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Abstract

Peer-to-peer computing paradigm is emerging as a scal-
able and robust model for sharing media objects. In this
paper, we propose an architecture and describe the associ-
ated algorithms and data structures to support the execution
of range selection queries over data scattered across a P2P
network especially for resource discovery in grid environ-
ments.

We develop a distributed data structure referred to as a
range addressable network that provides the following two
quality-of-service guarantees: (i) the located peer is one
with the smallest superset of the query range (important
from the application perspective), and (ii) in a P2P network
of n peers, a query is routed throughO(log n) peers be-
fore the intended peer is found (important from the system
perspective).

Our preliminary experimental evaluation indicates that
the range addressable network has desirable properties of
scalability and load-balancing, which are crucial for the
success of a large-scale P2P system.

1. Introduction

Peer to peer (P2P) computing has attracted enormous in-
terest recently, both from the commercial and the academic
communities. The underlying principle of P2P systems is
very simple. A user wishing to participate in a P2P system
registers his/her machine and, once registered, becomes a
peer node. If a user at a peer node wants to search for a file,
the user submits a query string (name of a file), and the sys-
tem returns to the user the name of the peer that contains the
file (if it is available in the system). Napster [16] became an
overnight sensation as millions of users found it useful to
share their music files. Its centralized index was technically
deficient and not designed to scale to the large population
that it found itself serving. Soon thereafter, however, other

more decentralized file-sharing systems like Gnutella [10]
and Freenet [8] came along that eliminated the need for a
centralized index. The popularity of P2P systems has also
resulted in several research projects [3, 15, 5, 7, 18, 17, 19]
addressing issues such as scalability, fault-tolerance, and se-
curity.

In their current form, P2P systems are still primarily used
for sharing files (or media objects). Yet they possess the
potential to become much more than file sharing systems.
A grand vision of P2P computing is emerging in the con-
text of computational grids[6]. The emerging grid archi-
tecture will combine all the information and other resources
(data, storage, computing power) into a loosely connected
but highly available, reliable, robust system. Theinforma-
tion service componentof the computational grid tracks the
availability and attributes of a large number of resources
that are geographically distributed and heterogeneous in na-
ture. A fundamental functionality of the information ser-
vice is to locate resources with specific combinations of
attribute values. Andrzejak and Xu [1] have recently pro-
posed a P2P based distributed indexing infrastructure for
indexing range attributes such as processing or storage ca-
pacity. A typical grid client would query for available hosts
with memory capacities in the range of 256 MB to 2GB.
In this approach, the authors extend the CAN systems such
that peers in the hyperspace are responsible for value ranges
instead of point values in domain. Extensions of simple ob-
ject lookup functionality of P2P systems to support more
general database query processing over P2P data are also
being explored [11, 13, 2, 14, 12]. However the focus of
these works is primarily on issues related to schema media-
tion and complex database operations.

In this paper, we extend the peer-based storage architec-
ture for Computational Grid Systems by providing an ar-
chitectural layer in which answers to the range queries are
cached at the peers. We envision, that in a large Grid infras-
tructure, clients will often ask highly similar queries and



burdening the underlying storage system to answer such
repetitive questions will impede scalability. For example,
systems such as NWS [20] and Globus [9] monitor grid re-
sources and provide an API to its users to query about the
status of such resources. Unfortunately, since these systems
are centralized implementations high query workload can
impact the performance significantly. Although the grid re-
source monitoring system proposed by Andrzejak and Xu is
a distributed implementation, range query processing may
require processing the query at multiple peers (since each
peer is responsible for a specific range).

We have developed a P2P architecture, referred to as
Range Addressable Network (RAN), for resource discovery
in Grid systems. The results of prior range queries issued
by grid clients are cached in RAN for future reuse. Our so-
lution provides the following two quality-of-service guar-
antees:

1. from the application point-of-view, given a selection
query we locate the peer which contains the smallest
superset of the query range; and

2. from the system point-of-view, the path length for rout-
ing a query request is guaranteed to beO(log n), where
n is the maximum number of peers participating in the
system.

As P2P systems mature and become viable platforms
for distributed databases, there will be need to develop ex-
tended database query functionality. Our RAN architecture
can be seen as an important step in that direction, for the
following reason. Most query optimizers perform the selec-
tion operations in a given SQL query at the leaves of the
query tree. Thus,SELECTION is one of the primitive op-
erations that must be available in order to support complex
query processing capabilities over P2P systems.

Our range addressable network has three main algorith-
mic and data structure components: (1) atopology, which
determines thelogical connectivity among the peers, (2) a
peer management scheme, which handles the joining and
departure of peers, and (3) a range management scheme,
which partitions the data among active peers and performs
range queries. In addition, we suggest several optimization
techniques that increase the robustness and improve the load
balance across the system. Our preliminary experimen-
tal evaluations indicate that the range addressable network
has desirable properties of scalability and load-balancing,
which are crucial for the success of a large-scale P2P sys-
tem. In that RAN is an essential component that can be used
to increase scalability and fault-tolerance of grid monitoring
services such as NWS and Globus.

The paper is organized as follows. In Section 2, we
present a graph-based structure to represent range interval
information efficiently. The structure is referred to asrange

addressable DAG. In Section 3, we develop a variety of ap-
proaches to map the range addressable DAG over peers in
a P2P network. In addition, we also identify opportunities
and techniques for improving the performance of the P2P
system based on range addressable network. In Section 4,
we conduct an experimental evaluation to evaluate the per-
formance of range addressable networks. We conclude with
a discussion of our results in Section 5.

2. Range Addressable Network Topology

The proposed system consists of peers forming an over-
lay network with range addressable DAGtopology de-
scribed below. The data is stored at peers in the form of sets
of relation tuples obtained by range selection queries over
an attribute executing in the system. Peers may issue selec-
tion queries for certain ranges of values that an attribute can
take. The system would try to locate the result of the selec-
tion by locating a peer using the overlay topology that stores
all tuples required to answer the query. In case, no peer has
the desired answer, the query is directed to the source(s).
The computed result is then installed at a peer that is re-
sponsible for the corresponding selection range. Note that,
the overlay can also be used as an index, in which case peers
need not store the tuples themselves, but only the informa-
tion that leads to peers having the tuples falling in a partic-
ular selection range.

The underlying topology of our architecture determines
the neighbor relation among the active peers. Each peer
maintains some information about its topological neigh-
bors. These topological neighbors are completely logical,
and do not imply any physical proximity. In our scheme,
each peer has only a constant number of neighboring peers.

We assume that the tuples that are stored in our peer sys-
tem are labeled1, 2, . . . , N . A ranger = [a, b] is a con-
tiguous subset of{1, 2, . . . , N}, where0 ≤ a ≤ b ≤ N .
A ranger′ = [a′, b′] is called asupersetof r if a′ ≤ a and
b′ ≥ b. Thesizeof a ranger = [a, b] is its length, namely,
|b − a|. Given a query range[a, b], peers in RAN cooperate
to find theshortest supersetof [a, b], if there is one. In the
following subsections, we first develop a logical solution
to index ranges over a key attribute for a database relation.
Later, we develop a physical mapping of this solution over
a P2P system.

2.1. A Naive Scheme

We first describe a simple tree topology, whose short-
comings help motivate our new range addressable topol-
ogy. Imagine a balanced binary treeT on the set of leaves
{1, 2, . . . , n}. With each nodev in the tree, we associate an
interval i(v), which is the range spanned by all the descen-
dants ofv. Thus, the interval of the root node is[1, n]; the
left and the right children of the root have intervals[1, 1

2
n]



and[1
2
n + 1, n], respectively. See Figure 1 for illustration.

The data structure is similar in effect to interval trees [4].
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Figure 1: The basic tree topology on 16 leaves.

Given an arbitrary ranger = [a, b], let vr be the unique
node ofT whose interval containsr but the intervals of
neither children ofvr containr. We call vr the topology
nodefor r. It is easy to see that, for any range[a, b], where
a, b ≤ n, there is a unique topology node for it. In the ba-
sic tree scheme, the ranger will be stored at nodevr. In
Figure 1, for example, range[3, 6] will be stored at the left
child of the root.

The lookup for a query rangeq = [x, y] can begin at any
node. The search can move up or down in the tree, and so
we initially set a booleandown true. Suppose we are at a
nodev. There are three cases to consider: (1) if the query
rangeq is not contained ini(v), the search moves to the
parent ofv; (2) if q is contained in the interval of a child
of v, anddown is true, then the search moves to that child;
(3) Otherwiseq is contained ini(v). If some range stored
at v is a superset ofq, report it and stop. Otherwise, we set
down to false, and the search moves to the parent ofv.

The correctness of the search procedure follows from the
simple observation that the interval of a node is divided
among its two children, and the root’s interval is the en-
tire universe. It is also easy to see that the search will visit
O(log n) nodes. However, this simple scheme suffers from
a few significant drawbacks.

First, the search as outlined abovedoes notalways find
the shortest superset of a query. As an example consider
the query range[7, 8]. Suppose there are two ranges stored
in the system that match it:[7, 9] and[2, 8]. The topology
node for[7, 9] is the root, while[2, 8] will be stored at the
left child of the root. Assuming the lookup started at any
leaf node between1 and8, the search will output[2, 8] as
the answer, because it will be found first. This example il-
lustrates a key weakness of the basic tree topology—there
is no correlation between thesizeof a range and its posi-
tion in the tree. Arbitrarily small ranges can get mapped to
nodes with arbitrarily large intervals. Specifically, the range
[1
2
n, 1

2
n+1] is always stored at the root, as is any range that

properly contains the leaf1
2
n in its interior.

While one can find the shortest superset in the basic tree
topology by continuing the lookup all the way to the root,
this can be undesirable for two reasons: (1) there is no way

to know during the search if the shortest superset has al-
ready been found (adds inefficiency), and (2) the lookup
forces all searches to go to the root (causes overload at the
root). We solve both these shortcomings by using a directed
acyclic graph (DAG) topology, which we describe next.

2.2. Range Addressable DAG

The range addressable DAG also maps the entire uni-
verse [1, n] to a root node, but then recursively divides
into three overlapping sub-intervals. Specifically, the root
has three children nodesv1, v2, v3, with intervals[1, 1

2
n],

[1
4
n + 1, 3

4
n], [1

2
n + 1, n], respectively. This recursive par-

titioning continues until each interval has length two, in
which case we create two leaf nodes. See Figure 2 for an ex-
ample. Observe that because of the overlapping intervals, a
node can have up to 2 parents—thus, the topology structure
is a DAG, not a tree. In terms of the number of levels, nodes
and edges, however, the DAG has complexity similar to the
basic tree. In particular, it can be shown that the range ad-
dressable DAG onn leaves has at mostlog n+1 levels, and
O(n) nodes and edges (Lemma A.1). The mapping from
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Figure 2: The range addressable topology DAG.

ranges to topology nodes is very similar to its counterpart
in the basic tree. A ranger = [a, b] is associated with the
unique DAG nodevr whose intervali(vr) containsr, but
none of the child-intervals ofvr contain it. The lookup for
a query rangeq = [x, y] is slightly different, because the
structure is a DAG, not a tree. Suppose the lookup begins at
a nodev. Initially, the booleandown is true. We again have
the three cases to consider:

1. If q 6⊆ i(v), then the search moves to one of the parents
of v whose interval overlapsq;

2. If q ⊆ i(w), for some childw of v, anddown is true,
then the search moves tow.

3. If some range stored atv is a superset ofq, then we
report theshortest range containingq that is stored at
eitherv or a parent ofv, andstop. Otherwise, we set
down to false, and the search moves to one or both
parents ofv whose intervals overlapq.

While the overall search scheme looks similar to the earlier
scheme for basic topology, there are two key differences.
First, because the search sometimes requires visitingboth
the parents of a node, the search complexity can potentially



explode. It can be shown that this is not the case, and the
lookup retains itsO(log n) complexity (See Lemma A.4).
Second, we will show that when a superset range is found,
it is necessarily theshortest supersetand hence the early
termination in this search is correct. Thus, we avoid pushing
the search up the hierarchy as soon as a match is found.

It may not be clear in Step 3 why the parent of a node can
have a smaller range than the node itself. As an example
consider a query range [5,8]. Suppose there are two ranges
stored in the system that match it: [4,9] (stored at root in
Figure 2) and [5,12] (stored at middle child of root). It can
be shown that a parent is about as far as we need to search.

The two key properties of our range addressable DAG,
namely, that a range of lengthL is stored at a node whose
interval length is close toL, and that a range query in this
structure visitsO(log n) nodes. In particular, if a range
[a, b] is stored at a nodev in the DAG, then the length of
interval i(v) is at least|b − a| and at most4|b − a| (See
Lemma A.2). Thus, the range addressable DAG has the de-
sired property that shorter ranges are stored near the fringe
of the DAG, and only the extremely long ranges are stored
towards the root. In addition, there is a well-defined rela-
tion between thelengthof a range, and its position in the
DAG. We can establish the fact that our lookup finds the
shortest superset of the query range, i.e., ifv is the lowest
node in the DAG that contains a superset of the query range
q = [x, y] then, the shortest superset ofq is stored at either
v or a parent ofv (See Lemma A.3).

Because our lookup algorithm searches bothv (the low-
est node with a range matchingq) and its parents, we are
guaranteed to find the shortest superset matching the query.
Finally, we argue that our lookup scheme visitsO(log n)
nodes (See Lemma A.4). This guarantees that there are
O(log n) nodes that need to be searched for the shortest su-
perset range. Still, one needs to be careful in implementing
the search described, because recursive calls to both parents
can explode the search—the recursive calls can indepen-
dently search the same set of nodes over and over. In our im-
plementation, the lookup always goes to the left parent, who
then sends a query to the right sibling if needed. Because
the DAG hasO(log n) levels, the search visitsO(log n)
nodes. We summarize these facts in the following theorem.

Theorem 2.1 The range addressable DAG withn leaves
hasO(n) nodes and edges, andO(log n) height. If a range
is stored at a node of leveli, then the range must have length
at least2i−2. Given a range selection queryq, one can find
the shortest superset ofq by searchingO(log n) nodes in
the worst-case.

In the next section, we describe our peer protocol, which
handles the mapping from the topology to peers and man-
ages the peers in the system.

3. The Peer Protocol

In general, a P2P system managing data has to deal with
the following problems. The system should be able to deter-
mine what parts of the logical structure are mapped to which
peers. This mapping of peers to the logical data structure
needs to be maintained dynamically as peers join and leave
the system. The system should have a mechanism to locate
the destination peers and route the queries to the destina-
tion peer. In addition, the system should deterministically
be able to map the data ranges to specific peer(s). This is
the key mechanism in speeding up query lookups.

In our scheme, the logical structure is a range address-
able DAG withN leaves, whereN is the number of values
taken by the search attribute in the database. In the context
of grid resource location, we can easily demonstrate that
most attributes of interest can be categorically transformed
to a finite value domain. For example, memory capacity
can be mapped in terms of percentages, and similarly CPU
availability can be mapped in terms of finite percentages.

Since the DAG hasN leaves, it follows from our dis-
cussion in section 2.2 that the lookup operation will be
O(log N), which is undesirable. Latter in this section, we
argue that the lookup operation can be done inO(log n),
wheren is total number of peers in the system.

Our peer protocol has two important components:peer
managementand range management. The peer manage-
ment component handles the joining or leaving of a peer.
The range management component handles how the under-
lying database ranges are mapped to the current set of peers
in the system. It also defines the routing protocol used by a
peer to perform a lookup query.

3.1. Peer Management

The peer management component is responsible for han-
dling the joining and leaving of peers. This component en-
sures that at any given time, the set of available peers parti-
tion the entire topology DAG among themselves; i.e., every
node of the DAG is assigned to some peer. The set of nodes
assigned to a peer is called itszone. The zone of a peer
is always aconnected subgraphof the original DAG and
the union of all the zones is the entire DAG. The first peer
to join the system has the entire DAG as its zone. As new
peers join, the zones get redefined, but always form a par-
tition of the DAG. The peer management component takes
care of splitting and merging of these zones as peers dynam-
ically join and leave the system. Two peersp1 andp2 are
neighbors and keep information about each other if there is
a parent-child relationship among any of the nodes in their
respective zones.

In the range addressable DAG, a node can have two par-
ents. We define a child node to belong to the zone of itsleft
parent. Figure 3 shows an example partitioning of the DAG
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Figure 3: The zone of a peer. The zones of peers
p0 andp1 are shown by dashed curves. The re-
maining part of the DAG forms the zone ofp2.

among 3 peers. We will use the termsparentandchild peer
to convey the relation between two neighboring peers.

In case of a P2P system, the query lookup measures the
number of peer a query has to go through before finding a
peer, which can service it. In a range addressable DAG, if a
query is forwarded from one node to other, such that, both
nodes belong to the same peer then the forwarding doesn’t
contribute to the query lookup. Therefore, the query lookup
is no longer function of the size of the DAG but only de-
pends upon how is the DAG divided among the peers.

Consider acollapsedDAG, where we collapse each
peer’s zone to a single node. It is easy to see that the lookup
is O(h), whereh is the height of the collapsed DAG. We
call ann-peer system to bebalancedif the range address-
able DAG is divided among the peers in such a way that
the corresponding collapsed DAG has a height ofO(log n).
A balanced system is desirable and the peer management
component should strive to achieve it.

3.1.1. Join Requests.The new peerpnew discovers an exist-
ing peerpold by contacting a bootstrap directory server, and
sends a join request. On response to the join request,pold

hands out the sub-DAG (under its ownership) rooted at one
of its children to the new peerpnew. Since each node has
at most three children,pold can become (parent) neighbor
of at most 3 other peers. By default, the first peer to send a
join request topold inherits the DAG rooted at the left child;
the next inherits the DAG rooted at the middle child; and
the third one inherits the DAG of the right child.

3.1.2. Leave Requests.When a peer leaves, its zone is
handed over to one of its neighboring peers (either a parent
or a child). In order to balance the zone sizes, we merge the
leaving peer’s zone with the neighbor that has the smallest
zone. Note that the newly merged zone is still a connected
DAG, preserving our scheme’s invariant. In addition to the
zone merging, we also need to modify the neighbor relation
among the remaining peers. This cost is proportional to the
number of neighbors of the leaving peer which is at most a
constant.

3.1.3. Failure Events.The basic peer protocol, described so
far, is susceptible to failures as any peer in the system knows
only about a constant number of other peers (its parent and
children) in the system. Also failure of a single peer can
disconnect the DAG into two disjoint components such that
peers in one component might not be able to reach peers
in the other component. These problems can be solved by
letting a peer maintain information regarding some other
peers in the system. Therefore, we modify our peer proto-
col such that a peer not only maintains information about
its parent but also about all of its ancestors. This informa-
tion can be further used to reduce the time it takes for a
query lookup. Instead of forwarding a query to its parent,
a peer can directly forward the query to its ancestor whose
sub-DAG contains the topology node corresponding to the
query.

The failure recovery mechanism works as follows. Dur-
ing a query lookup, if a peer finds that its parent has failed, it
sends azone take-overrequest to its first alive ancestor. The
ancestor checks whether some other peer has already taken
over the zone or a part of it. If not, the requesting peer is
allowed to take over the zone. In case some other peer has
already taken over the zone, the requesting peer’s ancestor
list is updated and the process is repeated, where the peer
talks to its new ancestor to take over the remaining part of
the zone. For example, in Figure 4, let peersp1, p2 andp3

be responsible for node (1), (4) and (1–8) respectively. Peer
p1 finds that its ancestors who were responsible for nodes
(1–2) and (1–4) have failed. It sends a zone take over re-
quest top3. Since, no other peer has taken over the zone,p3

allowsp1 to take over them. Later on peer,p2 also notices
that peer responsible for nodes (1–4) and (3–4) has failed.
It also sends a zone take over request top3 but sincep1 has
already taken over node (1–4), we update the ancestor list
of p2 andp2 sends a zone take over request top1 to take
over node (3–4).

3.2. Range Management

The range management component is responsible for
mapping ranges to the peers. Since the logical structure we
consider is a range addressable DAG, the mapping of ranges
to the logical structure is straightforward. In order to mapa
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crossed nodes have failed.



range to a peer, we consider the topology node correspond-
ing to a range. The range is stored at the peer whose zone
contains the topology node.

3.2.1. Range Lookup.Suppose the query begins at a peer
nodep. We use the algorithm described in Section 2.2 to
move to a parent or a child peer ofp, until we find a peerp′

that contains a range that is the superset of the queryq. At
this point, it is guaranteed from the property of RAN topol-
ogy that the answer can be found atp′ or a parent ofp′. It
should be noted that during moving up or down the range
addressable DAG, multiple levels of the DAG can fall in the
same zone and hence will be controlled by the same peer.
The query needs to be forwarded to a neighboring peer only
when the traversal in the DAG crosses zone boundaries. In
that case, the peers will be neighboring peers and have in-
formation about each other.

3.2.2. Range Update.As a result of database updates, tu-
ples belonging to different ranges can get affected. In the
absence of any control mechanism, the only alternative is to
propagate the change to every peer in the system. Clearly,
such an approach is not feasible for P2P systems where no
single site has complete knowledge about the system. In the
range addressable network, database and range updates can
be handled easily as follows. When a tuple is updated, we
search for the peer responsible for that tuple. The search
locates the peerp with the shortest range containing that tu-
ple. Once again the property of RAN topology ensures that
all other peers containing ranges with this tuple are among
the ancestors of this peerp. We, therefore, propagate the
update up the DAG through the left parent ofp, who also
notifies any right sibling that needs to be updated.

3.3. Improving System Performance

In this section, we discuss several techniques that can
improve system performance via better load balancing and
query routing. In particular, we discuss two techniques:
cross pointers, which are additional links among the peers
to provide shortcuts during the query routing; andpeer sam-
pling, which addresses load balancing by finding peers with
large zones to split .

3.3.1. Improved Routing and Robustness through Cross
Pointers (CP).We can improve query routing in the net-
work by adding some well-placed cross pointers among the
peers. In Figure 5, the link from node (3–4) to (5–6) is
an example of a cross pointer. When cross pointers are
present, queries can be routed faster, since the queries can
be forwarded within a given level of the DAG without going
through the hierarchical route.

In particular, if a nodev is the left child of its parent, then
it keeps cross pointers to all the left children of nodes that
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Figure 5: Range Addressable DAG with Cross
Pointers

are in its parent’s level. Similarly, ifv is the middle child of
its parent, then it may keep cross pointers to all the middle
children of nodes that are in its parent’s level. Note that a
cross pointer needs to be stored at a peer only if it points to
a topology node in other peer’s zone.

The cross pointers also improve the robustness of the
system by providing alternate routes between any two peers
in the system. A substantial number of these paths will be
disjoint, which ensures that in case of failures, with high
probability a path will exist between two peers .

3.3.2. Load Balancing by Peer Sampling.As discussed
earlier in the section, a balanced system is desirable because
of its optimal lookup performance. Therefore when a new
peer joins, we want it to split the zone with another peer,p,
such that the height of collapsed zone remains same. This
is in general impossible to ensure in the worst-case, since
without a centralized server, the identity ofp might be un-
known to other peers. We suggest and implement the idea of
peer samplingto poll a small number of peers to determine
which peer’s zone should be split with the newly joining
peer. When a new peerpnew arrives, it randomly pollsk
peers in the system, wherek is a tunable parameter. Among
thesek polled peers,pnew chooses to join the one whose
zone is rooted closest to the root.

4. Experimental Evaluation

We have performed simulations to evaluate the perfor-
mance of our scheme and compare the relative merits of
the different policies and techniques proposed in this pa-
per. We have used different metrics in order to evaluate
the performance from the perspective of system as well as
applications. The primary performance metric from an ap-
plication’s perspective is thelatencyof answering a range
query. We measure latency in terms ofroute length, which
is the number of peers through which a query was routed
in the P2P overlay network, before the intended peer was
located. From a system’s perspective, the quality of our
scheme can be measured by thequery loadexperienced by
various peers in the system. The query load can be further
divided into aquery forwardingload, which measures the
number of range queries a peer forwards to its neighbors,



and aquery processingload, which measures the number
of range queries answered by the peer.

In Section 3.3, we proposed two techniques to improve
the performance of the basic scheme: cross pointers and
peer sampling. The cross pointers only effect the route
length and query forwarding load. For both of these met-
rics, we compare the basic scheme (BS) with the modified
scheme that uses cross pointers (BS-CP). In all our simula-
tions we have used peer sampling, where each peer samples
a constant number of peers before joining the system.

In all our experiments, we consider a database of size
223 tuples. The set of range queries has been generated by
picking query ranges uniformly at random from the set of all
possible range queries within range lengths of28 and213.
In addition, we assume that the data is distributed uniformly.
Peers submit queries uniformly at random to the system.

We also evaluate the behavior of the system in presence
of failures. We measure the robustness of our scheme us-
ing thequery success rateandfailure messages. The query
success rate measures the fraction of queries, which are an-
swered using the cached queries. The failure messages mea-
sures the number of extra messages a peer has to process in
order to maintain the logical structure in presence of failure.

4.1. Route Length

In this experiment, we measure the average route length
as the number of peers grow in the system. The number of
peers are varied in powers of two: from28 to 213. Figure 6
shows the result for the experiment, which is averaged over
15 runs. In Section 3.1, we argued that in a balanced sys-
tem the route length isO(log n) wheren is the number of
peers in the system. In case of BS, the average path length
increases logarithmically with the number of peers in the
system. This implies that our peer joining strategy along
with peer sampling achieves a balanced system. The exper-
iment also clearly validates the usefulness of cross point-
ers, where route length is reduced significantly. In addition,
with cross pointers the route length is not much affected by
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Figure 6: Average route length for the four vari-
ants of our scheme.

the growing number of peers in the system.

4.2. Query Load

The experiment measures the query load as the number
of queries vary in a system with 10000 peers. We varied
the number of queries from105 to 106 in steps of105. The
values shown in the graphs are averaged over15 runs. The
cross pointers only affect how the query is routed to the
destination peer but has no impact on the query processing
load of a peer. Therefore, we only consider them in case of
query forwarding.

Figure 7 plots the percentage of queries processed of the
peer with the maximum load as the number of queries in-
creases. It is interesting to notice that irrespective of total
number of queries, the maximal loaded peer always process
around0.22% of the total queries.

The next plot, Figure 8, shows the average forwarding
load on peers. Using cross pointers reduces the load by a
factor of 3. In Figure 9, we compare the forwarding dis-
tribution for BS and BS-CP for the case with106 queries.
The distribution for BS-CP is more even with more than 90
percent of the peers having a forwarding load between 64
and 4096 queries. Thus, the cross pointers not only help
in reducing the load but also in distributing them more uni-
formly.

4.3. Failure

The experiment evaluates the performance of the failure
recovery mechanism under a worst case failure scenario. In
the simulation, first we run10000 range queries, then we
induce failure ofx percent of random peers and run another
90000 range queries. We experimented with5 different val-
ues ofx: 1, 5, 10, 20 and50. The reported results are
averaged over12 runs.

In the absence of failures, a large fraction of queries can
be answered by the cached queries. Failures increase the
number of cache miss because of two reasons: First, due to
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Figure 7: Query Processing Load: Percentage of
queries processed by maximum loaded peer.
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Figure 9: Distribution of query forwarding load
for a set of 1M queries.

failures, some of cached ranges are lost and second, failures
might temporarily disconnect the structure due to which a
peer might be unable to access certain cached ranges. In our
simulation scenario, the second case is aggravated because
of simultaneous failure. In real world, the failures are more
gradual and the failure handling mechanism has more time
to recover.

Let QA(x) be the number of queries answered whenx
percent of peers have failed. We cannot judge a failure re-
covery mechanism solely based onQA(x) because some
range query sequence can have a lot of cache misses even in
absence of failures. Therefore, we evaluate the performance
using the ratioQA(x)/QA(0), which we call asquery suc-
cess rate. Figure 10 plots the query success rate as the value
of x increases. The high query success rate even in case of
high failure rates, indicates the usefulness of our failurere-
covery mechanism.

Figure 11 plots the maximum number of overhead mes-
sages processed by any peer. The number increases with the
increase in failure rate but even for the higher failure rates,
the value is around 30 messages, which is neglicompared
to the query forwarding and processing load a peer would
have to bear.
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Figure 10: Query success rate in presence of fail-
ure.
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Figure 11: Failure messages processed by a peer
due to failure. We plot the maximum number of
message processed by any peer.

5. Discussion

P2P systems have become a prevalent technology to
share media objects over a wide-area network. Several com-
mercial P2P systems are already in use and research proto-
types are underway to address the scalability, performance,
and fault-tolerance issues associated with commercial P2P
systems. However, the functionality of commercial sys-
tems and research prototypes is limited to providing object
lookup in a distributed manner. In that, such systems ba-
sically support distributed directory service for file-based
objects scattered over a wide-area network.

In this paper, we explore the possibility of using the P2P
paradigm to design a large-scale data sharing architecture
with limited database query processing capabilities which
will be a useful middleware for grid computing applica-
tions. The ultimate goal is to design a P2P database archi-
tecture in which data is scattered over the peers, and peers
can access such data by issuing SQL-like queries. As a first
step towards building such an architecture, we present a de-
sign of a distributed data-structure, referred to as arange
addressable network, that facilitates range query lookups
and range query processing. This data structure is based on
a logical abstraction of a directed acyclic graph and main-
tains enough information about ranges so that range lookups



can be processed efficiently. The efficiency measure ensures
that a range query is processed using a smallest superset
of the query range (if one exists) and route length of the
lookup request grows only logarithmically in the size of the
network.
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A. Appendix

Lemma A.1 The range addressable DAG onn leaves has
at mostlog n + 1 levels, andO(n) nodes and edges.

Proof: The bounds on the number of levels and nodes
follow from the fact that there are2i+1 − 1 nodes at dis-
tancei from the root. The bound on the number of edges
follows because there are at most3(2i+1 − 1) edges be-
tween the nodes of levelsi andi + 1.

Lemma A.2 (Range to Node Mapping) If a range[a, b] is
stored at a nodev in the range addressable DAG, then the
length of intervali(v) is at least|b−a| and at most4|b−a|.

Proof: By definition, if [a, b] is stored atv, then the
length ofi(v) cannot be smaller than|b − a|. Thus, we
only need to show thati(v) is at most4|b− a|. Consider
the partition ofi(v) into four equal parts, and call these
sub-intervalsσ1, σ2, σ3 andσ4. By construction, the in-
tervals associated with the three children ofv areσ1∪σ2,
σ2 ∪ σ3 andσ3 ∪ σ4. Because[a, b] is stored atv, and
not at its children, it must be the case that[a, b] is not
contained in the union of any two consecutiveσj ’s, for
j = 1, 2, 3, 4. Thus,|b − a| must be strictly longer than
anyσj . But that guarantees that|b−a| > |σj | = 1

4
|i(v)|,

which proves the lemma.

Lemma A.3 (Shortest Superset) Supposev is the lowest
node in the DAG that contains a superset of the query range
q = [x, y]. Then, the shortest superset ofq is stored at either
v or a parent ofv.



Proof: Suppose[a, b] is a range stored atv that matches
q. We show that no ancestor higher thanv’s parent can
contain a range that matchesq and has length smaller
than|b − a|. Let w be a grandparent or higher ancestor
of v. Then, since the interval length doubles at each level
of DAG, we have|i(w)| ≥ 22|i(v)|. By Lemma A.2, the
shortest range stored atw has length strictly bigger than
|i(w)|/4. On the other hand, since[a, b] is stored atv,
|b− a| ≤ |i(v)|. Thus, ifr is any range stored atw, then
it must be that|r| > 1

4
|i(w)| ≥ |b − a|.

Lemma A.4 (Range Ancestors) Consider a nodev in the
range addressable DAG and its intervali(v). At any level
of the DAG, there are at most two ancestors ofv whose in-
tervals overlap withi(v). In addition, these ancestors are
mutual siblings, the left ancestor is reachable from the left
parent ofv.

Proof: The key observation in establishing this lemma is
this: at any level of DAG, the intervals of any twonon-
sibling nodes aredisjoint. This follows from the DAG
construction. Thus, any two nodes whose intervals over-
lap i(v) must be siblings. If a node has two parents, then
its interval overlaps with that of its left parent. Induc-
tively, this gives a path to the left ancestor ofv.


