
Space Complexity of Hierarchical Heavy Hitters
in Multi-Dimensional Data Streams∗

John Hershberger

Mentor Graphics Corp.
8005 SW Boeckman Road

Wilsonville, OR 97070
john hershberger@mentor.com

Nisheeth Shrivastava & Subhash Suri

Computer Science Department
University of California at Santa Barbara

Santa Barbara, CA 93106
{nisheeth, suri}@cs.ucsb.edu

Csaba D. Tóth

Dept. of Mathemetics
MIT

Cambridge, MA 02139
toth@math.mit.edu

ABSTRACT

Heavy hitters, which are items occurring with frequency
above a given threshold, are an important aggregation and
summary tool when processing data streams or data ware-
houses. Hierarchical heavy hitters (HHHs) have been in-
troduced as a natural generalization for hierarchical data
domains, including multi-dimensional data. An item x in a
hierarchy is called a φ-HHH if its frequency after discounting
the frequencies of all its descendant hierarchical heavy hitters
exceeds φn, where φ is a user-specified parameter and n is
the size of the data set. Recently, single-pass schemes have
been proposed for computing φ-HHHs using space roughly
O(1

φ
log(φn)). The frequency estimates of these algorithms,

however, hold only for the total frequencies of items, and not
the discounted frequencies; this leads to false positives be-
cause the discounted frequency can be significantly smaller
than the total frequency. This paper attempts to explain
the difficulty of finding hierarchical heavy hitters with better
accuracy. We show that a single-pass deterministic scheme
that computes φ-HHHs in a d-dimensional hierarchy with
any approximation guarantee must use Ω(1/φd+1) space.
This bound is tight: in fact, we present a data stream algo-
rithm that can report the φ-HHHs without false positives in
O(1/φd+1) space.

1 Introduction

Finding frequent items, or heavy hitters, in a single pass over
a data set is a classical problem that has received consider-
able renewed interest recently due to its applications in “on-
line analytical processing” (OLAP) and real-time monitor-
ing systems. An unprecedented amount of data is constantly

∗The research of the last three authors was partially supported
by National Science Foundation grants CCR-0049093 and IIS-
0121562. Research by the fourth author was done at UC Santa
Barbara.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . .$5.00.

being generated and collected: retail transactions, measure-
ments by scientific instruments, IP packet logs, telephone
call records, etc. At the same time, there is a growing need
to make decisions and infer interesting patterns in real time.
An important step in this direction is to compute, in a sin-
gle pass, aggregates and summaries that capture interesting
features of the data. These summaries are used both to de-
tect unusual events and to direct subsequent more refined
queries [3, 8, 13].

Heavy hitters, also called “icebergs” queries, are one of the
most basic summaries—they report items with frequency
above a specified threshold. Heavy hitters have obvious ap-
plications in IP networking (nodes responsible for a large
fraction of the traffic), databases (high-frequency attribute
values), fraud detection, etc. For a given threshold φ, where
0 < φ < 1, a simple counter-based algorithm of Misra and
Gries [12] returns a list of O(1/φ) items including every item
whose frequency is above φn in a single pass, using O(1/φ)
space. Essentially the same algorithm has recently been
reinvented by Karp, Shenker, and Papadimitriou [10] and
Demaine, López-Ortiz, and Munro [7]. This algorithm, how-
ever, may return false positives, and requires a second pass
over the data to determine the exact set of heavy hitters.
Nevertheless, it maintains approximate frequencies that are
no greater than the true frequencies and at most φn smaller.
An algorithm of Manku and Motwani [11] provides an ε-
approximation guarantee: For any ε ∈ (0, 1], it reports all
items with frequency above φn but no item with frequency
below (1−ε)φn, using O(1

εφ
log εφn) space. In fact, this ap-

proximation guarantee can also be achieved by the Misra–
Gries algorithm using only O(1

εφ
) space (run the algorithm

with parameter εφ, and then report all items whose approx-
imate frequency is above (1 − ε)φn [2]). Finally, Charikar,
Chen, and Farach-Colton [4] and Estan and Varghese [9]
present hash- and sample-based randomized schemes for es-
timating the frequencies of all items. Thus, a variety of
schemes using sampling, counting, or hashing are known for
finding heavy hitters or estimating their frequencies with a
guaranteed error bound.

In many applications of data streams, the data is hierar-
chically organized, and a flat summary like heavy hitters
does not adequately reflect the structure inherent in the
data. For instance, database transactions can be viewed
at different levels of detail: grouped by time (hours, days,
weeks, months), or grouped by geography (store, city, state,
country); IP addresses have a natural 32 bit hierarchy; port

numbers may be grouped by service type, and so on. Con-
sequently, it is often useful to look for heavy hitters not just
at the highest level of detail, or even at the same level of
detail, but rather at different levels of detail. For example,
a single web server in a computer science department may
be a heavy hitter for network traffic. It would be interest-
ing to know whether the computer science department as a
whole is a heavy hitter only because of the web server, or
even without it. Similarly, no single machine in a research
group may be a heavy hitter, but together they may form a
heavy hitter entity (at a higher level in the network prefix
hierarchy).

Many application data are also multi-dimensional. For
instance, database transactions typically have several inde-
pendent significant attributes: time, location, volume, etc.
IP packets typically have five or more fields of interest for
monitoring applications: source, destination, protocol, and
two port numbers. The interesting patterns among such
data often emerge only by considering all or multiple di-
mensions simultaneously.

Hierarchical heavy hitters (HHH) were introduced as a
natural generalization of heavy hitters to hierarchical and
multi-dimensional data domains by Estan and Varghese [9]
and Cormode et al. [5, 6]. Following Cormode et al. [6], we
imagine the d-dimensional data organized as a lattice, where
the input tuples form the lowest level of the lattice. Each in-
ternal node of the lattice represents the aggregation of all its
descendant leaves. Thus, the frequency of an internal node
x is the cumulative frequency of all the descendant leaves of
x. Discounted frequencies and φ-hierarchical heavy hitters
(φ-HHHs) are defined recursively: the discounted frequency
of x counts only the descendant leaves not included in any φ-
HHH that is a strict descendant of x; an item x is a φ-HHH
if its discounted frequency exceeds φn.

Hierarchical heavy hitters are natural and powerful con-
structs, but they involve subtle difficulties. First, an item’s
discounted frequency potentially depends on many descen-
dants: the contributions of many descendants may need to
be subtracted if they become heavy, but not otherwise. This
is further complicated by the fact that a stream-processing
algorithm can maintain only approximate frequencies. Thus,
it seems difficult to control the error in estimating the dis-
counted frequency without storing too much data. Sec-
ond, in multi-dimensional data, the descendant items (ag-
gregates) can overlap. The best way to see this is through
geometry: Each lattice node corresponds to a rectangular
box, and a parent node can have multiple descendants in-
tersecting in complex ways. In computing the discounted
frequency of x, we cannot simply subtract the frequencies
of all heavy descendants (even if we knew them exactly).
Instead we need to know the non-overlapping count of the
descendant items, which again seems difficult to determine
without storing large amounts of data.

All current methods for computing the φ-HHHs in one
pass fail to bound the discounted frequency of the items. Al-
though Cormode et al. [5, 6] and Estan, Savage, and Vargh-
ese [8] define hierarchical heavy hitters using the discounted
frequency, their algorithms output items that are guaranteed
only to have total frequency above the threshold. Using total
frequency instead of discounted frequency leads to false pos-
itives because the former can be significantly larger than the
latter. Indeed, Cormode et al. [6] state that “we do not know
of ways to accurately approximate the discounted count,”

and resort to a weaker definition of hierarchical heavy hit-
ters in order to get space-efficient algorithms.

Our contribution

In this paper, we formalize the difficulty of computing true
φ-HHHs and prove lower bounds on the space complexity
of algorithms that compute them. We focus primarily on
deterministic algorithms, although one of our bounds also
applies to randomized algorithms. We prove lower bounds
under two different models. For streams of 1-dimensional
data, we give an Ω(1/φ2) space lower bound for any (deter-
ministic or randomized) algorithm, using an information-
theoretic argument.

To prove lower bounds for streams of multi-dimensional
data and to establish stronger space bounds, we limit our
discussion to a simple model of deterministic algorithms,
which we call the node frequency model. In this model, an
algorithm with space bound s is allowed s distinct coun-
ters, and each counter maintains the frequency of a node in
the hierarchy. The node frequency model captures all the
counter-based algorithms, including [7, 10, 11, 12], as well as
algorithms for hierarchical heavy hitters that build on those
algorithms [5, 8]. While the multi-dimensional HHH scheme
of Cormode et al. [6] does not strictly fit in this model, we
will show that our lower bound construction in fact applies
to it as well.

We show that any single-pass deterministic scheme that
computes φ-HHHs for d-dimensional data in the node fre-
quency model with any bounded approximation guarantee
must use Ω(1/φd+1) space. Our basic lower bound con-
struction shows that if we want all items with discounted
frequency above φn to be reported as φ-HHHs, and no item
with discounted frequency below (1− 1

2d)φn to be reported,
then the space lower bound holds. We then generalize this
basic construction to any fixed degree of accuracy. In par-
ticular, for any fixed ε ∈ [0, 1), separating true hierarchical
heavy hitters from those with discounted frequency at most
(1− ε)φn requires Ω(1/φd+1) memory.

Finally, we show that our lower bounds are asymptoti-
cally tight: we exhibit a deterministic data stream algorithm
(in the node frequency model) that can compute φ-HHHs
with constant approximation error, using O(1/φd+1) mem-
ory. The constant in the asymptotic notation is quite large,
and the algorithm is not intended to be practical; rather it is
meant to show that our lower bound is asymptotically tight.

Thus, our main result provides a sharp contrast between
the complexity of non-hierarchical and hierarchical heavy
hitters. Non-hierarchical heavy hitters can be determined
with absolute error at most εn, for any ε < φ, using space
O(1/ε). But computing φ-HHH s requires at least Ω(1/φd+1)
space in the worst case, even for a fixed accuracy level.

2 Hierarchical Domains and
Heavy Hitters

The input to our heavy hitter problem is a stream S of tuples
〈e1, e2, . . . , ed〉 from a d-dimensional hierarchical domain D.
To build intuition, we first consider the case d = 1. A one-
dimensional hierarchical domain is naturally modeled by a
tree. The elements of the domain are represented by the
leaves of a rooted, balanced b-ary tree T . We say that b is
the branching factor of the hierarchy D. Each non-leaf node

of T represents the set of all its descendant leaves, and the
nodes at the same level of T form a partition of the domain.
For two nodes v and w of the tree, we say that v ¹ w if v is
a strict descendant of w or v = w. If v 6= w, then v ≺ w.

The IP address hierarchy provides an illustrative example
of these concepts. The elements of this domain are the 32-
bit addresses of individual machines. The root, denoted ∗,
represents the entire address space, and intermediate nodes
represent network prefixes, denoting hierarchical subnets.
Thus, all descendants of a node v share a common address
prefix, associated with v.

1.*,*

1.2.*,*

,3.

,3.4.

,

,

*,3.*1.*,*

1.2.*,*

1.2.*,3.*

1.2.*,3.4.*

1.*,3.*

1.*,3.4.*

,3.4.

Figure 1. The top figure shows two 1-D hierarchies; the middle
figure shows the 2-D hierarchy generated by their cross product; the
bottom figure shows the 2-D hierarchy as an arrangement of boxes.
The shaded boxes form a lattice.

A d-dimensional hierarchical domain D = 〈D1, D2, ..., Dd〉
is a cross product of d one-dimensional hierarchical domains.

The cross product T = 〈T1, T2, . . . , Td〉 of the corresponding
trees is the d-dimensional hierarchy. Each node of the hier-
archy is a d-tuple 〈v1, . . . , vd〉, where vi is a node of the tree
Ti. We say that 〈v1, . . . , vd〉 ¹ 〈w1, . . . , wd〉 if vi ¹ wi in all
dimensions i = 1, . . . , d. The elements of the domain D are
the leaves of this hierarchy, that is, the nodes at level zero.
Level ` of the hierarchy consists of all the nodes at distance
` from level 0. There are altogether L = 1 +

P
i hi distinct

levels in the hierarchy, where hi is the height of tree Ti. If
d ≥ 2, then nodes at the same level may correspond to in-
tersecting subsets of the domain. For example, the pairs of
IP addresses 〈src, dst〉 form a 2D hierarchy, and the nodes
〈1.∗, ∗〉 and 〈∗, 3.∗〉 in Figure 1 are at the same level, with a
non-empty intersection 〈1.∗, 3.∗〉.

In iceberg query computations, the hierarchy is often mod-
eled as a lattice. The nodes of a d-dimensional hierarchy
containing a specific element of the domain form a lattice
with respect to the relation ¹. All lattices for distinct ele-
ments of a domain are isomorphic, and the lattice structure
characterizes the multidimensional hierarchy. A vertex of
the lattice corresponds to all nodes whose level is the same
d-tuple [`1, `2, . . . , `d] in the d trees, and so these nodes form
a partition of the domain. Two quantities of this lattice will
be relevant in our analysis: the size of the lattice, which is
H = Πd

i=1(1 + hi), and the size of the largest anti-chain,
which is at most a = H

maxj(1+hj)
.

2.1 Hierarchical heavy hitters
The elements of the data stream correspond to the leaf nodes
of the hierarchy. A leaf element x is called a φ-heavy hitter,
for a parameter 0 < φ ≤ 1, if the frequency of x in the
stream exceeds φn, where n is the size of the stream seen
so far. In hierarchical domains, we also wish to identify
groups of elements that form a heavy hitter, even though
no single element in the group is heavy. The natural groups
correspond to the nodes in the hierarchy. The frequency of
a non-leaf node v is defined to be the sum of the frequencies
of all the descendant leaves of v.

Simply reporting all the nodes with frequency above φn,
however, is both verbose and imprecise. It is verbose be-
cause every ancestor of a heavy node is automatically clas-
sified as heavy, and so the number of reported heavy hitters
can blow up by a factor of H, the lattice size. It is imprecise
because each heavy hitter carries very little new informa-
tion: we cannot tell whether it is heavy only because of a
descendant, or because it is a new heavy group.

Motivated by these considerations, Estan, Savage, and
Varghese [8] and Cormode et al. [5] introduced the follow-
ing natural notion of hierarchical heavy hitters: a non-leaf
node is defined to be a φ-hierarchical heavy hitter, denoted
φ-HHH , if its frequency, after discounting the frequencies
of all its descendant hierarchical heavy hitters, exceeds φn.
Formally, the discounted frequency of a node v with respect
to a subset X of the hierarchy is defined as:

gX(v) =

|{e ∈ S : e ∈ v but e 6∈ w for any w ≺ v, w ∈ X}|.
Definition 1. A set of nodes X is called φ-hierarchical

heavy hitters (φ-HHHs) if, for every node v of the hierarchy,
we have v ∈ X if and only if gX(v) ≥ φn.

In the on-line setting of data streams, with limited stor-
age, we must allow a certain degree of approximation in

computing heavy hitters; otherwise, the algorithm can be
forced to use memory proportional to the size of the do-
main [1]. We use the following definition for ε-approximate
hierarchical heavy hitters.

Definition 2. A set of nodes X is called ε-approximate
HHHs, where 0 < ε < 1, if for every node v of the hierarchy,
we have

• gX(v) ≥ φn implies v ∈ X, and

• v ∈ X implies gX(v) ≥ (1− ε)φn.

That is, every node with discounted frequency at least φn
is reported, and no reported node has discounted frequency
less than (1− ε)φn.1 The space-efficient schemes of [5, 6, 8]
satisfy only the first condition in this definition, and not the
second one. Thus, the items reported as φ-HHHs by those
algorithms are not guaranteed to have discounted frequency
above any approximation threshold.

2.2 A Geometric Framework

Our lower bound is best described in a geometric framework.
We think of the d-tuples as “points” in a d-dimensional
space, and the nodes of the hierarchy as “rectangular boxes.”
Consider the 1-dimensional hierarchy (tree). The leaves rep-
resent the points; each non-leaf node represents a contiguous
interval; and the root represents the interval containing all
the points. The intervals at any level of the hierarchy are
pairwise disjoint and they form a partition of the domain. A
node’s interval is properly contained in the interval of each
of its ancestors. Thus, the geometric representation of the
1-dimensional lattice is a system of nested intervals.

In d dimensions, the geometric representation of our hier-
archy is the cross product of d such 1-dimensional structures.
The leaves of the hierarchy are points as before. But each
non-leaf node is a d-dimensional rectangular box, which is
the cross product of d 1-dimensional intervals. The box for
a node is properly contained in the boxes of its ancestors.
However, unlike in one dimension, the boxes at the same
level of the hierarchy are not disjoint.

In this framework, our φ-HHH problem can be formu-
lated as follows: Given a stream of d-dimensional points,
and a system of rectangular boxes defined by the hierarchi-
cal structure of the domain, let the frequency of a box be
the number of input points contained in the box. A box is
called φ-heavy if its frequency exceeds φn, where n is the
number of points in the stream. The discounted frequency
of a box x (relative to a set of boxes X) is the number of
points that lie in x but not in any strict descendant box of
x that belongs to X. A set of boxes X forms ε-approximate
φ-HHHs if every box with discounted frequency above φn
is in X, and the discounted frequency of every box in X is
above (1− ε)φn.

2.3 The Model for Lower Bounds

We prove lower bounds under two different models. In the
case of 1-dimensional streams, we are able to give an Ω(1/φ2)

1Cormode et al. [5] and Manku and Motwani [11] define an ε-
approximate heavy hitter to have frequency at least (φ−ε)n. We
find our definition more convenient for our analysis.

space lower bound for any (deterministic or randomized) al-
gorithm. This lower bound, which is largely information the-
oretic, shows that computing 1-dimensional φ-HHHs with
any guaranteed level of accuracy requires at least Ω(1/φ2)
space.

In order to extend these lower bounds to multi-dimensio-
nal streams and to show stronger space bounds, we limit our
discussion to a simple (deterministic) model of algorithms,
which we call the node frequency model. In this model, an
algorithm with space bound s is allowed s distinct counters,
which it can use to maintain the frequencies of points inside
any boxes (nodes in the hierarchy). The algorithm can re-
allocate its counters arbitrarily during the run. (When the
algorithm deletes a counter, all memory of that box’s fre-
quency is lost. When the algorithm starts a new counter for
box b mid-stream, then only the future points of the stream
falling inside b can be tracked.)

The node frequency model captures all the counter-based
algorithms, including [7, 10, 11, 12], as well as algorithms for
hierarchical heavy hitters that use those algorithms [5, 8].
The multi-dimensional hierarchical heavy hitter scheme of
Cormode et al. [6] does not strictly fit in our model, because
it also maintains an offset counter for each box it tracks.
This offset counter, however, is the frequency of another
node (a grandchild), and we will show that this algorithm is
also subject to our lower bounds.

3 A Lower Bound for One-Dimensional
Hierarchies

In this section, we show that any algorithm that computes
ε-approximate φ-HHHs in 1-dimensional streams requires
Ω(1/φ2) space in the worst case. Our argument is based on
information theory, and therefore applies to any (determin-
istic or randomized) algorithm. It bounds the bit complexity
of the necessary space, whereas all our later upper and lower
bounds hold in the RAM model, where each counter is stored
in O(1) space.

0 1

B

Literal

Stick

2r

Figure 2. An illustration of the 1-dimensional lower bound construc-
tion. The top figure shows r sub-intervals of B, each containing a
literal ; the bottom figure shows a possible configuration of literals
and sticks.

Consider a one-dimensional binary hierarchy. Let r be a
power of two, and consider an interval B of length 2r in this
hierarchy. We partition B into r sub-intervals, each of length
two, and call them literals. Imagine the following 2-phase

data stream. In the first phase, either the left half or the
right half subinterval of each literal is populated with 3φn/r
points. Depending on whether the left half or the right half
is populated, we assign the literal an orientation 0 or 1 (see
Figure 2). In the second phase, an adversary chooses either
the left or the right half in each literal and populates it with
φn points: the intervals populated in the second phase are
called the sticks; observe that stick intervals are clearly φ-
HHHs. The algorithm, however, must decide whether any of
the largest three intervals (B and its children) is a φ-HHH or
not. Their status depends on which intervals the adversary
chooses for sticks and, as we show below, determining it
requires Ω(r) space.

Suppose that an algorithm A uses at most 0.01r bits of
space. Then, at the end of phase one, it must encode the
orientations of the r literal boxes in 0.01r bits. Because
the orientation of each literal is 0 or 1, the sequence of r
literal bits can be thought of as a vertex of the hypercube
{0, 1}r. Because there are 2r distinct orientation sequences,
at least 20.99r of them must map to a single (0.01r)-bit code.
Using a standard upper bound on the volume of a Hamming
ball of radius r/3 in {0, 1}r, we know that this ball contains
fewer than 20.99r vertices. We conclude that there are two
points of {0, 1}r at Hamming distance at least r/3 mapped
to the same (0.01r)-bit code. These two sequences of literal
orientations are indistinguishable for A.

Let σ1 and σ2 denote two orientation sequences with Ham-
ming distance greater than r/3 that are mapped to the same
code. In the first phase of the data stream, an adversary sets
the orientations of the literals either according to σ1 or σ2,
and then it chooses the distribution of the sticks by one of
the two sequences.

If the distribution of the literals and the sticks coincide,
then the discounted frequency of B is 0, in which case B
should not be reported as a φ-HHH . But if the literals and
the sticks have different distributions, then the points in
at least r/3 literals are not covered by heavy sticks. In
this case, the discounted frequency of B is at least r

3
· 3 ·

φn/r = φn, and so B (or possibly one of its children if all
the uncovered literals lie on the left or on the right side of
B) is a φ-HHH . Because the algorithm cannot distinguish
between these two cases, it reports incorrectly in at least
one case.

This shows that any algorithm requires Ω(r) bits for this
construction. By making r disjoint copies of the interval
B in the first phase, and then using only one of them to
complete the construction in the second phase, we obtain
the claimed Ω(r2) space lower bound. We choose r from
the interval (1/8φ, 1/4φ], so that the total number of points
used in all r copies of B is r · 3φn + rφn = 4rφn ≤ n.

To apply this lower bound to randomized algorithms, we
use a non-oblivious adversary argument. The adversary
picks an orientation sequence uniformly at random from
among the 2r possibilities, feeds this to the randomized al-
gorithm, and then non-obliviously chooses the stick orien-
tation sequence. We argue that the randomized algorithm’s
probability of correctly determining whether B or one of its
children is a φ-HHH is no more than 1

2
+ 2−0.07r

A randomized algorithm can be regarded as an initial ran-
dom choice among a collection of deterministic algorithms,
followed by deterministic execution of the chosen algorithm.
(The initial algorithm choice is essentially the same as pro-
ducing a sequence of random bits that will be used by a

standard randomized algorithm whenever it needs to make
a random choice.) In our problem, the adversary chooses an
orientation sequence σ1 uniformly at random and the ran-
domized algorithm encodes it into 0.01r bits. Importantly,
after σ1 has been encoded the adversary knows the deter-
ministic algorithm that was used to perform the encoding.
Thus the adversary can compute the set of orientation se-
quences that map to the same code.

We call a code heavy if the number of sequences that map
to it is larger than the size of a radius-(r/3) Hamming ball,
which is less than 20.92r. Since the average code is mapped
to by 20.99r sequences, the chance that a randomly chosen
sequence does not map to a heavy code is less than 2−0.07r.
If the algorithm maps σ1 to a heavy code, then the adversary
picks another sequence σ2 that maps to the chosen code
and whose Hamming distance from σ1 is at least r/3. The
adversary chooses the stick sequence from {σ1, σ2} uniformly
at random; since the two sequences are indistinguishable to
the algorithm, its chance of deciding correctly whether B or
one of its children is a φ-HHH is only 1/2.

Theorem 3.1. Any deterministic or randomized 1-dimen-
sional data stream algorithm that computes φ-HHHs with
any fixed approximation error requires Ω(1/φ2) space in the
worst case.

4 Multi-Dimensional Lower Bound
Construction

In this section, we present the main result of our paper: the
Ω(1/φd+1) space lower bound in the node frequency model.
We begin with a basic construction that gives the main intu-
ition behind the lower bound. This construction shows that,
for 2-dimensional streams, computing 1/4-approximate φ-
HHHs requires Ω(1/φ2) space in the node frequency model.
In Section 4.2, we show how to extend this simple construc-
tion to establish the optimal space lower bound of Ω(1/φ3).
We then extend the construction and show that Ω(1/φ3)
space is required even for ε-approximation of the φ-HHHs,
for any ε, 0 < ε < 1. Finally, we generalize our lower bounds
to d-dimensional streams, for all d ≥ 2, and establish the
general lower bound of Ω(1/φd+1).

4.1 The Basic Construction

In this section, we describe our basic construction in two
dimensions. We assume that the input stream is a set of
two-dimensional points, drawn from a square box B, which
is hierarchically composed with branching factor b = 2. Fig-
ure 3 shows the main components of our construction. The
four box quadrants q1, q2, q3 and q4 are the grandchildren
of the root box B. The pairs of neighboring boxes, namely,
q1 ∪ q2, q3 ∪ q4, q1 ∪ q3, and q2 ∪ q4, are the children of B in
the hierarchy.

Suppose φ is the user-specified heavy hitter parameter,
and ε = 1/4 is our approximation parameter. A correct
φ-HHH algorithm must report every box whose discounted
frequency is above φn, and no box whose discounted fre-
quency is below 3

4
φn. We will show that any algorithm in

the node frequency model that uses less than Ω(1/φ2) space
can be forced to misclassify the box B.

We work with two integer parameters m = Θ(φn) and
r = Θ(1/φ), where we assume that r is a power of 2. The

parameter m is chosen so that m < 3
4
φn, but 2m ≥ φn; that

is, a box with m points is below the heavy hitter threshold,
but two such boxes combined exceed the threshold.

There are four important components in our construction:
literals, diagonals, sticks, and the uniform box. These are
boxes with carefully chosen frequencies. These objects arise
by dividing the quadrant q2 into r congruent horizontal slabs
and the quadrant q3 into r congruent vertical slabs. The
extensions of these slabs partition the quadrant q1 into an
r × r regular grid. The four types of boxes and their point
population are given as follows.

• Literal: The literal boxes are the r2 − r non-diagonal
grid boxes in the quadrant q1. Each literal box is
divided into four congruent boxes, two of which are
populated with m/(2r2 − 2r) points each. The pair of
non-empty subboxes of a literal can have one of two
configurations, called the orientation of the literal, as
shown in Figure 3. We refer to one of these orienta-
tions as 0 and the other as 1.

q1 q2

q3
q4

Horizontal stickDiagonal box

Vertical stick Uniform

0

1

Literal
B

r

r

Figure 3. An illustration of the basic lower bound construction.
The top figure shows the four quadrants of the box B; the bottom
figure shows the four key components of the construction: literals,
diagonals, sticks, and the uniform box.

• Diagonal: The diagonal boxes are the r grid boxes
that lie on the main diagonal of q1. Every diagonal box

is also divided into four congruent boxes; the two sub-
boxes along the diagonal are populated with m points
each. Thus, each diagonal box is heavy, and does not
contribute to the discounted frequency of B.

• Stick: We divide each of the r horizontal slabs of q2

and vertical slabs of q3 into four congruent pieces (bi-
secting horizontally and vertically), out of which a ran-
domly chosen box adjacent to quadrant q1 is called a
stick. Every stick is populated with m points. Thus,
no single stick, or slab, is heavy, but two adjacent slabs
together are heavy. The sticks also do not contribute
to the discounted frequency of the box B.

• Uniform: The quadrant q4 is divided into four con-
gruent squares, and the lower right square is populated
with m points. We note that no vertical (horizontal)
box smaller than q2 ∪ q4 (q3 ∪ q4) can span both the
sticks and the uniform box. The population of the
uniform box will always contribute to the discounted
frequency of B.

We begin with the simple observation that changing the
orientation of a literal has no effect on the frequency of any
box not contained in the literal.

Proposition 4.1. If the orientation of a literal L flips,
then the frequency of any box R in the hierarchy that is not
contained in L remains the same.

Proof. If the box R is disjoint from L or contains L,
then the flip clearly has no effect on the frequency of R. If
the two boxes intersect, then in exactly one coordinate i we
have Li ≺ Ri; that is, the extent of R in the ith coordinate
contains the extent of L. The intersection L ∩R consists of
one complete row or column of L. Whether the orientation
of L is 0 or 1, a row or column of L always contributes
m/(2r2 − 2r) points. Thus the frequencies of L ∩ R and R
are unaffected.

The following fact is an easy consequence of the node fre-
quency model.

Proposition 4.2. For any k ∈ N, storing the orientation
of k literal boxes requires at least Ω(k) space in the node
frequency model.

We now discuss the implications of the construction de-
scribed above. In the quadrant q1, only the diagonal boxes
are heavy; the total frequency of all the literal boxes is m,
which is less than 3

4
φn. In the quadrants q2 and q3, none of

the sticks is heavy on its own, but pairs of adjacent sticks
form heavy boxes. In the quadrant q4, the total number of
points is m, and so there is no heavy box there. Because
of the hierarchical structure of the domain, any box that
intersects two quadrants must have the full extent of B in
at least one dimension.

Next, while no horizontal stick is heavy on its own, when
combined with m points in the diagonal box, it forms a
heavy row. Similarly, each vertical stick forms a heavy col-
umn when combined with a diagonal box. The only portion
of the stream that is not covered by these heavy boxes lies
either in the uniform box of quadrant q4 or in the literal
boxes of quadrant q1. Because of the hierarchical structure,
B is the smallest box intersecting (and containing) both q1

and q4. Thus, whether or not B is a φ-HHH depends on
how many of the Θ(r2) literal boxes are discounted. We ar-
gue that knowing this requires an algorithm to maintain the
orientations of these literal boxes, which gives the desired
space lower bound.

Orientation 0

Orientation 1

Figure 4. The orientations of a literal box, and its intersection with
a heavy row or column.

Each literal intersects exactly one row and one column
defined by the sticks. Figure 4 shows the combinatorially
different ways this intersection occurs, depending on the
orientations of literal boxes and the positions of the sticks.
In each case, either all or half of the m/(r2 − r) points of
the literal box are covered by the intersecting row and col-
umn. Since the row and column are heavy boxes, either
all or half of the points in the literal are discounted from
B. If all the points of all the literal boxes are covered by
heavy rows and columns, then the discounted frequency of
B is just m, which is the population of the uniform box.
On the other hand, if only half of the points in the literal
boxes are covered, then the discounted frequency of B is
g(B) = m+(r2− r) ·m/(2r2− 2r) = 3m/2, which exceeds
φn for appropriate choice of m.

We can now describe the data stream for our construction.
The stream of input points arrives in two phases: in the first
phase, we populate the quadrant q1 including all the literal
boxes with orientations specified below; in the second phase,
we populate the diagonal boxes, the sticks, and the uniform
box.

The orientations of the literal boxes, and the positions of
the sticks, are determined by an adversary who can choose
one of the following two variants of the data stream: either
10% of the literal boxes are fully covered by heavy stick
boxes (and 90% are half covered), or 90% of the literal boxes
are fully covered (and 10% are half covered). In the first
case, the discounted frequency of B is g(B) = m + 9

10
· m

2
=

29
20

m, which exceeds φn, for m = 20
29

φn. Thus, in this case,
B should be reported as a φ-HHH .

In the second case, however, the discounted frequency of
B is g(B) = m+ 1

10
(r2−r)·m/(2r2−2r) = 21

20
m < 3

4
φn, and

so B should not be reported as a φ-HHH , for the given ap-
proximation error ε = 1/4. However, in the node frequency
model of algorithms, in order for an algorithm to distinguish
between these two cases, it must store the orientations of at
least 10% of the literal boxes, which by Proposition 4.2 re-
quires Ω(r2) memory.

The only remaining part of the construction is to argue

that r2 = Ω(1/φ2). The total number of points in our con-
struction (literal boxes, sticks, diagonals, and the uniform
box) is m+2rm+2rm+m = 2m(2r+1). Because m = 20

29
φn

and the stream size is n, the constraint 2m(2r +1) ≤ n im-
plies that 2r + 1 ≤ 29/(40φ). Thus, we can safely choose
r to be the highest power of two for which r ≤ 1

4φ
, and so

r = Θ(1/φ). We have established the following result.

Lemma 4.3. Any data stream algorithm in the node fre-
quency model that computes approximate φ-HHHs in two
dimensions with approximation error better than ε = 1/4
requires Ω(1/φ2) space.

We note that this lower bound is not information theo-
retic. An algorithm that has access to all r2 − r literals
can compute a summary of size O(r) that can later be used
to determine whether 10% or 90% of the literals are fully
covered by the sticks. The binary matrix representing the
pattern of the literals is an outer product of two binary
r-vectors (the eventual stick patterns) perturbed by r2/10
bits of noise. An algorithm based on data compression can
extract the two r-vectors whose outer product determines
90% of the literal orientations. If the algorithm remem-
bers these vectors and forgets the 10% noise superimposed
on the literals, this is enough to determine whether B is a
φ-HHH when the sticks arrive. However, this two-vector
summary of the literal orientations only serves to show the
existence of techniques that are outside the node frequency
model. It does not suggest any general-purpose algorithm
to circumvent the lower bound—indeed, the representation
is specifically tailored to foil our lower bound construction,
and is useless for other distributions of input points.

In the following sections, we improve the lower bound to
Ω(1/φ3) by using multiple copies of the basic construction
and also generalize the construction to d dimensions, d > 2.

4.2 An Ω(1/φ3) lower bound
in two dimensions

We create r disjoint copies of the box B in our basic con-
struction. In the first phase of the data stream, all r2(r−1)
literal boxes are populated. In the second phase, the adver-
sary chooses one of these copies for the rest of the construc-
tion. Because the algorithm cannot predict which copy of
B will be used in the second phase, it is forced to keep in
memory the orientations of Ω(r2) literal boxes in each of the
r copies, which requires Ω(r3) total space.

The first phase of the stream uses rm points, m points
for each of the r copies; the rest of the construction requires
m(4r+1) points as before. Thus, the total number of points
in the construction is (5r + 1)m ≤ n. This condition is still
satisfied if we set m = 20

29
φn and r ≤ 1

4φ
as in the previous

subsection. We have the following theorem.

Theorem 4.4. Any data stream algorithm in the node
frequency model that computes approximate φ-HHHs in two
dimensions with approximation error better than ε = 1/4
requires Ω(1/φ3) space.

4.3 Lower bound for arbitrary
approximation error ε

Our construction so far depends on the approximation error
ε = 1/4. In this subsection, we show that the lower bound

holds for any fixed 1/4 ≤ ε ≤ 1 − φ. That is, even if the
algorithm is required only to distinguish between boxes with
discounted frequency at least φn and those with frequency
at most (1− ε)φn, the space lower bound is still Ω(1/φ3).

In order to prove a lower bound for ε-approximation, we
use a hierarchy in which the branching factor depends on ε.
Specifically, we use b = Θ(1/(1−ε)). In our construction, we
assume that b is even and b ≥ 4. The construction is similar
to the one for binary hierarchies, however, the diagonal and
uniform boxes are no longer necessary (the use of those boxes
would slightly improve the dependence of b on ε). We first
describe a construction in a bounding box B that yields a
lower bound of Ω((1− ε)/φ2), which is then extended to the
Ω(1/φ3) bound by using Θ(1/φ(1− ε)) disjoint copies of B.

The root box B has b2 grandchildren, and each of the four
quadrants (q1, q2, q3, and q4) contains (b/2)2 grandchildren
of B. Similarly to our basic construction, we define literal
boxes in quadrant q1, and sticks in quadrants q2 and q3. We
use two parameters, r and m. The parameter r is a power
of b to be fixed later. We choose m such that m < (1− ε)φn
but φn ≤ (b/2)m. That is, a box with discounted frequency
m is not an φ-HHH , but (b/2)m such boxes combined in a
box of the hierarchy is already a φ-HHH . For any branching
factor b > 2/(1 − ε), the choice m = 2φn/b satisfies these
conditions.

0

1

Horizontal Sticks

Literal

Vertical Sticks

B 1

3

4

2

q

q

q

q

Figure 5. Schematic picture of our lower bound construction with
branching factor b = 6. We chose r = 2 in this illustration for
simplicity, even though r is a power of b in our construction.

The configuration of literals and sticks is similar to our
construction for the the binary hierarchy. One key difference
is that these boxes now lie within the b2 grandchild boxes of
B.

Literals: We divide each of the (b/2)2 grandchild boxes
of B lying in quadrant q1 into r × r squares. These b2r2/4
boxes are the literals. We subdivide each literal L box into
r × r subsquares. We populate two of the 2 × 2 subsquares
in the upper left corner of L, each with 2m/(r2b) points.
The two subsquares with non-zero population can have two
configurations, which are the possible orientations of the
literal box (see Figure 5). Observe that Propositions 4.1
and 4.2 hold for the literal boxes in this setting, too.

Sticks: Divide the (b/2)2 grandchildren boxes of B lying
in quadrant q2 (resp., q3) into r horizontal (vertical) slabs.
We divide each slab S into r horizontal (vertical) subslabs.
The stick of S is one of the two uppermost (leftmost) sub-
slabs within S. The horizontal (vertical) extension of a stick
intersects b/2 slabs in q2 (q3). We choose the same subslab

to be a stick in each of these b/2 horizontally (vertically)
aligned slabs, and so the extension of every stick contains
b/2 sticks. Each stick is populated with m points.

A heavy row (column) is the horizontal (vertical) exten-
sion of a stick in q2 (q3) to the full extent of B. Since b is
the branching factor, the heavy row (column) is the parent
box of a stick. No single stick is heavy on its own, but a
heavy row (column) contains at least φn points. Within ev-
ery grandchild box of B lying in quadrant q2 and q3, no stick
or slab is heavy on its own, but the union of b consecutive
slabs is already heavy.

Similarly to our construction for b = 2, the input stream
of points arrives in two phases. In the first phase, the b2r2/4
literal boxes are populated with 4m/(r2b) points each. In
the second phase, the 2(b/2)2r = b2r/2 sticks are populated
with m points each. An adversary chooses the orientations
of the literals and the positions of the sticks such that ei-
ther all the literal boxes are half covered by heavy rows and
columns, or only a 2/b fraction of the literal boxes are half
covered and the rest are fully covered.

In the first case the discounted frequency of B is g(B) =
(b2r2/4) · 2m/(r2b) = bm/2, and so B should be reported
as a φ-HHH . In the second case, g(B) = (2/b) · (b2r2/4) ·
2m/(r2b) = m, and so B is not a φ-HHH . To distinguish be-
tween these two cases in the node frequency model, any de-
terministic algorithm must store the orientations of at least
a 2/b fraction of the literal boxes. By Proposition 4.2, this
requires Ω(br2) memory.

It remains to show that br2 = Ω((1− ε)/φ2). Recall that
2/(1− ε) < b ≤ 4/(1− ε) and m = 2φn/b. The total weight
of all the literal boxes is (b/2)2r2 · 4m/br2 = bm, and the
weight of all the sticks is (b2r/2) ·m = b2rm/2. The total
number of points is (br+2)bm/2 = (br+2)φn, which must be
no greater than n. We choose r = Θ(1/bφ) = Θ((1− ε)/φ),
for 0 ≤ ε ≤ 1− φ. This gives br2 = Ω((1− ε)/φ2).

Finally, notice that 2m data points arrived in the first
phase and b2rm/2 points in the second phase. By combining
Θ(b2r) disjoint copies of the box B so that the literal boxes
of all copies are populated in the first phase but only one
copy is completed in the second phase, we obtain a lower
bound of Ω(b3r3) = Ω(φ−3).

4.4 The lower bound in d dimensions

In this section, we present the d-dimensional lower bound
construction for a fixed approximation error ε = 1/2d. Our
construction can be extended to an arbitrary ε following the
scheme described in the previous section.

The points in the stream are drawn from a d-dimensional
box B. This box is partitioned into 2d congruent parts
q1, q2, . . . , q2d (bisect along each dimension). Among these
2d boxes, only d + 2 will have non-zero frequency of points.
The box q1 is further partitioned into rd congruent pieces,
where r is a power of two that is Θ(1/φ). The r boxes along
the main diagonal are the diagonal boxes; in each diagonal
box, we place two points of weight m each at two opposite
corners. All other boxes are literal boxes. Each literal box
has m/(rd−r) points, which are placed in one of two distinct
orientations. Only half of the 2d congruent subboxes of a
literal are populated, each with 21−dm/(rd− r) points. The
populated boxes are chosen such that the neighbor of every
populated box is empty, and the populated subboxes form

one of the two possible d-dimensional checkerboard patterns
in each literal box.

The sticks are located in the d subboxes of B that are
adjacent to q1. We assign a unique coordinate axis to each
of those subboxes. Each box’s axis is chosen among the
d − 1 axes parallel to the hyperplane separating the box
from q1. Consider the box qi adjacent to q1. We partition
qi into r congruent slabs by hyperplanes orthogonal to its
assigned axis. In each slab, we choose a stick of population
m as follows: Partition the slab into four congruent pieces
by a hyperplane orthogonal to the assigned axis of qi and
a hyperplane parallel to the side common to qi and q1. We
choose the stick randomly from the two subboxes adjacent
to q1. Finally, the uniform box is a box of population m such
that its projection in all d directions is disjoint from all the
sticks. We now argue that a deterministic algorithm can
decide whether or not B is an ε-approximate hierarchical
heavy hitter only if it knows the orientations of at least a
constant fraction of all literal boxes.

As in the 2-dimensional construction, no stick is heavy
on its own, because m < (1 − ε)φn = (1 − 2−d)φn, but
each stick belongs to a slab that is a φ-HHH when extended
to q1, because it contains half of the weight of a diagonal
box (m + m ≥ φn). In each literal, either all the points
are covered by stick slabs or a 21−d fraction of the points
is uncovered, depending on the orientation of the literal. A
correct algorithm must distinguish between data streams in
which either 90% of the literal boxes are fully covered or 10%
of them are fully covered. In the first case, the discounted
count of B is g(B) = 1

10
· (rd − r)21−dm/(rd − r) + m =

1+5·2d

5·2d m, while in the second case, it is g(B) = 9+5·2d

5·2d m. By

setting m = 5·2d

9+5·2d φn, the status of box B will be different

in the two cases. This establishes a lower bound of Ω(1/φd).

We can extend the lower bound to Ω(1/φd+1) by using r
disjoint copies of q1. The total number of points is r ·m +
2rm + drm + m = ((d + 3)r + 1)m, which must be no more
than n. Thus, we can choose r = Θ(φ−1). This establishes a

lower bound of Ω(r−(d+1)) = Ω(φ−(d+1)) for d-dimensional
hierarchies.

Also, using branching factors that grow with 1/ε, as dis-
cussed in the previous section, the lower bound can be gen-
eralized to an arbitrary level of approximation 0 < ε ≤ 1−φ.
We summarize the main result of this section in the following
theorem.

Theorem 4.5. Any data stream algorithm in the node
frequency model that computes ε-approximate φ-HHHs in d
dimensions for any ε, 0 < ε < 1 − φ, requires Ω(1/φd+1)
space in the worst case.

5 The Upper Bound

In this section, we describe a data structure of size O(1/φd+1)
for computing approximate φ-HHHs. This indicates that
our lower bounds in the previous section are asymptotically
tight in terms of φ. In essence, we show that if the frequency
of any node of the hierarchy is known within an additive
error of φd+1n/ad, where a is the size of the maximal anti-
chain in the hierarchy, then we can determine φ-HHHs with
fixed approximation error.

We estimate the frequency of nodes (boxes) by using the
hierarchical heavy hitter algorithm of Cormode et al. [6],

which is, in turn, based on the lossy counting scheme of
Manku and Motwani [11] and the lattice structure of the
hierarchy described in our Subsection 2.1. By using the
Misra–Gries [12] algorithm instead of the Manku–Motwani
scheme, the algorithm in [6] can maintain a data structure
(summary) of size O(H

α
) that can estimate the frequency

of any node in the hierarchy with absolute error at most
αn, for α ∈ (0, 1). In particular, this summary maintains
an approximate frequency count for a set of fringe nodes:
these are the nodes whose frequency is above αn/2 but all
of whose children nodes have frequency less than αn. For the
nodes below the fringe, the summary does not maintain any
information: the frequency estimate for these nodes is zero.
The frequencies of nodes above the fringe are approximated
from the frequencies of the fringe nodes and from additional
correctional counts stored in the summary.

We use the scheme of [6] with the approximation param-
eter value α = εφd+1/ad. We inductively process the ances-
tors of the fringe nodes in a bottom-up scan of the hierarchy.
We compute the approximate discounted frequency of each
node with an error of at most εφn, and put it in a set Y of
φ-HHHs if this value is above φn.

The discounted frequency of a node B is the difference of
the frequency f(B) and the frequency dis(B) of the union of
all descendants of B in Y . The algorithm in [6] provides a
fairly good approximation of f(B) since α ¿ φ. In the full
paper we show that dis(B) can be expressed as the sum of
(a/φ)d node frequencies, each multiplied by ±1. Since each
node frequency is known to within an additive error of αn,
the approximation error for dis(B) is εφn.

6 Conclusions
Data streams have emerged as an important paradigm for
processing on-line data. In many such applications, find-
ing heavy hitters, or frequent items, is a fundamental prob-
lem. Hierarchical heavy hitters (HHH) were introduced as
a natural generalization of heavy hitters to hierarchical and
multi-dimensional data domains by Estan and Varghese [9]
and Cormode et al. [5, 6]. The algorithms proposed in [5, 6,
8] guarantee only that the total frequency, and not the dis-
counted frequency, of reported items is above the threshold,
creating the false positives problem. In order to overcome
this shortcoming, Cormode et al. [5, 6] and Estan, Savage,
and Varghese [8] solve a weaker form of φ-HHH s, where an
item’s frequency is distributed among its ancestors. How-
ever, they leave open the problem of determining the true
φ-HHH s with a space-efficient algorithm.

Our paper resolves this question by proving lower bounds
on the space complexity of algorithms that find HHHs. Our
first result is quite general: it shows an Ω(1/φ2) space lower
bound for any (deterministic or randomized) algorithm, even
for 1-dimensional data streams. Thus, the space-efficient
schemes in [5, 6], which use roughly O(H

φ
log φn) space, can-

not be expected to produce guaranteed quality hierarchical
heavy hitters, even in one dimension. This seems surprising
because several deterministic and space-efficient algorithms
are known for approximating the (non-hierarchical) heavy
hitters with arbitrary accuracy. The lower bound shows that
hierarchical heavy hitters are fundamentally more difficult
to estimate.

We show that the memory requirement grows exponen-
tially with d. That is, to find φ-HHHs with any fixed accu-
racy requires space Ω(1/φd+1). In on-line stream processing,

the node frequencies are known only approximately due to
the limited space. Interestingly, our construction shows that
the lower bound for φ-HHHs holds even if the node frequen-
cies are known exactly.

Our multi-dimensional lower bound operates in the node
frequency model. This is a simple and restrictive model, but
it is general enough to include many of the (deterministic)
stream algorithms known for finding heavy hitters. Unfortu-
nately, the node frequency model does not apply directly to
the multi-dimensional HHH algorithm of Cormode et al. [6].
Their scheme is based on lossy counting, which does fall into
this model, but it also uses an additional counter to deal with
the problem of overlapping descendants. This secondary
counter is not (quite) a node frequency, and so the model
does not strictly apply. However, it is easy to argue that
our lower bound construction works for their algorithm as
well. For simplicity, consider our lower bound construction
in two dimensions. Imagine that the input stream uniformly
populates the literal boxes with some fixed orientation. Af-
ter the first phase, there are Θ(1/φ2) identical literal boxes.
Because the algorithm has only O(1/φ) memory, it does not
have counters for at least Ω(1/φ2) literals. If the counter for
a literal is deleted, the compensating count passed to the
grandparent is m/(r2 − r). Most importantly, the compen-
sating count passed to the grandparent does not depend on
the orientation of the literal. Therefore, if we feed another
instance of the stream to this algorithm, where only the ori-
entations of some of these O(φ−2−φ−1) literals are flipped,
the algorithm cannot detect the switch. But, as our analysis
shows, switching the orientation of the literals can change
the status of B as a possible φ-HHH , and so the algorithm
in [6] cannot correctly identify whether B is an approximate
hierarchical heavy hitter or not.

Several natural open problems are suggested by our work.
In particular, it would be interesting to explore what can be
provably accomplished by a space-efficient scheme, for ex-
ample, one using space roughly linear in the accuracy level.
Our lower bound construction shows that the estimated dis-
counted frequency of one particular item can be arbitrarily
off target. Can this be the case with most of the items re-
ported as φ-HHH s, or is it possible to identify at least a
constant fraction of the true hierarchical heavy hitters?

In our lower bound construction, the error occurs for an
item whose discounted frequency is near the threshold. Can
it be shown that all items with discounted frequency signif-
icantly above the threshold can be found accurately?

References
[1] N. Alon, Y. Matias, M. Szegedy. The space complexity

of approximating the frequency moments. J. Comput.
Syst. Sci. 58 (1999), 137–147.

[2] A. Arasu and G. Manku. Approximate counts and
quantiles over sliding windows. In Proc. 23rd PODS,
2004, ACM Press, pp. 286–296.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In 21st PODS, 2002, ACM Press, pp. 1–16.

[4] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In 29th Proc. ICALP,
LNCS, Springer-Verlag, 2002, pp. 693–703.

[5] G. Cormode, F. Korn, S. Muthukrishnan, and D. Sri-
vastava. Finding hierarchical heavy hitters in data
streams. In Proc. 29th Conf. on Very Large Data Bases,
2003.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Sri-
vastava. Diamond in the rough: Finding hierarchical
heavy hitters in multi-dimensional data. in Proc. ACM
SIGMOD, 2004.

[7] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Fre-
quency estimation of internet packet streams with lim-
ited space. In Proc. 10th European Sympos. Algorithms,
LNCS 2461, 2002, pp. 348–360.

[8] C. Estan, S. Savage, and G. Varghese. Automatically
inferring patterns of resource consumption in network
traffic. In Proc. of ACM SIGCOMM, 2003.

[9] C. Estan and G. Varghese. New directions in traf-
fic measurement and accounting. In Proc. 1st ACM
SIGCOMM Workshop on Internet Measurement, 2001,
pp. 75–80.

[10] R. M. Karp, S. Shenker, and C. H. Papadimitriou.
A simple algorithm for finding frequent elements in
streams and bags. ACM Transactions on Database Sys-
tems 28 (1) (2003), 51–55.

[11] G. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. 28th Conf. Very
Large Data Bases, 2002, pp. 346–357.

[12] J. Misra and D. Gries. Finding repeated elements. Sci.
Comput. Programming 2 (1982), 143–152.

[13] S. Muthukrishnan. Data streams: Algorithms and ap-
plications. Preprint, 2003.

