k is extended to time
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t+ 1 by choosing m > 1 candidates for x̂k[t+ 1], using uniform sampling over the
feasible set F [t+1]. This produces a total of mK particles, each a vector of length
(t + 1). Based on a cost function, the K lowest cost particles out of these mK
particles are picked and designated as the K surviving particles at time (t + 1).
The algorithm proceeds in a similar manner till the last instant T , and at that
time, the particle with the smallest cost function out of the K particles {PT

k } is
picked and designated as {y1[t] : t ∈ {1, . . . , T}}, i.e., it is our estimate of the true
target trajectory. The basic premise underlying the particle filtering approach is
that, if the choice of the cost function is in accordance with the actual motion of the
target, then the particles that do not conform to this motion will eventually drop
out due to large cost functions, while the surviving particles will be good estimates
of the true trajectory.
While we pick the lowest cost particle at the last time instant as our estimate of

the true path, if we look at the entire set of the K surviving particles {PT
k }, it is

very likely that a significant fraction of them would not differ appreciably from the
best one. In other words, we would expect to see a cluster of good particles around
the best one. This observation is crucial as we now consider multiple targets, since
the clustering of particles enables us to distinguish between, and track, multiple
targets. Specifically, if the paths taken by the different targets are (reasonably)
separable over time, then we would expect that the K surviving particles at the
last time instant would comprise of distinct clusters of particles, with each cluster
corresponding to one of the actual targets. This leads to the intuition that the
particle filtering approach can be employed to track multiple targets by looking
for clusters of particles among the survivors at the last time instant, instead of
choosing a single best particle. Unfortunately, this naive extension of single target
tracking does not serve our purpose completely: while in general we expect clusters
of particles in the vicinity of each of the target paths, in certain situations, we
may end up getting clusters around only a subset of the target paths. As a simple
example, consider an instance when one of the targets (say q1) is far from the
others, and moves in a manner that is much more amenable to the cost function
than the rest of the targets. Since the particle filter algorithm retains the K best
particles, it is quite possible that all of these “lock onto” the trajectory of target
q1, discarding particles corresponding to other targets. A brute force approach to
tackle this problem of monopolization would be to increase the number of particles
that we store (i.e., increase K), but the number of particles needed to make this
work, and the associated computational complexity, can be excessive. Instead, as
described in the next section, we propose an algorithm in which we identify cluster
formation as we go, and limit the number of particles allocated to each cluster.

3.2 Tracking Multiple Targets: the ClusterTrack Algorithm

We call our proposed scheme ClusterTrack. The method is specifically designed
to prevent a subset of targets from monopolizing all of the available particles. To
this end, instead of looking for clusters at the end, we monitor their formation
throughout the tracking process, and limit the number of particles per cluster. We
still retain K particles at each time instant. However, instead of picking the K best
particles, we pick the K best particles subject to the constraint that the number of
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particles per cluster does not exceed a threshold H. A cluster is defined as a group
of particles that are “similar,” where similarity between two particles is measured
in terms of a distance metric to be specified. Thus, we scan the set of particles
in increasing order of cost functions as before, but we retain a particle only if the
number of similar particles retained thus far is less than the threshold H. This
procedure enhances the likelihood that the particle filter catches all of the targets.
In order to ensure that we do not end up scanning the entire sequence of particles
at each instant, we can also put a limit L (L > K) on the number of particles that
we consider. In this case, we stop the search for particles when either K particles
have been retained, or L of them have been scanned, whichever happens first. The
actual number of particles retained at time t is denoted by Kt, where Kt ≤ K.
At the final time instant, we take the best particle from each of the clusters

obtained, and designate it as our estimate of the trajectory followed by one of the
targets. An alternative would be to choose a ‘consensus path’ (e.g., based on a
median filter at each time instant) for each cluster.

Algorithm 1 ClusterTrack (F) at time (t)

1: Get the set {Pt−1
k } of Kt−1 surviving particles from time t− 1.

2: Extend this set to time t, generating a total of mtKt−1 particles.
3: Sort the mtKt−1 particles in ascending order of cost to get the set
{P̂1, . . . , P̂mtKt−1}

4: Put P̂1 in Cluster1, P
t
1 = P̂1, NC = 1, Count1 = 1, i = 2, k = 1

5: while (i ≤ L and k ≤ K) do
6: if (P̂i ∈ Clusterj for some j) then
7: if Countj < H then
8: Countj ← Countj + 1, k ← k + 1

9: Retain P̂i and Pt
k = P̂i

10: else
11: Abandon P̂i

12: end if
13: else
14: Make new cluster for P̂i, NC ← NC + 1, k ← k + 1
15: Pt

k = P̂i

16: end if
17: i← i+ 1
18: end while

The pseudo code description for the ClusterTrack at a particular time instant
t is given in Algorithm 1. Clusterj represents the jth cluster, countj denotes the
number of particles retained in Clusterj , NC is the number of clusters, H is the
maximum number of particles to be retained from a particular cluster, and L is
the maximum number of particles to be inspected in order to find the surviving
particles at time t.
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Sampling Strategy and Cost Function

Step 2 of the algorithm requires us to extend each of the surviving particles to the
current time instant t, while step 3 requires assigning a cost to each particle. The
first task is performed by picking samples uniformly from F [t], with a fixed sampling
density of mo samples per unit area. Note that the total number of samples picked
is thus a function of time (it depends on the size of the set F [t]), and is hence
labeled as mt.
We work under the assumption of smooth target trajectories (i.e., the targets do

not have abrupt velocity changes), and hence pick a cost function that penalizes
changes in velocity. Let P = (x̂[1], . . . , x̂[t]) denote a particle. The instantaneous
estimate of this particle’s velocity vector at any time n ∈ [1, t− 1] is the increment
in position x̂[n + 1] − x̂[n]. The instantaneous contribution to the cost, in going
from time n to n+ 1, is taken to be the norm of the change in velocity

c[n] = ||(x̂[n+ 1]− x̂[n])− (x̂[n]− x̂[n− 1])||
= ||x̂[n+ 1] + x̂[n− 1]− 2x̂[n]||

where || · || denotes Euclidean norm. Assuming that rapid accelerations are unlikely
in smooth paths, the cost c[n] should be inversely related to the probability that
a target moves from the location x̂[n] at time n to x̂[n + 1] at time (n + 1), given
that it had moved from x̂[n− 1] to x̂[n] between time instants (n− 1) and n. The
net cost function associated with the particle P is simply taken to be the sum of
the incremental costs:

∑t−1
n=2 c[n].

Choice of Algorithm Parameters and Clustering Criterion

The performance of ClusterTrack depends on the criterion we adopt to cluster
different particles, and also on the choice of the following tunable parameters: mo

(the sampling density); K, L and H (the maximum number of particles retained at
any time, the maximum number of particles scanned at any time, and the maximum
number of particles retained in a cluster at any time, respectively). We focus first
on the choice of parameters.
Choice of the Parameters: If the motion of the targets is in accordance with

the choice of our cost function, increasing the value of mo, and/or H, (with cor-
responding increase in K and L) is expected to provide improved performance in
terms of generating lower cost estimated trajectories, since it allows us to populate
the sample space with a larger number of particles, and/or to retain a larger num-
ber of particles at each step. Of course, the level to which we can increase them
is governed by the complexity we can tolerate. We assume that the values of mo

and H are fixed, and try to analyze the values of K and L that we should use for
ClusterTrack.
Assuming for the moment that we have an estimate Q̂ for the number of targets,

it is easy to obtain suitable rules of thumb for K and L. Specifically, if we retain
H particles per target, then the total number of particles we retain should be
K ≈ H Q̂. In order to get a suitable value for L, we need to answer the following
question: What is the maximum number of particles we need to scan to make sure
that particles corresponding to all targets are caught? To answer this question,
consider the H particles corresponding to a particular target (say q1) that were

ACM Journal Name, Vol. v, No. n, mm 20yy.



14 · Jaspreet Singh et al.

retained at the previous time instant. Denoting the size of the feasible target space
F at the current time instant by SF , each of these H particles will be extended to
the current time by picking mo SF samples from F , so as to generate a total of
H mo SF particles. However, out of this huge set, we expect that the set of good
particles (in terms of the cost function) would be restricted to those for which the
current sample is picked in that portion of F which was actually contributed by
the target q1. It is hard to precisely quantify the contribution which a particular
target makes to F at any given time instant, since it is governed not only by its
own location, but also by the location of the targets in its vicinity. However, an
empirical estimate Â of the average contribution can be obtained from the collected

sensor data as follows: Â ≈
∑T

1 SF (t)

T Q̂
, where SF (t) denotes the size of the feasible

target space at time t, T is the total number of time instants, and Q̂ is the estimated
number of targets. Given this empirical estimate, we expect that, on average, the
number of good particles corresponding to a particular target would be close to
H mo Â. Since we need to catch the good particles corresponding to each of the

targets, a good design choice for L, therefore is, (H mo Â) Q̂ = H mo

∑T
1 SF (t)

T .
Note that this does not directly depend on the estimated number of targets, but
only on the size of the resulting feasible target space. This makes intuitive sense,
since if we keep adding more targets without changing the feasible space, the total
number of smooth particles that we can populate the space with would not change.

Clustering Criterion: The decision in step 6 of the algorithm (whether the par-
ticle under consideration, P̂i, belongs to any of the existing clusters) is made as
follows. For each of the NC existing clusters, denote by CHj the first particle that
joined the jth cluster, where j ∈ {1, · · · , NC}. We refer to this first particle CHj as

the cluster-head of the jth cluster. For time instant t, both P̂i and CHj are vectors
of length t. Define the distance between them to be the mean of the absolute dif-
ferences between their components, that is, D(P̂i,CHj) =

1
t

∑t
l=1 |P̂i[l]−CHj [l]|.

Compute D(P̂i,CHj) for each j, and compare the minimum of these distances
against a threshold D0. If the minimum is smaller than the threshold, conclude
that the particle P̂i belongs to that cluster whose cluster-head has the minimum
distance from it. Otherwise, conclude that the particle does not belong to any of
the existing clusters. To pick the threshold, we need to answer the following ques-
tion: For what maximum mean separation between two distinct particles should
we consider them to correspond to the same true trajectory? From the preceding
discussion, we already have an empirical estimate Â for the average contribution
that a target makes to the area of the feasible space. Thus, a suitable choice for
the threshold Do is (Â)

1
n (where n denotes the dimensionality of the space), since

we can expect that two particles that correspond to the same target would have
maximum average separation close to (Â)

1
n .

It remains to specify an estimator for the number of targets Q̂. In one dimension,
as discussed in Section 2.3, we can obtain a lower bound on the target count at each
time instant. The maximum of these lower bounds provides a good lower bound
on Q̂, which would actually be tight if the targets separate out just enough even
at only one time instant. In our simulations, we investigate the performance of the
algorithm for different choices of Q̂ greater than the maximum lower bound. For
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two or more dimensions, computation of the bounds on the target count becomes
intractable. In such a scenario, a simple lower bound on the target count is the
maximum number (over all time instants) of disjoint regions that form the feasible
space. This lower bound would be tight if the targets are separated widely enough
even at only one time instant.
Finally, note that in spite of using the suggested analytical rules for the various

parameters, there is no theoretical guarantee that the ClusterTrack algorithm
will catch all targets (even if our estimate Q̂ is correct). However, once the algo-
rithm has been run, we can perform a simple test to check whether the generated
trajectories at least satisfy the instantaneous lower bounds on the target count.
As described in detail in Appendix B, if we find that the number of trajectories is
smaller than the lower bound, then we run the algorithm again to generate addi-
tional trajectories.
Next, we present simulation results to evaluate the performance of our tracking

algorithm.

4. SIMULATION RESULTS

Most of our simulations are for a one-dimensional system with sensors placed uni-
formly along a line (see Section 4.3 for 2D simulations). We denote the sensor
radius by R, the sensor density by ρ, the sampling density by mo, and the location
of the qth target at instant t by xq(t). Further, let X denote the collection of the
true target locations, for all the targets, over all the time instants.
The geometry of our sensing model is best revealed by expressing our results

in terms of scale-invariant parameters. Note first that a system with parame-
ters (R, ρ,mo, X) has the same performance as that of a system with parameters
(Rα , ρα,moα,

X
α ), for any positive scale factor α, except that all trajectories also

scale by 1
α . Consequently, we analyze and report our results as a function of the

following normalized parameters: (ρR,moR, X
R ). Note that ρR is the number of

sensors per unit radius, moR is the number of samples we pick per unit radius, and
X
R denotes the positions of the targets in units of R.
We begin with an ideal sensing model, wherein each sensor detects the targets

within its range without any misses. We then show that our algorithm also works
well for a simple model for non-ideal sensing.

4.1 Tracking with Ideal Sensing

We consider 5 targets, and generate trajectories over 20 time instants for each
of them. In keeping with our assumption of smooth target trajectories (i.e., no
abrupt velocity changes), we pick the velocity of a particular target, at each instant,
randomly within ± 20 % of some mean value (using a uniform distribution). The
model applies, for instance, if we consider the motion of vehicles on a freeway, over
a reasonably short time window. The parameter ρR is taken to be 1 (i.e., the
separation between consecutive sensors is equal to the sensing radius, so that the
coverage areas for two adjacent sensors have 50% overlap). For the ClusterTrack
algorithm, we take the maximum number of particles per cluster, H = 25, and the
sampling density moR = 15. Each of the plots shown ahead is a location v/s time
plot. Solid curves (colored red) denote the actual target paths, while dashed and/or
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Fig. 4. Example scenarios to depict the performance of ClusterTrack with roughly constant
velocity motion, for two different settings (plots (a) and (b)). (Solid curves (colored red) are
used to denote the actual target paths, while dashed and/or dotted curves (colored blue or black)

denote the estimated trajectories). Plot (c) shows the results for the same setting as in plot (b),
in a simulation run that resulted in some spurious estimated trajectories as well (marked out by
the special characters)

dotted curves (colored blue or black) denote the estimated trajectories.
With (roughly) constant velocity motion, as long as the velocities of two targets

are not equal, they are guaranteed to separate out at some point of time. We
therefore simulated two types of scenarios: (a) targets starting out well separated,
getting close to each other, and then separating out again; (b) targets starting in
close proximity to begin with, and then separating out. We found that Cluster-
Track performed fairly well in both settings. Sample plots are shown in Figure 4(a)
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and 4(b), each corresponding to a single simulation run. We see that the algorithm
succeeds in catching and tracking all targets. We note that the performance of the
algorithm does vary across simulation runs, and over multiple runs, the algorithm
generated between 5 and 7 trajectories, with 5 of the trajectories almost invariably
providing good approximations of the true paths. For example, the results from
a simulation resulting in 7 estimated trajectories are shown in Figure 4(c), where
the additional spurious estimates are marked by the special characters. Note that
we get spurious estimates of both types, low-cost smooth estimates (the estimate
marked by ′◦′), and also high-cost estimates with sharp transitions (the estimate
marked by ′∗′). In general, the emergence of low-cost spurious estimates is gov-
erned by the nature of the true trajectories: if the true trajectories allow smooth
transitions from one to another, low-cost spurious estimates can arise. On the other
hand, the high-cost spurious estimates were seen to emerge only in (a subset of)
those cases when the algorithm had to be re-run, because the trajectories generated
in the first go could not satisfy the lower bounds on the target count. As explained
in Appendix B, this re-run of the algorithm constrains the new trajectories to pass
through some particular connected components of the feasible target space, so that
it can result in the generation of rapidly fluctuating trajectories as well. Of course,
given their high cost, such spurious estimates are very unlikely to correspond to
any actual target.

To obtain the preceding results, we take Q̂, the estimate of the number of targets,
to be exactly equal to the maximum of the instantaneous lower bounds on the target
count. (Remember that we need Q̂ in order to decide the values for some of the
parameters of the algorithm.) Although this estimate is accurate, we find that, in
the first go, the algorithm usually managed to catch 4 (occasionally 3, or, 5) of
the 5 targets. The remaining targets are caught when the algorithm was run again
in order to satisfy the lower bounds. Given this observation, it is worthwhile to
evaluate the performance of our algorithm for larger values of Q̂. This increases the
likelihood that the algorithm catches all the targets in one go, albeit at the cost of
generating additional spurious trajectories. For the same settings as in Figure 4(a)
and 4(b), we tested the performance with Q̂ as high as twice the maximum of the
instantaneous lower bounds. We found that the algorithm did increasingly manage
to catch all the targets in one go, and there was no significant increase in the number
of spurious estimates.

We also note that, if the overlap between the trajectories is significantly increased,
the algorithm can fail to catch some of the targets. An example of such a setting
is provided later, when we consider the impact of variations in the system set-up
on the performance of the algorithm.

For the preceding scenario (relatively constant target velocities), the low-cost spu-
rious estimates formed by joining pieces of the true paths are less likely to emerge
as compared to the estimates that actually correspond to the true paths. This is
simply because transitioning from one constant velocity path to another requires a
change in velocity (resulting in a higher cost function), as opposed to continuing on
one particular path. As a result, low-cost spurious estimates emerge quite rarely.
However, if we now consider a model that allows for some velocity variations to
begin with, while still working with a cost function that penalizes changes in veloc-
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Fig. 5. Example scenarios to depict the performance of ClusterTrack with constant acceleration
motion. Plot (a) shows a situation where spurious estimates can have smaller cost functions than
the estimates corresponding to the true trajectories, so that the true trajectories may not be
generated by the algorithm. However, in less averse scenarios, ClusterTrack still performs very

well, as shown in Plot (b).

ity, the likelihood of getting spurious estimates increases. Specifically, if the true
paths are such that the estimates obtained by merging them actually have smaller
cost functions than the estimates corresponding to the true paths, the algorithm is
likely to generate the former category of estimates. An example scenario is shown
in Figure 5(a), where we consider constant acceleration motion, so that the target
velocities vary over time. As is evident in this particular situation, the estimates
formed by combining pieces of the two trajectories have smaller cost functions than
the true trajectories themselves. While we constructed this example specifically to
show how our decision to penalize velocity variations may not be the most appro-
priate choice when the targets do vary their velocities, we note that there can be
many other non-constant velocity scenarios where it can still provide good perfor-
mance. Figure 5(b) shows such an instance, with 5 targets moving with constant
accelerations. We find that the algorithm tracks all 5 targets correctly in almost all
the simulation runs, while generating 2–3 spurious estimates in some of the runs.
Remark: In the simulation results we have presented, all the targets did separate

out at least for one time instant, so that our lower bound on the estimate of the
target count Q̂ is tight. We also tried to simulate scenarios in which this was
not the case, so that the lower bound was not tight. While we managed to find
example instances in which the algorithm still was able to catch all the targets
(this required us to use a Q̂ significantly larger than the lower bound), in general,
there is no guarantee that the algorithm will succeed. An interesting open problem
is to determine conditions under which we can exploit the temporal evolution of
trajectories to get an accurate target count, even if all targets do not separate out
at any given time instant.

ACM Journal Name, Vol. v, No. n, mm 20yy.



Multiple Target Tracking With Binary Proximity Sensors · 19

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Sensor density (sensors per unit R)

M
e
a
n

 l
o

c
a
li
z
a
ti

o
n

 e
rr

o
r 

/ 
R

(a)

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Time

L
o

c
a
ti

o
n

 /
 R

(b)

Fig. 6. Impact of change in sensor density. Plot (a) shows the localization error performance
of ClusterTrack versus the sensing density. Plot (b) shows the trajectories obtained in one
particular setting, with the sensor density ρR = 0.125, in order to highlight spurious estimates

that only deviate from good estimates towards the end.

Impact of variations in the system parameters

In this subsection, we examine the impact of variations in the system parameters
on the performance of ClusterTrack.
Variation in ρR: We first consider the impact of varying ρR, the number of sensors
per unit radius, while keeping the target locations X

R fixed. Assuming that all
the targets can be identified and tracked correctly, increasing the sensor density
should provide improved localization performance. This is because, by putting in
additional sensors, the size of each of the connected components comprising the
feasible target space F can only decrease. To see this, consider a point x that is
not currently in F . It must be in the coverage region of at least one off sensor, say
Sx. Even if we put in more sensors, x will still belong to the coverage region of Sx,
so that the size of F cannot increase by adding more sensors. On the other hand,
a point x that currently belongs to F , may end up falling into the coverage region
of an off sensor when we add more sensors, so that F may shrink.
To quantify the effect of varying ρR, we considered the same set of target tra-

jectories as in Figure 4(a), and ran ClusterTrack multiple times for each value
of ρR. In each simulation run, we took the error in the estimation of a partic-
ular target’s trajectory to be the mean (over all time instants) error from that
estimated trajectory which was nearest to the true trajectory of the target. The
average estimation error was then computed by averaging over all targets and all
simulation runs. The performance improvement obtained by increasing the density
in our simulation setting is depicted in Figure 6(a).
Another minor effect of using a large sensor density that is worth a quick mention

is the emergence of spurious estimates such as the ones shown in Figure 6(b). These
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Fig. 7. Impact of changing the target separation on the performance. If the target trajectories
have significant overlap, the algorithm may not be able to disambiguate them.

estimates closely match other true estimates for the most part, but suddenly deviate
from them towards the end. An intuitive explanation for their emergence follows
from the preceding discussion. For large ρR, the size of the feasible target space
becomes small, so that the clustering threshold Do would also be small. Thus, two
candidate trajectories that are together for a long time but suddenly have a large
separation may not be clustered together. Of course, these spurious estimates have
large cost functions, and hence can be eliminated by inspection. Note also that these
spurious estimates may also arise at the intermediate stages of the algorithm (rather
than just at the end), but due to the large cost function, they would automatically
be pruned out when the algorithm proceeds to the next time step.
Variation in X

R : We now investigate the impact of variations in the target locations
X
R , for fixed sensor density ρR. Intuitively, scaling X

R up should improve perfor-
mance, since it should be easier to resolve widely separated targets, while if we scale
down X

R enough, we should become unable at some point to resolve all targets. To
illustrate this, we consider the same scenario as in Figure 4(a), but scale down the
target locations to bring them closer. Figure 7 shows the performance degradation
when we scale down the separation by a factor of 4: the algorithm tracks some
of the targets well, but not all. Note however, that, in such scenarios (which can
potentially be identified on the basis of no conclusive evidence on the target count
and their trajectories over multiple simulation runs), if we let the target trajectories
evolve further (hoping that they may separate out later), then the algorithm may
recover and eventually identify and track all the targets.
Variation in H and moR: We also simulated the effect of variation in the two
base parameters H (maximum number of particles retained per cluster) and moR
(sampling density per unit R). Increasing moR implies we can sample the feasible
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Ri

Ro

Fig. 8. The two radius non-ideal sensing model.

space with a greater resolution, while increasing H simply means that the set of
trajectories we retain is more dense. Intuitively, we thus expect that increasing
either of these parameters would make it possible to find lower cost trajectories
propagating through the feasible space. Indeed, we observed this to be true in
our simulations, as the costs of the estimated trajectories we obtained tended to
be smaller when we increased moR and/or H. Note however, that this does not
necessarily reflect an improvement in terms of the localization error, since there is
no apparent correlation between the localization error and the cost function of the
estimated trajectories. Our simulation results were inconclusive as well, and did
not show a consistent pattern in localization error performance on changing moR
and H, and we leave further study of the impact of mo and H as an open issue.
Next, we consider tracking with non-ideal sensing.

4.2 Tracking with Non-Ideal Sensing

For real world deployments with imperfect and noisy sensors, it is necessary to
extend the ideal sensing model considered thus far. For instance, a sensor may fail
to detect a target within its nominal sensing range, or may sometimes detect targets
outside the range. We use a simple model for this non-ideal behavior (Figure 8). A
target within the inner interval of radius Ri is always detected, and a target outside
the outer interval of radius Ro is never detected. The interval between Ri and Ro

is a region of uncertainty, and the algorithm that we consider does not require a
specific model for the sensor output when the target falls in this region. This is
because we use a worst-case interpretation of the model to generate the feasible
target space from the sensor data, assuming the maximum uncertainty consistent
with the sensor readings. An on sensor tells us that the target is somewhere inside
the outer interval of radius Ro, while an off sensor indicates that there is no target
inside the inner interval of radius Ri. Despite its simplicity, this is a fairly generic
model for non-ideal behavior, since it arises naturally if sensors integrate noisy
samples over a reasonable time scale to make binary decisions regarding target
presence or absence.
The set-up for simulation is as before: a one-dimensional system with uniformly

placed sensors. We continue to express our results in terms of the scale-invariant
parameters introduced earlier, with the two additional parameters α < 1 and β >
1 specifying our non-ideal sensing model in terms of the ideal sensing radius R:
Ri = α R, and Ro = β R. In order to simulate the sensor readings, we assume that
a target falling in the region of uncertainty of a particular sensor is detected with
probability 0.5 by that sensor. We evaluated the performance of ClusterTrack
for the same scenario as in the simulation with ideal sensing (Figure 4(a)), with
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Fig. 9. Performance of ClusterTrack with non ideal sensing, for the same example scenario as
considered for ideal sensing in Figure 4(a). The plot shows the results obtained in one simulation
run, with Ri = 0.5R and Ro = 1.5R

(α, β) = (0.7, 1.3), and (α, β) = (0.5, 1.5). We found that the algorithm was still
able to resolve and track all the targets well, although there was a more consistent
emergence of spurious estimates as compared to ideal sensing. Figure 9 shows
the results for one simulation with (α, β) = (0.5, 1.5). We see that the algorithm
generates 8 trajectories, 5 of which approximate the true paths well. Out of the 3
spurious estimates (marked by the special characters), 2 have relatively high cost
functions and hence may be eliminated by inspection. While the performance in
terms of identifying the various targets did not degrade in the face of reasonable
levels of non-ideality, there is some degradation in the error in localizing the targets.
For instance, with Ri = 0.7 R, and Ro = 1.3 R, the mean localization error over
multiple simulation runs is found to be 0.287R, as opposed to 0.238R for ideal
sensing (the data point in Figure 6(a) for ρ = 1). With Ri = 0.5 R, and Ro = 1.5 R,
the error increases to 0.377R .
Our results demonstrate that the particle filter approach is robust to non-ideal

sensing. In Section 5, we test the performance of our approach on a lab-scale
experimental testbed with PIR sensors.

4.3 Two-dimensional Simulation

Before proceeding to the experimental results, we illustrate the applicability of the
particle filter algorithm to a two-dimensional (2D) system. Our aim here is to
provide a quick simulation to demonstrate that the algorithm extends naturally
to two dimensions (note that the development of the algorithm in Section 3.2 is
indeed general, and not restricted to just one dimension), leaving more extensive
analysis and performance evaluation as a topic for future investigation. To this end,
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Fig. 10. Example scenario to depict the performance of ClusterTrack in a two-dimensional

setting. Solid (resp. dashed) curves show the true (resp. estimated) trajectories, and the corre-
sponding time instants are marked out on the curves.

we consider a two target scenario, and test the performance of a simple one-run
version 4 of our algorithm. The simulation set-up is as follows: the sensors are
placed on a uniform 2D grid, with the separation between consecutive sensors in
either dimension being R units (so that ρR2 = 1); the maximum number of particles
retained per cluster H = 50; and the sampling density mo is such that moR

2 = 50.
(Note that for a two-dimensional system, the performance is characterized in terms
of the normalized parameters: {ρR2,moR

2, X
R }, with X = (X1, X2) denoting the

2D location of the targets.) Figure 10 shows the results obtained for an example
simulation run, wherein the targets start out well separated, approach each other,
and then separate out, all the while moving with near constant velocities. The
solid (resp. dashed) curves show the true (resp. estimated) trajectories of the two
targets, while the corresponding time instants are marked out on the respective
curves. We can see that the algorithm succeeds in catching and tracking both
targets.
Our sample simulation results show that the algorithm works well in 2D as well.

However, there are a number of ways in which 2D is more complicated than 1D.
First, note that the algorithm relies on the availability of the feasible target space
F . In 1D, it is straightforward to specify F given the sensor reading: since F is
a union of intervals, we may simply specify the start and end points of each of
these intervals. For two (or more) dimensions, F is a union of multi-dimensional
sets, and it is not immediately evident how best to compute and specify these
sets (in particular, closed form expressions for these sets appear to be elusive). A

4One-run version simply means that we stop after the algorithm has been run once, without
checking whether all the lower bounds on the target count have been satisfied.
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reasonably accurate approximation for F , which we use for our 2D simulations,
is to discretize the 2D space into a (fine) grid, and to test each point in the grid
separately as to whether it belongs in F . However, this approach does not specify
the different disjoint components comprising F , knowledge of which is needed in
order to get a lower bound on the target count, and to check if the algorithm needs
to be re-run in case of any unused components. For our 2D simulations, we used
a single-run version of the algorithm, and assumed that the maximum number of
disjoint components (i.e., a lower bound on the target count) is somehow available.
In short, while the particle filtering approach extends naturally to higher di-

mensions, the preceding discussion shows that further investigation is needed into
efficient mechanisms that ensure that the algorithm catches all targets with high
probability.

5. EXPERIMENTS

We use a small testbed with 5 PIR sensors placed uniformly along a line; see
Figure 11. Each sensor sends a measurement to the base station when it changes
state, and the base station is interfaced to a PC through a serial port. The data
gets time stamped at the PC, so that each of the final set of measurements includes:
‘value, position (mapped from node ID), and time’. For the ground truth regarding
target trajectories, the (human) targets are provided with separate sensor nodes
(equipped with localization engines) with buttons, which they press as they pass
by a set of known locations on the way.
While each sensor in our experimental set up sends a measurement when it

changes state, our problem formulation in Section 3 is based on the assumption
that all sensors send their measurements at regular time instants. To apply our
algorithm, therefore, we sample the collected data at regular time instants, and
assume that the reading of a particular sensor at any time is the same as the one
after its last toggle. Another implementation issue we faced was that, even when
a target was detected as it entered the field of a sensor, the sensor output became
0 immediately after the detection, and kept toggling between 0 and 1 as the tar-
get moved towards the sensor. A probable reason for this is that the modules we
used are meant for triggering a relay that resets after a certain amount of time,
with the aim of minimizing false alarms, at the cost of some missed detections. To
deal with this issue, we simply decided to neglect every 1 → 0 transition that was
immediately followed by another 0→ 1 transition.

5.1 Sensor Characterization

We first performed some experiments to characterize an individual sensor module.
The readings obtained were far from ideal. The probability of target detection with
distance is depicted in Figure 11. In order to fit the sensor behavior to our non-ideal
model of Figure 8, we set Ri = 3 feet and Ro = 7 feet.

5.2 Tracking Performance

In our experiments, we placed the sensors uniformly along a line, separated by 4
feet (represented by the circles in Figure 12(a)). We considered two targets, which
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Fig. 11. Experimental setup and sensor characterization: The figure on the left shows the experi-
mental setup, with the sensor modules placed uniformly along a line. The plot on the right shows
the probability of target detection versus distance for a particular sensor module.
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Fig. 12. Performance of ClusterTrack in an experiment in which one sensor completely missed

a target. Plot (a) shows the performance in one of the good simulation runs, while Plot (b) shows
the trajectories obtained over multiple simulation runs.

started from opposite ends and crossed each other. The severe non-ideal behavior
of the sensors was evident as one of the sensors, placed at the location of 16 feet
(shown by an asterisk ∗ inside the circle) completely missed the presence of target
T1. Despite the missed detection, we found that, on running the algorithm multiple
times, in about 65% of the runs, the algorithm succeeded in catching and tracking
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both the targets reasonably well (with an additional spurious estimate emerging in
about every third run). In about 30 % of the runs, the algorithm caught one of
the targets and generated a spurious estimate. The remaining 5 % runs resulted
in 2 spurious estimates. The performance in one of the better runs is shown in
Figure 12(a).
Given the significant variation in performance over different runs, it can be useful

to plot the results obtained over multiple runs simultaneously in one figure. Such a
figure can be used for a quick visual inference about the number of targets and their
trajectories. Figure 12(b) shows these results. We plot the results obtained over 100
simulation runs, without including the trajectories which had a significantly high
cost function (greater than 10 time the lowest cost trajectory). Based on the plots,
we may conclude (with high probability) that there were two targets. In general, a
systematic procedure to estimate the number of targets, using the results obtained
over multiple simulation runs, could be to perform another clustering operation on
the trajectories generated in these multiple runs, and to use the number of clusters
thus obtained as an estimate for the target count. This estimate can further be
biased based on the number of trajectories obtained in each of these clusters. We
leave this as an open issue for further exploration.
The mean localization error for the preceding experimental results was found to

be 0.7162R, with R being (Ri +Ro)/2 = 5 feet 5. While the localization errors for
ideal sensing plotted in Figure 6(a) were for a different setting (different number of
targets with different trajectories), an error of 0.7162R is still significantly larger
than the values we obtained there. (The sensing density for our experiments is
ρR = 1.25). Clearly, the missed detection of target T1 by one of the sensors leads
to this jump in the localization error. A trivial method to capture such severe non-
ideality (i.e., missed detection), while still working with our two radius model for
non-ideal sensing, is to pick Ri = 0. However, a small choice of Ri, while guarding
against missed detections, also has the obvious drawback that when the off sensors
are actually reliable, they provide us no useful information, leaving us with a large
feasible target space. It is an open issue as to how best to trade off these conflicting
objectives. One possible approach might be to pick a small Ri, but to penalize
those particles that traverse the off sensors’ ranges. How best to do this might be
an interesting problem to explore.

6. CONCLUSIONS

The promising results obtained here, as well as prior results in [Kim et al. 2005;
Shrivastava et al. 2006; 2009] for the same sensing model, indicate that binary prox-
imity sensors, can form the basis for a robust architecture for wide area surveillance
and tracking. Our target counting results show that interesting conclusions can be
drawn regarding the number of targets and the feasible target space even with-
out any model for the target paths. On the other hand, when the target paths are

5To compute the mean localization error, we need to know the ground truth at all time instants.
The actual ground truth data was available only for a subset of the instants: the targets pressed
the buttons only as they passed some known locations, and even some of these messages were not

received at the base station. To obtain the ground truth at all times, we simply interpolated the
collected ground truth data.
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smooth and reasonably well separated over time, our ClusterTrack particle filter
algorithm gives excellent performance in terms of identifying and tracking different
target trajectories.
A host of questions remain to be investigated in future work, of which we provide

a partial list as follows. We employ our combinatorial results on target counting
in order to obtain rules of thumb for the various parameters in our particle filter
algorithm. However, is there a more direct way of combining these two techniques
to enhance the performance even further? How broadly does our particle filter algo-
rithm apply, in terms of robustness to different models for the targets’ trajectories?
When precisely does it break down? How does the tracking performance depend on
the dimension of the space we operate in? (Note that we already presented sample
simulations to show that the algorithm works in two dimensions; see also [Bathula
et al. 2009] for an application of the algorithm for tracking a single target in two
dimensions.) How can the algorithm be adapted to provision for appearance of
new targets, or disappearance of existing targets? Finally, the algorithm currently
works in a post-hoc manner: a batch of data is first collected, and then processed.
While the sampling and cost computations can be performed in real-time (since
they depend only on data collected up to the present time instant), we do perform
a global analysis of the data up front to obtain a good estimate of the target count,
which is needed to pick the various parameters. Can this restriction be relaxed?
What are its possible implications?
From a sampling theory perspective, it would be interesting to investigate the

dependence of the particle filter algorithm’s performance on the rate at which the
sensors gather the data. Clearly, too low a sampling rate may be insufficient to
capture all the required information, as mandated by the frequency content of the
different targets’ trajectories. On the other hand, too high a sampling rate can
reduce the effectiveness of our cost function, which penalizes the instantaneous
velocity variations in order to rule out the spurious estimates that jump from one
true path to another. A high sampling rate could make the cost of jumping from
one path to another less significant, thereby encouraging the emergence of such
spurious estimates. This issue, can perhaps, also be investigated in terms of finding
a suitable cost function which can guarantee an improvement in the performance
with an increase in the sampling rate.

Appendix A: Proofs for geometric arguments in two dimensions

Proof. Computing the minimum set of targets T consistent with F in two
dimensions is at least as hard as the Hitting Set problem for unit-radius disks,
which has the following formulation:
Given a set D of n unit-radius disks in the plane, and an integer k, does there

exist a set H of k points (chosen anywhere in the plane) that intersect all the disks?
In other words, each disk of D hits at least one point of H.
This problem is known to be NP -complete [Fowler et al. 1981]. To show that

computing T is also hard, we can reduce the Hitting Set problem to our problem,
as follows. Given an instance D of the Hitting Set problem, we identify each disk
of D with the sensing range of a sensor. All of these sensors are set to be on,
and there are no off sensors. Then, the feasible space target space F is simply the
union of these disks, and the smallest number of point targets consistent with F
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is k if only if the set of disks can be hit with k points. Therefore, computing T if
NP -complete.
Similarly, the maximum number of positively independent sensors S can be shown

to beNP -complete using a reduction from the Maximum Indepdendent Set problem
for unit-disk graphs.
A collection of n unit-radius disks define a unit-disk graph G as follows. Each

disk corresponds to a node of G, and there is an edge between two nodes of G if
only if the disks corresponding to those disks overlap. The maximum independent
set of G is the maximum number of nodes in G no two of which are joined by an
edge. The maximum independent set problem is known to be NP-complete even
for unit-disk graphs, as shown in [Clark et al. 1990].
To reduce this problem to the problem of computing S, we take each disk of

the unit-disk graph as the sensing range of a sensor, and set all sensors to be
on. Then, the maximum number of independent nodes in G equals the maximum
number of sensors whose ranges are pairwise disjoint. Therefore, computing S is
also NP -complete.
Finally, to show that |S| <= |T |, it is easy to see that the size of the hitting set
|T | has to be at least as large as the number of pairwise disjoint disks, namely, S,
because no two disks of S can be hit by the same point.

Appendix B: Re-run of the algorithm to satisfy the lower bounds

Once the ClusterTrack algorithm has been run, we verify whether the generated
trajectories satisfy the lower bounds on the target count, for each of the connected
components, over all time instants. In case the lower bound is not satisfied for some
component(s) (i.e., there are some underutilized components), we run the algorithm
again to generate new trajectories, over and above the ones already obtained, and
keep repeating the procedure until all the lower bounds are satisfied. Each time this
re-run is performed, we constrain the algorithm to ensure that the new trajectories
traverse one of the under-utilized components, as explained next.
Let {1, . . . , T} be the set of time instants. We scan the different time instants to

see if there are any under-utilized components. Let to be a time instant at which
we find an under-utilized component, say co. We now re-run the algorithm, with
the feasible target space being the original space for all time instants, except to, for
which the feasible space consists solely of the component co. The estimate for Q̂,
the number of new trajectories we are looking to generate, is taken to be difference
between the lower bound for the component co, and the actual number of trajec-
tories that already pass through it. Once new trajectories have been generated,
we scan the different time instants again to see if there are still any under-utilized
components, and the process is repeated till all the lower bounds are satisfied.
Two final points that need a mention: First, the scan to look for under-utilized

components is done in the following order of time instants: {1, T, 2, T − 1, 3, T −
2, . . .} (rather than as {1, 2, 3, . . . , T}), and if the time to > T

2 , then before re-
running the algorithm, the time order of the collected data is inverted. This is just
done to enhance the likelihood that the new trajectories we get are smooth. For
instance, assume that the only unused component co is at time to = T . In this case,
if we run the algorithm as usual, progressing from time 1 to time T , till time T −1,
we would not be accounting for the fact that the unused component is at time T .
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When progressing from time T -1 to T , we would suddenly force the trajectories to
pass through co, which can lead to a sudden fluctuation. Rather, if we begin at time
T , and proceed backward, we are more likely to obtain a smooth estimate. Second,
a new trajectory generated by the re-run of the algorithm may actually be similar
to one of the trajectories we already have, in which case it is no use retaining it.
Hence, we perform this check once a new trajectory has been obtained, and retain
it only if it can not be clustered with any of the already obtained trajectories. The
clustering criterion is exactly the same as the one employed during the course of
running the algorithm. If however, we exceed a certain number of re-runs (10 for
our simulations) in this process, then this check is not imposed, and all the new
trajectories generated from that point onwards are retained.
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