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Abstract Categories and Subject Descriptors

We explore fundamental performance limits of trackinga  H.1.1 [Systems and Information Theory: Information
targetin a two-dimensional field of binary proximity serssor  theory, Value of information
and design algorithms that attain those limits. In parégul
using geometric and probabilistic analysis of an idealized General Terms

model, we prove that the achievable spatial resolufidn Algorithms, Theory
localizing a target'’s trajectory is of the orderﬁg, whereR Keywords
is the sensing radius ampds the sensor density per unit area. Sensor Networks, Target Tracking, Binary Sensing, Fun-

Using an Occam'’s razor approach, we then design a geometyamental Limits, Distributed Algorithms
ric algorithm for computing an economical (in descriptive ]

complexity) piecewise linear path that approximates tae tr 1 Introduction

jectory within this fundamental limit of accuracy. We em-
ploy analogies between binary sensing and sampling theoryW
to contend that only a “lowpass” approximation of the tra-

We investigate the problem of target tracking using a net-
ork of binary proximity sensors: each sensor outputs a 1
. . ; e : when the target of interest is within its sensing range, and
jectory is attainable, and explore the implications of 81s o iherwise. This simple sensing model is of both funda-
servation for esﬂmatmg the t_argetsvelochy. mental and practical interest for several reasons. Fiest, b

We show through simulation the effectiveness of the ge- c4,se of the minimal assumption about the sensing capa-
ometric algorithm in tracking both the trajectory and the ve  pjjity it provides a simple and robust abstraction for a ba-
locity of the target for idealized models. For non-ideal-sen gjc ‘tracking architecture of broad applicability, whichnca
sors exhibiting sensing errors, the geometric algorithm ca ¢ enhanced in a situation-specific fashion to take advan-
yield poor performance. We show that non-idealities can {546 of additional information such as target velocity @ di
be handled well using a particle filter based approach, andignce, if available. Second, the communication requiresnen
that geometric post-processing of the output of the Particl ¢, the pinary proximity model are minimal—each sensor
Filter algorithm yields an economical path descriptionr@s i can smooth out its noisy observations and express its out-
the idealized setting. Finally, we report on our lab-scate €t a5 one or more disjoint intervals of time during which
periments using motes with acoustic sensors to validate oury,q target is in its range, which can be encoded efficiently
theoretical and simulation results. by timestamps when the output changes from 0 to 1 and vice
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Office. We begin by exploring the fundamental limit spatial

resolutionthat can be achieved in tracking a target within a
two-dimensional field of binary proximity sensors. The spa-
tial resolution measures the accuracy with which a target's
trajectory can be tracked, and it is defined as the worst-case
deviation between the estimated and the actual paths. We
Permission to make digital or hard copies of all or part of thiork for personal or prove that the ideal achievable resolutidis of the order of
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it also shows that, for a fixed number of sensors, the accu-significantly across sensors, and exhibits nonmonotgnicit
racy improves linearly with an increase in the sensing igdiu  the probability that a target is detected does not necdgsari
which occurs because an increase in the sensing radius leadgo down monotonically with distance from the sensor. We
to a finergeometric partitionof the field. Our spatial reso- employed two approaches to deal with real-world noisy data:
lution theorem helps explain empirical observations reggbr (i) preprocessing of the noisy sensor outputs to clean up ob-
in prior work on tracking in binary sensor networks [12]. vious error patterns, followed by thed@AamMTRACK algo-
Next, we consider minimal representations and velocity rithm, and (ii) the Particle Filter algorithm followed by ge
estimation for the target's trajectory. There are infinitel ometric post-processing. Both these approaches show good
many candidate trajectories consistent with the sensor ob-tracking performance.
servations and within the guaranteed spatial resolutidheof Related Work
true trajectory, and all of which are “good enough” for local elate or
ization accuracy. On the other hand, the velocity estimatio ~ Object tracking has long been an active area of research
for the target depends crucially on the shape of the trajpcto ~ for battle-field [9], robotics [16] and other applicatiorsy
We use an analogy between binary sensing and the samplingensor that generates a signal dependent on distance from a
theory and quantization to argue that “high-frequencyi-var ~target can be used for tracking. Accordingly different sens
ations in the target’s trajectory are invisible to the sefistd ing modalities such as radar, acoustic, ultrasonic, magnet
at a spatial scale smaller than the resolufioiTherefore, we ~ seismic, video, RF and infrared [15], and occasionally com-
can only hope to estimate the shape or velocity for a “low- binations of multiple modalities [3], have been considered
pass” version of the trajectofyWe then consider piecewise ~for tracking applications in both theory and practice. The
linear approximations to the trajectory that can be descdrib  range and capabilities of these sensors vary widely, ang'man
economically. We give sufficient conditions for the lowpass different approaches to modeling and data processing have
version of the true target trajectory under which such mini- been investigated. For instance, ultrasonic signals caatny
mal representations can estimate the velocity accurately.  information about the range of the object, whereas infrared
Our results on velocity estimation can be paraphrased asSensors are best modeled as detectors or binary sensars [17]
follows: velocity estimates for a segment of the trajectory We do not attempt to do justice to the vast literature on track
approximated by a straight line are good if the segment is iNg, but briefly review closely related work. o
long enough. This motivates an Occam’s razor approach for ~ The robustness and effectiveness of tracking using binary
describing the trajectories in terms of piecewise lineaghgpa  Sensing models has been convincingly demonstrated for a
in which the line segments are as long as possible, withoutlarge-scale sensor network in [1]. The success of this proje
exceeding the approximation error limit provided by our-spa prov_ldes strong motivation for the fundamental explonmatio
tial resolution theorem. We develop thec©OAMTRACK al- of binary sensing undertaken here. The authors of [12]
gorithm, which efficiently computes such piecewise linear consider a model identical to ours. They employ piece-
trajectories, and associated velocity estimates, frons¢ime ~ Wise linear path approximations computed using variants of
sor observations. The efficacy of the algorithm in achieving & Weighted centroid algorithm, and obtain good tracking per
the fundamental limits on spatial resolution and velocity e~ formance if the trajectory is smooth enough. Our funda-
timation error is demonstrated via simulations. mental limits provide an explanation for some of the empiri-
Next, we consider more realistic sensor models, in which ¢&l observations in [12], while our algorithms provide more
the coverage areas for different sensors may be differedt,a accurate and more economical path descriptions. Another
not exactly known to the tracker node. For such non-ideal closely related paper is [2], which considers a differentsse
sensors exhibiting sensing errors, the@MTRACK algo- ing mode_l, Where sensors provide information as to vyhether
rithm can yield poor performance. We show that sensor non-& target is moving towards or away from them. While the
idealities can be handled well using a particle filter apphoa  SPecific results for this model are quite different from ours
adapted to non-ideal binary sensing. While this particte fil the philosophy is similar in that the authors of [2] use geo-
ter algorithm is robust to nonidealities, the paths it otspu Metric analysis to characterize fundamental limits. Hasvev
are not smooth, and therefore not easy to describe economithe sensing model in [2] can lead to unacceptable ambigui-
cally. We show that geometric post-processing of the output fi€S in the target's trajectory (the authors offer an exanupl
of the particle filtering algorithm leads again to minimgire ~ Parallel trajectories that are indistinguishable withaddi-
resentations in terms of piecewise linear trajectoriefwit ~ tional proximity information). In contrast, the binary pro
small number of line segments, with the required goodnessiMity model considered here, despite its minimalism, igabl
of fit guided by the fundamental limits on spatial resolution to localize the target to within a spatial resoluti@fg).
Simulations are used to demonstrate the effectivenes®of th In [13], Liu et al. present some interesting ideas using geo-
overall algorithm in providing accurate tracking with mini  metric duality to track moving shadows in a network of bi-
mal path representations. nary sensors. Although their technique is not applicable to
Finally, we carried out a lab-scale demonstration with our problem setting, their notion of cells in dual space has
motes equipped with acoustic sensors for a quick validation some resemblance to our localization patches.
of our framework. We found that the coverage area varies ~ Classical tracking is often formulated as a Kalman fil-
tering problem, using Gaussian models for sensor measure-

1A technical definition of the lowpass trajectory is given &cS ments and the target trajectory. Distributed tracking tase
tion 3.4.1. on Kalman filtering has recently been considered in [14].
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Figure 1. A target moving through a field of three binary proximity sensors,X, Y and Z; (b) shows sensor outputs as
a function of time; (c) shows thelocalization patcheso which the target is localized over time intervals with corstant
signature; and (d) shows thearcsmarking boundaries between patches.

Particle filters [5] offer an alternative to Kalman filters in tracker node Given the minimal communication needs of bi-
non-Gaussian setting, and have been investigated for-track nary proximity sensors, such a centralized architecturg ma
ing using sensor networks in [4]. Most prior work on particle well be the most attractive choice for implementation in
filtering assumes more sensed information (with a more de-many settings, using multihop wireless communication be-
tailed probabilistic model) than provided by the binaryssen  tween the sensors and the tracker node(s). In any case, it
ing model of this paper. Khan et al. [10, 11] have used par- is relatively straightforward to develop communicationda
ticle filtering for an insect tracking application, whereeth  storage-efficient hierarchical distributed versions af @@n-
insect targets are assumed to interact according to a Markowralized algorithms: for example, the tracker node can be
random field. Fox et al. [7] provide a survey of particle-filte chosen dynamically based on the target’s location, andit ca
based methods for the problem of mobile robot localization, convey its summary of the particular segment of the target's
where robots wish to determine their location, and the lo- trajectory to the next tier of the hierarchy.

cations of other robots, using sensory inputs. Our cortribu  For simplicity, we assume that each sensor has a circular
tion in this paper is to provide a particularly simple parti- sensing region of radiuR: a sensor outputs a 1 if a target
cle filtering algorithm that provides robust performance us falls within thesensing dislof radiusR centered at its loca-
ing the minimal information obtained from non-ideal binary tion. The parameteRis termed thesensing range-However,

Sensors. our framework also applies to sensing regions of more com-
. . plex shapes that could vary across sensors. We assume noise-
2 The Geometry of Binary Sensing less sensing for the time being: the sensor output is always

In this section, we describe an idealized model for a bi- 1 if atargetis within its sensing range, and always 0 if there
nary sensor network, and the structure of the geometric in-iS N0 target within its sensing range, with 100% accuracy.
formation it provides regarding a target's location. This g Methods for handling noisy sensor readings are considered

ometric structure forms the basis for our theoretical bsund N later sections. , o , .
and algorithms. The geometry of binary sensing is best illustrated via an

example. Figure 1(a) shows a target moving through an area
covered by three sensors. Figure 1(b) shows the sensor out-
puts as a function of time. We define thiginatureof any
point p in two-dimensional space as thebit vector of sen-

sor readings, whosi¢h position represents the binary output
of sensori for a target at locatiorp.2 In Figure 1, if we
define the signature as the bits output by sen¥org and

Consider a network of sensors in a two-dimensional
plane. Each sensor detects an object withirs@asing re-
gion, and generates one bit of information (1 for presence
and O for absence) about the target; we call this the ideal
binary sensing modelWe get no other information about
the location, speed, or other attributes of the target. The i
formation of a sensor is efficiently encoded by the transgio . o .
between its 0 and 1 bits, and so its output can be summarized? In that order, then the targets signature evolves over time
by the timestamps marking these transitions. We assume thaf'S fQHOWS' 000100,110010,011,001,000. Inlt.lally, Itis
the sensors are synchronized in time to sufficient accuracy—OUtS'qe the sensing disks O_f all three SENsors, then itenter
several timing synchronization algorithms are availaple | € disk ofX, thenY, then it leaves the disk of, enters

the literature (e.g., [6]). We also assume that the location t_hat ofZ, and so on. The time instan{j } mark the transi-

each sensor is known—the sensor locations can be recorde%OnS when the target either enters or leaves a sensor'srang

at the time of deployment, or can be estimated using local- F19ure 1(c) shows that the target can be localized within a
ization techniques (e.g., [18]). calization patch F during the time intervaltj,tj.1), which

Our emphasis is on discovering and attaining fundamen- 2t notion of signature is a conceptual tool. Our algorithms
tal limits of tracking performance, and therefore we afzstra o not actually use the entire bitmap for a given target locabut
away lower layer networking issues by assuming that the work with a much smaller localized version, as explainedhia t
sensor observations are communicated to, and fused at, aext section.




corresponds to the set of possible locations corresporiding vector of sensor outputs. The spatial resolution is theeefo
the signature during this interval. When the target moves given by thediameterof the largest patch induced by the
from a patchF; to the next patclij,1, we note that exactly  binary sensing field. In the following, we argue thatainy
one sensor’s bit changes: either the target enters thengensi configuration of sensors, this diametetagver boundedy
disk of some sensor, or it leaves the disk of some sensor. The‘%, for an absolute constant which gives arupper bound
two patchesF; andFj,1, therefore, share lacalization arc on the achievable resolution.

Aj of the disk of the sensor whose reading has flipped, as
shown in Figure 1(d). A simple but important observation
is that, at the transition timeg, the two-dimensional uncer-
tainty in the target’s location is reduced to a one-dimemsio
uncertainty.

In general, a localization patch need not be connected and,
correspondingly, the localization arc of two such patclzes c
also have two or more pieces. (As a simple example, con-
sider three sensing disk& B,C, respectively, centered at
points(0,0), (1,0), and(2,0), where the radius of the disks Figure 2. lllustration for Theorem 1.
is 1.5. Then, the patch with signatu(,1,0) has two dis-
connected pieces—these are the regions that are inside disk
B but outsideA andC.) Although disconnected patches are
mainly an artifact of low sensor density, one can also create THEOREM 1. If a network of binary proximity sensors has
pathological examples where a patch can have two piecesaverage sensor densityand each sensor has sensing radius
even under high density. The non-connectivity of patches, R, then the worst-case.Lerror in localizing the target is at
however, does not impact the tracking resolution, becauseleastQ(1/pR).

our Theorem 2 ensures that even if a patch is disconnectedproor We are interested in asymptotic behavior and so we
all of its pleces lie within the resolution bound of each athe assume that the sensor field is |arge re'ativﬁytand we can
The preceding geometric information structure forms the jgnore the boundary behavior by focusing on the portion of
basis for our results in subsequent sections. Our derivafio  the field that is at leasR away from the boundary. Since
fundamental limits in Section 3 is based on estimation of the the average sensor densitypisn the field, there must be a
size of the regionk;. The geometric algorithms for comput-  circular region of radiusRthat contains at most (the average
ing minimal description trajectory estimates consist aheo  pnymper of)N = p(4TR?) sensors in it. Lex be the center of
puting piecewise linear approximations that pass throbght  thjs circle, letC; denote the circle of radiuR centered ax,
patched; or the arcsA; in the order specified by the evolu-  and letC; be the circle of radiusRcentered ax. (See Fig. 2

tion of the target's signature. for illustration.) We observe that only the sensors cordin
.. in C, can sense a target that lies@. Since there are at

3 Fundamental Limits mostN such sensors, their sensing disks can partition the
We assume ideal sensing with sensing raRger each  inner circleCy into at mostN? — N + 2 “patches”. On the

sensor, and an average sensor density sénsors per unit other hand, the circl€; has areaiR?, so at least one of the
area. Thus, the performance limits we derive depend only Patches must have area at leers®? /N2, for some constant
on the parameters andR. We first show that the spatial €. Plugging in the value o, we get that some patch @
resolution cannot be better than order bf, regardless of must have area at least

the spatial distribution of the sensors. We then show th&t th CTR? _ 0 1

resolution can be achieved using standard uniform random 16m2p2R: (W)'

distributions as well as regular grids. Finally, we showt tha . — .

binary sensing is analogous to discrete sampling, in that it | "erefore, th(1d|ameter(the longest projection) of this patch
provides information only about a “lowpass” version of the S at leastQ(zx), the square root of the area, which proves
target's trajectory, and discuss the implications for otitey the claim. O

minimal path representations and velocity estimates. Theorem 1 makes no assumptions on the distribution of

. . sensors: it only makes use of the average sensor density
3.1 An Upper Bound on Spatial Resolution bound, and upper bounds the best resolution one can hope

The localization error of an estimated trajectory is de- 0 achieve in an ideal deployment. In the next subsection,
fined to be the maximum deviation of the estimated path We address the complementary question: is this ideal resolu
from the actual path. This is just the, norm of the differ- tion achievable, and what distributions of sensor nodes can
ence between the actual and estimated trajectories, viesved realize this? Our investigation here is analytic, with algoa
functions of time. Thespatial resolutiorof a binary sensor ~ t0 show that certain simple configurations of sensors lead
field is the worst-case localization error for any targgera  t0 regions where the maximum, error matches the bound
tory through the field. of Theorem 1. Algorithmic questions of computing compact

As observed in Section 2, binary sensing localizes a targettrajectory approximations are addressed in the followet s
to within apatchcorresponding to a specific signature, or bit tion.



3.2 Achievability of Spatial Resolution Bound  respectively, denote the area of the symmetric differende a
the union of the two disks, it follows from the Poisson distri

The spatial resolution of Theorem 1 can be achieved (ne- bution that

glecting edge effects) by simply arranging the sensors in a
regular grid. Since such an ideal deployment is often impos- PIX oAl e P(A—A)
sible in practice, we now show that a random Poisson distri- X>x =e 1—ePA

bution with densityp also achieves the desired resolution. In . .
- . - We note thatAy < Ay, with equality forx > 2R, so that
the process, we also derive a sharp tail bound on the size Ofl(:’[x > ¥ =0 forx> 2R Thus X is upper-bounded byr)

a localization patch. Elementary geometric calculations yield that
Mathematically, the Poisson distribution of mgameans Y9 y

that (i) the number of sensors in a region of areds a A = (2y+ sin2y) R?

Poisson random variablsly with meanpA, and (ii) for ) o o )

two nonoverlappingegions, the corresponding numbers of Whereyis the angle shown in Figure 3, satisfying gia .
sensors are independent random variables. We assume afior our purpose, it suffices to loosely boukgibelow as
asymptotic regime in which the probability of a point in the Ag > 2R%siny = xR

plane being within range of at least one sensor tends to one.
For an arbitrary poinP, this condition is satisfied if there  (usingy > siny). This implies that

is at least one sensor in a disk of radRsentered aP. Yy oRx

Thus,P[no sensor in disk of radiuR] = e P™" — 0 which PIX>x < e™d<e ™™ 1)
requires thapR? — co. (In practice, values opR? of the  which guarantees the promised asymptotic decay eyifbr
order of 4 or more suffice to guarantee adequate coverage)x — <. In fact, the exponent of decay is approximately twice

The following theorem states our result. as large as that used in our proof: this follows because the
values ofx, andy, we are considering are small, aAd ~
2xR, which yieldsP[X > x] ~ e"2RX

0<x<2R

3.3 Remarks on Spatial Resolution Theorems

Theorems 1 and 2 show that the spatial resolution cannot
be better thaﬁ)(piR), and that this resolution can be achieved
with a random (Poisson) sensor deployment. The depen-
dence on sensor density seems to match common intuition:
the more sensors we have, the better the spatial accuracy one
should be able to achieve. On the other hand, the dependence
on sensing radius may seem counterintuitive—because these
are binary proximitysensors, they do not actually measure

THEOREM 2. Consider a network of binary proximity sen-  the distance to the target, and so having a large sensingsradi

Figure 3. lllustration for proof of Theorem 2.

sors, distributed according to the Poisson distributiodefi- ~ May seem like a disadvantage. Indeed, as the sensing radius
sity p, where each sensor has sensing radius R. Then theincreases, we seem to get less information from an individua
localization error at any point in the plane is of ordgﬁ. sensor: its 1 bit localizes the target to a larger area. Neser

less, as our theorem shows, at Hystem levelthe accuracy

ProoOF See Figure 3 for an illustration. Consider an arbi- improves with larger sensing radius. This is a good example
trarily chosen poinP in the plane, and an arbitrarily chosen of the advantage afetworkedsensing, where the increase in
direction of movement, starting from that point. Given the an individual sensor’s uncertainty is counter-balanceéby
isotropic nature of the Poisson distribution, without la§s  quadraticincrease in the number of patches into which the
generality, this direction can be chosen as going right@lon sensor field is partitioned by the sensing disks. When the
the horizontal direction. LeX denote the minimum move-  sensing radius is small, the sensing disks are either disjoi
ment required in that direction before there is a change in or overlap only a little, and there are or®(n) patches. As
signature (i.e., before the boundary of some sensor’s disk i the radius begins to grow, more disks pairwise intersect, an
crossed). We wish to characterize the tail of the distrduti  at sufficiently large radius, all pairs intersect, partititg the
of X. sensor field intd®(n?) patches, thereby reducing the size of

To this end, consider a poiQl that is a distanc& away each patch and improving the localization accuracy. In a fi-
from P along the direction of movement, as shown in Fig- nite sensor field, of course, this improvement stops when the
ure 3. Any sensor detectirR(resp.Q) must lie in the disk radius becomes comparable to the length of the field.
of radiusR with center atP (resp. Q). Thus,P andQ have Our theorems also help explain some of the empirical re-
the same signature if and only if the symmetric difference sults of Kim et al. [12] for target tracking using binary prox
of these two disks (the shaded region in Figure 3) containsimity sensors. They found that for a fixgdR? (which we
no sensor, assuming that eitlieor Q is detected by at least  can interpret as fixing the average number of sensors that
one sensor. (Under the assumption it is large, the last  can detect a target at a given position), better accuracy was
condition is met with high probability.) Lettingq andA,, achieved for the combination of “higher density and smaller



radius” than “lower density and larger radius,” leadingnthe  velocity cannot be estimated based on binary sensor read-
to propose that deployments with higher sensor density andings. This suggests that, among many spatially equivalent
smaller sensing radius are preferable. This empiricalmbse paths, piecewise linear approximations adequately reptes
vation is a directonsequencef our theoretical results: for  the output of the sensor field in terms of both spatial resolu-
constanpR?, reducing the sensing radius by 1/2 corresponds tion and velocity estimation. An analysis of velocity estim

to a factor of 4 increase in the density, while reducing the tion errors using such piecewise linear representatiadsle
density by 1/2 corresponds té2 increase in the radius. The to the intuitively pleasing conclusion that paths that wese f
former combination yields a higher value pR, which im- segments (frugal representation) are also the paths thdt le
plies better spatial resolution. to good velocity estimation! These ideas lay the foundation
for our algorithms (described in Section 4) that employ an

_ Finally, our resolution theorems easily generalize 10 any 5¢canys razor approach to the construction of estimated tra
fixed dimension, and we can show that the achievable reso-,tories

lution in d dimensions iM(1/(pRI1)). :
) _ o 3.4.1 Lowpass Trajectories
3.4 Sampling and Velocity Estimation We begin with a simple but important interpretation of a

The geometric information structure introduced in Sec- binary sensor field as a device for spatial sampling.x(gt
tion 2 shows that binary sensors can only localize the targetdenote the two-dimensional vector specifying the true-oca
to localization patches, and the resolution theorems of Sec tion of the target at timé. Using the notation of Section 2,
tion 3 show that these patches attain localization accuracywe can say that(tj) € Aj, where{t;} are the times at which
of A= O(piR). Thus, as far as spatial accuracy is concerned, the target’s signature changes, akds the arc defining the
nothing further remains to be said. For any sequence of patchboundary between the patchgsandF;.1. For a moment,
boundaries crossed by the target, there are infinitely manyassume that genieor anoracleactually tells us the precise
candidate trajectories crossing those patches in the seme o locationsx(t;), for the set of time instantd; }. We can now
der, ancany oneof which is as good as another because they infer the following about the velocity vecteit) = dx/dt:
all lie within the achievable localization accuracy. Clgar 11
however, all these paths are not equally attractive as an es- / V(t) dt = X(tj+1) —x(t;).
timate of trajectory. On grounds of “representational fru- 1]
gality,” perhaps one would prefer a path that uses a small|n other words, even with the genie’s aid, all that we can
number of segments as opposed to the one that uses a larggay about the target’s trajectory during the interfvat; 1)
number of segments. A different criterion may be to choose js that (i) the target is confined to the pateh and (ii) the

paths that track the second important quantity of interest i ayeragevector velocity of the target in the patch is
target tracking: itsselocity. It turns out that these two top-

ics (path representation and velocity estimation) are @b fa Vi — X(tj+1) — X(t))
closely related, and are the focus of this section. ) tjr1—t;
X We denote the corresponding scalar average velocity by

19
Note that we cannot infer anything about the deviation
V(t) —Vj in the vector velocity from its average over the path,
since this deviation integrates to zero in the time interval
[tj,tj+1). This means that any high-frequency fluctuations
in the path that are of small enough amplitude to stay within
the patctF; are entirely “invisible” to the binary sensor field.
Indeed, for a one-dimensional field of sensors, the sam-
Figure 4. A trajectory exhibiting high frequency varia- pling and quantization interpretation is immediate, witho
tions that cannot be captured by binary sensors. requiring invocation of a genie: the patches reduce to-nter
vals and the arcs reduce to points. In this case, the binary
Our starting point is an analogy between binary sens- sensor field is identical to a level-crossing analog-tdtdig
ing and analog-to-digital conversion based on sampling andconverter [19].
guantization, which immediately suggests that only a “low-  Therefore, at best we can hope to reconstrucwgpass
pass” version of the trajectory can be reproduced. Consider representatiomf the target's trajectory, which waefineas a
for instance, the trajectory shown in Fig. 4, which corre- piecewise linear approximation over spatial ségleith line
sponds to the same sensor outputs as the trajectory of Fig. lsegments connecting the sequence of poifttg, x(t2), . . ..
but includes “high-frequency” variations around a slowly Other definitions that interpolate more smoothly across the
varying trend. Within the spatial resolution afforded by ou arcsA; are also possible, but the piecewise linear form has
sensor model, these two trajectories are indistinguighabl the virtue of being a minimal representation of the informa-
The high-frequency trajectory of Fig. 4, however, clearly tion obtained from the binary sensors and the genie (in par-
has a higher velocity than the smooth trajectory of Figure 1. ticular, it preserves information in the average velociy s
But, as we note below, the high-frequency component of its quence{V; }).




The trajectory shape and the velocity estimates for the therefore, only on the spatial variations of the path shage a
lowpass representation serve as a benchmark for comparingts velocity, and not on time scale.
the output of any algorithm based on the sensor readings. The main consequence of Eq. (2) is thatlLifis large
Since this benchmark is defined with the genie’s help (which enough and the permissible variatidh (constrained both
eliminates the spatial uncertainty at each Afy, it is not by the sensor readings and the assumptions we make about
attainable in practice without some additional assumpgtion the true trajectory) is small enough, then we can obtain-accu
regarding the trajectory, as discussed in the next section.  rate velocity estimates. For example, in order for a vejocit
3.4.2 Velocity Estimation Error estimate to be accurate to within 10%, we need to be able
to guarantee thalL < 0.1L. If we assume that the scalar
The set of all piecewise linear paths that visit the sequencevelocity is constant over large enough path sections, then w
of arcsA| in the order given by the sensor signature sequencemay be able to accurately estimate the veloagyong as the
forms an equivalence class under the spatial resolutidn: al variations in path lengths consistent with the sensor regsli
these paths are equivalent to the lowpass trajectory definectan be controlledControlling the path length fluctuations is
by the genie within the spatial resolutidn Let us call this the same as bounding the path length spread in our equiva-
setrREP, for spatialResolution Equivalence Pathkass. Even lence clasREP.
considering the lowpass representation, where all fluctua-  The following theorem characterizes the intrinsic ambigu-
tions of spatial scale smaller thdnare removed, two paths ity (caused by the spatial resolutidin velocity estimation
in REP can differ in length by a factor of 2: in a triangle  based on straight line approximations, arguing the the rela

of side length), there are two possible paths, one of length tive spread in path lengths is small if the line segment ig/lon
A that follows one side, and one of length llowing the enough.

other two sides. More generally, one path can be a straight
line, and the other can zig-zag taking Zong detours for
each segment of lengthcovered along the straight line.

In the absence of any other information, we simply have
no way to decide which among the many candidate paths in
the equivalence classePp offers the best approximation to
the true path. The only way to decrease this uncertainty is to v <A> 2

THEOREM 3. Suppose a portion of the trajectory is approx-
imated by a straight line segment of length L to within sdatia
resolutionA. Then, the maximum variation in the velocity es-
timate due to the choice dfifferentcandidate straight line
approximations is at most

. : . L
the path lengths in the equivalence class. In the followirey,
identify simple and naturaéchnical conditionsinder which Furthermore, this also bounds the relative velocity erir i
all the paths in the equivalence class have roughly the samghe true trajectory is well approximated as a straight line
length, and therefore any choice is guaranteed to give a goodover the segment under consideration.

approximation. In particular, just as the accuracy of $pati  proor. By our spatial resolution theorem, the true trajec-
resolution is controlled by size of the localization pathe tory is (approximately) a straight line that must lie within
the accuracy of the velocity estimation is controlled by the A of the straight line approximatios we are considering.
variance in the path lengths of the equivalence class. That is, it must lie in a rectangle of widthA2with s as its
We consider minimal representations of the trajectory in |ong axis. The maximum deviation in length from the ap-
terms of piecewise linear approximations with line segment proximations is if the true trajectory is the diagonal of this

spanning several patches, and ask when velocity estinsation rectangle, whose lengthis+ 8L = 21/(L/2)2 + A2, which
computed using such a representation are accurate. That is, ' '

. 2 . .

we seek conditions under which the entire class of equivalen YieldsoL ~ 24 fora < L. Clearly, this bound also applies
erage scalar velocity function, which is a piecewise caitsta Proximation being considered, as long as the true trajgctor
sequence taking valug over the time interval;, tj ;1). is well approximated as a straight line over the current seg-

We first relate the relative error in velocity estimation to Ment. We now apply Eq. (2) to obtain the desired resui.
the relative spread in path lengths in the equivalence class Theorem 3 implies that, if we want to control the relative
REP. Suppose that the estimated trajectory is of lerigth  velocity error to less thasusing a piecewise linear approxi-
between arcéy andAx;m. Assuming that the scalar velocity mation, then the length of each line segment must be at least
is constant over this path segment, it can be estimated as the
length divided by the time to go between afgsand Ay m: L>Lg= @ A3)
v=L/(tx+m—1). Suppose the true trajectory betweln - VE

and Ac;m has lengthl +6L. Then, our velocity estimate  ag an example, to achieve error at most 10%, segments of
errorisdv = 8L/ (tk+m — t). We therefore obtain that length 5\ suffice; error of 5% requires segments of length
v oL ~ 6.32A. Put another way, if on average each linear approx-
v L (2) imation segment spanslocalization arcs, then the average
relative velocity error islv/v < 2/a?. Our simulation re-
That is, by considering the relative variatigh in velocity sults show that even for fairly complex (synthetic) tragect
rather than the absolute variatidm, we are able to remove ries, a piecewise linear approximation works well, wattat
dependence on time scaling. The results we derive dependleast 10 on average.

assumeadditional conditions that help shrink the spread of v <2

\Y



Note that, for trajectories that “wiggle” while staying in the order specified by the sensing outputs is consistent
within A of a (long enough) straight line, Theorem 3 can with the target’s true trajectory, within the accuracy bdsin
be interpreted as guaranteeing accuracy in estimatioreof th of the model. Among all these possible trajectories, the Oc-
projectionof the velocity along the straight line. Onthe other cam'’s razor approach prefers the one that is the simplest. Fo
hand, if a trajectorgurvessharply, piecewise linear approx- instance, if all the regions could be traversed by a singks li
imations to withinA of the trajectory must necessarily use then alinear trajectory has the simplest descriptive ceripl
shorter line segments, making the velocity estimationrerro ity, within the theoretical accuracy of tracking. Genezilg
worse. But this is unavoidable because over short spans, thehis, apiecewise lineatrajectory with the fewest number of
relative difference between two linear segments is la@er, linear segments that traverses all the sensed regionsén ord

implied by Theorem 3: in the extreme case, wHere A, we is the trajectory of minimal complexity. In the followingse

are back to the factor of two error discussed at the beginningtion, we describe a geometric algorithmgc OAMTRACK, for

of Section 3.4.2. computing such a trajectory. Our computational model as-
sumes that a tracker node collects the output from the sensor

4 Tracking Algorithms nodes, and runs the algorithm to compute the trajectory. The

algorithm, however, can also be implemented in a distribute
The theoretical considerations of the previous section mo- fashion by exchanging data among the neighboring nodes.
tivate an Occam’s razor approach to tracking. Among all _
the candidate paths meeting the spatial resolution bound, a4.1 The OCCAMTRACK Algorithm
piecewise linear approximation that uses a minimal number ) .
of segments has the advantage of compact representation as_~l90rithm 1 below describes the €@AMTRACK at a

well as accurate velocity estimation. Using the notation of PSeudo-code leveSis the setof all the sensors, and the algo-

Section 2, we know that the target is constrained to lie in re- [ithm operates in discrete time stepswhich are simply the

gion Fj during the time intervalt; ,tj,1], where{t;} are the ~ Instants at which one of the sensor’s binary state changes. A
time instants at which there are changes in the bit vector of €a¢h f these discrete time stepthe algorithm determines
sensor outputs. We formally define a localization regipn (e Setd andZ, and computes the regidn localizing the
corresponding to an intervél,tj,1), as follows, dropping target. Theime-orderedsequence of Ehes‘? regioRsss the

the subscripg for convenience. Lek be the subset of sen-  SPatial band Bhat contains the target's trajectory. The func-
sors whose binary output is 1 during the relevant interval, 10N MINSEGPATH then computes a minimum piecewise lin-

and letZ be the remaining sensors whose binary output is 0 €&r path traversing the band.
during this interval. Then the regidnof the plane to which
the target can be localized during this interval is given as:

F=[\bi- D,

i€l iez

Algorithm 1 OcCAMTRACK(S)
: T — {sstart,s.end: Vse S};

. sort(T);

:forall teTdo
| — {s:te[sstart,send};
Z—{s:sel.nbrlistAt ¢ [s.start,s.end };
F—ict Di = Uiez Di;
B+~ BUF;

end for

: L — MINSEGPATH(B);

whereD; is the sensing disk of radiuR centered at sensor
i. Note that it is not necessary to consider the entireZset
in order to determiné-: it suffices to consider only those
sensors whose disks can intersect with any digk rhus, in
our implementation, it is necessary only to maintain, fatea
sensors, aneighbor listof all other sensors whose sensing
disks intersect with the disk af

CcoNoORrONE

Figure 5. The shaded band shows the region§F} to
which the trajectory is localized by the sensor outputs.
Figure 6. The path computed byOcCcAMTRACK has 3
Fig. 5 shows an example trajectory and the band consist-line segments. The sequence of arcs delineating the re-
ing of the regionsAnytrajectory that traverses these regions gions of bandB are shown in thick lines.



Inthe pseudo-code for M SEGPATH, the function FND-

theorem shows that the worst-case path approximation com-

ARcs determines the ordered sequence of localization arcsputed by MNSEGPATH uses at most twice the number of

corresponding to the localization baff The function

optimal segments. (In practice, it is very close to optijnal.

FINDLINE either determines that a subsequence of arcsDue to lack of space, we omit the proof of this theorem.

0i,0i+1,--.,d; cannot be “stabbed” (in the given order) by
a single line, or finds such a stabbing line. The algorithm
MINSEGPATH uses this function in a greedy fashion to find

the longest prefix of arcs that can be approximated by a sin-
gle line segment, removes those arcs, and then iterates O e worst-case tim
the remaining sequence. There are only a finite number of

combinatorially distinct candidate lines one needs tottest
decide if a sequence of arcs can be stabbed by a line.
particular, it suffices to test the lines formed by pairs af-en
points of arcs, or lines that are tangent to somé*dfigure 6
shows the minimal description path for the example of Fig-
ure 5.

Algorithm 2 MINSEGPATH(B)

: A— FINDARCS(B);
i—1;
cforall je1,2,..., mdo
if = FINDLINE(A, Ait1,...,Aj) then
L «— LUFINDLINE(A,Aif1,...,Aj—1);
i J;
end if
end for

NSO ARWNE

4.2 Analysis ofOCCAMTRACK

By construction, the piecewise linear path computed by
OccAMTRACK intersects the regions of the baBdn the
same order as given by the binary sensors outputs—this fo
lows because MiSEGPATH constrains the path to visit the
boundary arcs of consecutive regions in order. This, how-
ever, does not mean that the true trajectory and the pieeewis
linear path visit thesame sequencef regions. The linear
shortcuts found by ©OCAMTRACK can visit additional re-
gions. This can happen if the linear segment crosses ove
a non-convexertex of one of the regions. The important
point to note, however, is that the maximum distance be-
tween the true trajectory and the computed path at any instan
(the Lo error) is still bounded byA = O(1/pR), because the
path computed by ©cAMTRACK does lie entirely within
the union of theconvex hullsof the F regions in the band
B. Since the diameter of the convex hull of afyregion is
bounded by, the error guarantee follows. The following

3While a localization arc can have multiple pieces in a pathol
ical case, the union of all its sub-arcs is still within theakition
bound (cf. Theorem 2). Thus, for the purpose of minimal pefi r
resentation, we can safely “interpolate” all the disconeepieces
of the arc and still remain within the tolerable error. Hoeewo
keep our implementation simple, we chose to ignore suchopath
logical contingencies, and opted to simply ignore an artwere
found to be disconnected.

4In computational geometry, several theoretically moreiefiit
methods (e.g. [8]) are known for these stabbing problentsthiey
are complicated to implement and involve significant ovathin
data structures. We chose to implement our algorithm becais
simple, compact, works fast in practice.

In

THEOREM 4. The algorithmOccAMTRACK computes a
piecewise linear path that visits the localization arcs in o
der and uses at most twice the optimal number of segments
in the worst-case. If there are m arcs in the sequence, then
e complexity@ECAMTRACK is O(m).

4.3 Robust tracking with non-ideal sensors

s

Figure 7. The non-ideal sensing model

The OccAMTRACK algorithm assumes ideal binary sens-
ing. In practice, sensing is imperfect and noisy: a sensor
could detect an object outside its nominal range, or it may
fail to detect an object inside its range. We illustrate qur a
proach to such non-idealities using a sensing model in which
the target is always detected within an inner disk of radius
R, called thedetection regionand is detected with some
nonzero probability in an annulus between the inner disk and
an outer disk of radiuR,, calleduncertain region Targets
outside the outer disk are never detected. Figure 7 givds an i
lustration of this model. Despite its simplicity, such a rabd
is of fairly broad applicability, since it arises naturaligen-
sors integrate noisy samples over a reasonable time scale to

make binary decisions regarding target presence or ahsence

The main implication of the model in Figure 7 for the
OccAMTRACK algorithm is that we can no longer identify
circular arcs corresponding to an object entering and teavi
a sensor’s detection range. While we can empl@c@m-
TRACK algorithm directly by approximating the sensing re-
gion as a disk of some radil®g whereR < R< Ry, sim-
ulations show that the performance can be poor. We there-
fore consider an alternative approach, in which we employ
a particle filtering algorithm to handle non-idealities. Wgh
this produces a good approximation of the true trajectory,
it is not amenable to an economical description. We there-
fore employ a geometric post-processing algorithm to obtai
a minimal representation for the output of the particle filte
ing algorithm. While particle filtering is a well establishe
technique, the main novelty of the algorithm presented here
is the way in which it exploits the constraints of the sensing
model for a simple and efficient implementation.

In order to illustrate robustness to non-ideal sensing, we
take a worst-case approach to the information provided by
the non-ideal sensing model in Figure 7, assuming the max-
imal uncertainty consistent with the sensor readings. If a



sensor output is 1, then we assume that the target is someAlgorithm 3 FITLINE(p)

where inside the large disk of radit centered at the sen- 1: Q—@

sor. If a sensor output is 0, then we assume that the targetis 2: forall i€1,2,...,|p| do
somewhere outside the small disk of radRisentered at the 3: if ERROR(QUp;) > Athen

sensor. A localization patdh at any time instant is given by 4 L — LULINESEGMENT(Q);
intersecting all such areas, just as before. 5: Q—@

6: endif
4.3.1 Particle Filtering Algorithm 7. Q—Qup;:

8: end for

We now sketch the particle filtering algorithm; a more de-
tailed description and software implementation is avééab
from the authors upon request. At any timewe haveK 5 Simulation Results
particles (or candidate trajectories), with the currenatmn

for thekth particle denoted byy[n]. At the next time instant We carried out extensive simulation tests to evaluate the
n+1, suppose that the localization patckisChoosencan- performance of all our algorithms, under both ideal and non-
didates forxc[n+ 1] uniformly at random fronf. We now ideal sensing models. The code foc@AMTRACK was
have mK candidate trajectories. Pick the particles with written in C and C++, the code foraRTICLE-FILTER was
the best cost functions to get the $&t[n+ 1], k= 1,...,K}, written in Matlab, and the experiments were performed on

where the cost function is to specified shortly. Repeat un- an AMD Athlon 1.8 GHz PC with 350 MB RAM. We first

til the end of the time interval of interest. The final output discuss our results for the ideal sensing model.

is simply the particle (trajectory) with the best cost fuant e .

Thus,FIJVI%nte pCarlo si|SnuI{':1tion i)é)an intrinsic part of thisalg ~ 2-1 OCCAMTRACK with ideal sensing

rithm, since random sampling is employed to generate candi-  Qur general experimental setup simulated a 100000
dates for evaluation. The sampling time interval is chosent ynit field, containing 900 sensors in a regulard80 grid.

be short compared to a localization patch, so as to generate g he sensing range for each sensor was set to 100 units. When
sufficiently rich set of candidates. evaluating the scaling affects of the sensor parameters, we

It remains to specify the cost function. We chose an addi- kept the field size and one parameter fixed, while the other
tive cost function that penalizes changes in the vectorovelo  parameter (radius or density) was varied.

ity, in keeping with our re§tricti0n to lowpass trajectarie We usedgeometric random walki® generate a variety of
Once a candidatg(n+ 1] is chosen from the current lo-  trajectories. Each walk consists of 10 to 50 steps, whefle eac
calization patch, the increment in positigg{n + 1] — x[n] step chooses a random direction and walks in that direction

is an instantaneous estimate of the velocity vector at time for some length, before making the next turn. Each trajgctor
n. The corresponding increment in the cost function is the has the same total length, and we generated 50 such trajecto-
norm squared of the difference between the velocity vector ries randomly.

estimates at tima andn— 1. Thisis given b . . . .
J Y 5.1.1 Quality of trajectory approximation

&[] = [| ([ + 1] = x[n]) — (x[n] —2xk[n— P On all 50 random walk trajectories, G@AMTRACK de-

= |IX[n+ 1] +x[n — 1] — 2x[n]]| livers excellent performance. Figure 8(b) is a typical exam
ple, where the true trajectory is virtually indistinguiste
from the approximation computed byd@AMTRACK.

We also ran the weighted-centroid algorithm of Kim et
al. [12] on these trajectories. In our comparison, we used
theadaptive path-basedersion of their algorithm, which is

The particle filtering algorithm described above gives a cla_lmed to be well-suited for complex and nonl-llnear trajec
robust estimate of the trajectory consistent with the senso tories. For ease of reference, however, we still refer te thi
observations, but it provides no guarantees of a “clean” or algorithm as thaveighted-centroiccheme. We ran this al-
minimal description. This suggests the possibility of gppl gor!thm with inner and outer radii both equal to the ideal
ing the geometric approach of Section 4.1 to the particrfilt  radius 100. . .
estimate to generate a more economical description. We omit  Figure 8(a) shows the output of the weighted-centroid
details due to lack of space, but provide a brief pseudo-codeMethod, and is typical of its performance on all our ran-
description of an algorithmIFLINE to generate a piecewise d0m walk trajectories. The weighted-centroid algorithm is
linear approximation with a small number of line segments. Sample based, and it used 1000 vertices to approximate each
Inthe pseudo-cod,is the ordered list of samples generated Of the trajectories. By contrast, thedOAMTRACK used
by the particle filtering algorithn, is the output piecewise between 20 and 70 vertices. Despite this frugal represen-

The net cost function for a candidate trajectory up to time
is simply the sum of these incremental cot§;_; ck[n].

4.3.2 Geometric Postprocessing

linear approximation, and functionike SEGMENT(Q) re- tation, the maximum localization error ford@AMTRACK
turns a line segment that is within distanef the sequence ~ Wasalwayssmaller than the weighted-centroid, on average
of pointsQ. by 30%, and in some cases byfactor of five Due to its

highly efficient structure, OCAMTRACK is also 300 times
faster than weighted-centroid. In all cases, our algorithm
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Figure 8. Quality of trajectories produced by the weightedeentroid algorithm of [12] and OcCcAMTRACK. Figure (c)
shows the results of velocity estimation byDCCAMTRACK.
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5.1.2 \Velocity estimation performance
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In our random walk trajectories, we also varied the scalar
velocity randomly at each turn, and then usedd@m-
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Max Error in Location

TRACK to estimate the scalar velocity along the trajectory. 0 7
For each linear segment in the piecewise linear path com- . T
puted by GcAMTRACK, we used the first and the last lo- 0 1000 2000 3000 4000 5000 6000 7000

Density (rho)

calization arc to determine the time spent on that segment; Figure 9. Spatial resolution vs. sensor density.

recall that sensor outputs tell us the exact times for each ar
We estimate the scalar velocity for this segment by dividing

the length of the segment by this time. With a goal of es- By the spatial resolution theorem, the localization error

timating the velocity withire = 0.1, namely, 10%, we esti-  should decrease inversely with the density. Figure 9 shows

mated the average velocity only over path segments of lengththat the measured error follows closely the theoreticaleur

at least. = /2A/+/E, as given by Eq. 3. of 1/p, both for the grid as well as the random placement.
In Figure 8(c), we show the results of estimating the ve- In each case, the reported error is the maximum error for the

locity for the sample trajectory of (b). The top figure shows trajectory, averaged over 50 random walk trajectoriese(Th

the overlay of both the true and the estimated velocitiesglo average error for each trajectory is much smaller.)

the trajectory, and one can see that the two agree very well. . . . .

In the bottom figure, we plot the relative error in the velgcit 5.1.4 Spatial resolution as a function of sensing

to highlight deviation. The figure shows that the maximum range

deviation is always less than 10%, as predicted by theory. In this experiment, we kept the density constant at 900
The results were very similar for all 50 trajectories. In nodes in the field, and varied the sensing radius from 50 to

particular, on average a segment acfA\MTRACK’S trajec- 400 units. Figure 10 shows the maximum error, averaged

tory spanned about 15 patches, meaning that an average linever 50 random walk trajectories, for various values of the

segment in the approximation has length- 15A, meaning sensing range. By the spatial resolution theorem, the lo-

that the velocity estimates are good, as explained by Theo-calization error should decrease inversely with the sgnsin

rem 3. range, and again the measured values closely follow the the-

In the following two experiments, we evaluated the lo- Oretical curve of IR
calization accuracy of OCAMTRACK with varyingp andR
over many random trajectories, to see how it compares to the e N
theoretical predictions of our theorems. s ) Theoretic curve: 1R

20

5.1.3 Spatial resolution as a function of density

15

In this experiment, we measured the maximum error in
localizing the target’s trajectory for a varying values bét

10

Max Error in Location

sensor density. We kept the size of the field and the sensing 5
radiusR fixed, and then varied the number of sensors in the .
field fromn = 100 ton = 6400. (Since the area of the field 50 100 150 200 250 300 350 400 450 500

Sensing Radius (R)

is 10, this corresponds to variation in density from Qo
6.4 x 10°3.) We tried both the regular grid arrangement of
the sensors, as well as the random placement.

Figure 10. Spatial resolution vs. sensing radius.



(a) OCCAMTRACK (b) Particle Filter (c) Particle Filter + Geometric

Figure 11. Trajectories computed by the three algorithms unler the non-ideal sensing model.

5.2 Tracking with Non-ldeal Sensing

We now describe the results of our experiments with non-
ideal sensors. Our model of non-ideal sensors is the one
shown in Figure 7, where in the region between distdRce
andR,, the target is detected with probabili%y An imper-
fect detection is problematic for the ideal geometric algo-
rithm OccAMTRACK because it relies on contiguous time
intervals during which the target is inside the range. Weluse
a simple hysteresis process to mitigate the affect of errati
detection: to signal the beginning of a detection intenwal, Figure 12. The setup for our acoustic motes experiment.
require the sensor to output a 1 bit for 3 consecutive time
samples; similarly, to signal the end of a detection interva

we require the sensor to output a 0 bit for 3 consecutive time . 1|
samples. = 8'2 I

We generated a variety of geometric trajectories, sim- ! 04l
ulated the sensor outputs using our non-ideal sensing & o2}

model, and ran OCAMTRACK, PARTICLE-FILTER, and 0
PARTICLE-FILTER with geometric post-processing, which
we call RRTICLE FILTER + GEOMETRIC. A sample trajec-
tory, along with the outputs of the three algorithms, is show
in Figure 11.

As expected, the ideal algorithmd@AMTRACK per-

forms poorly when the data is imperfect: such data lead for the RRTICLE-FILTER for the error of 119. We sim-

to gaps in the sequence of localization patches and infea-ylated this experiment over several trajectories, usirg th
sible localization arcs. In our implementation, we simply non-ideal sensing, and observed the same trend. On a typ-
ignoredthese geometric inconsistencies, and just computedical input, the maximum localization error using®rICLE-

the piecewise linear paths using the rest of the arcs. Of FiLTER + Geometric was comparable to the basic particle
course, in the worst-case, poor data can completely breakfilter algorithm, but in the worst-case it was almost 50%
OccAMTRACK, but we found that the algorithm recovers higher. On the other hand, the path description computed

rather well from these bad situations and produces accepthy PARTICLE-FILTER + Geometric was at leastfactor of 5
able trajectories, although not nearly as good as in thd idea smaller.

case. In fact, compared toaRTICLE-FILTER, the output

of OccAaMTRACK looks significantly worse: it has sig-

nificantly more pronounced turns and twistSARPICLE- ;

FILTER seems much better at dealing with noisy data, but its 6 Mote Experiments

drawback is that, like any sample-based scheme, it produces Finally, we set up a small lab-scale experiment using

trajectories with many vertices. This is where our combi- acoustic sensors to evaluate the performance of our algo-

nation of RARTICLE-FILTER with geometric post-processing rithms. The setup consisted of 16 MICA2 motes arranged

achieves the best of both worlds: it combines the robustnessin a 4x 4 grid with 30 centimeter separation, as shown in

of PARTICLE-FILTER with the economic paths of the ideal Figure 6. The motes were equipped with a MTS310 sen-

OccAMTRACK. sor board, which has an acoustic sensor and a tone detec-
In particular, in the example of Figure 11, the output of tor circuit. (The tone detector can detect acoustic signals

PARTICLE-FILTER + Geometric uses 10 segments and has in a specific frequency range.) We adjusted the gain of the

maximum error of 173, compared to 51 segments required sound sensor so that the detection range for each sensor is

0 20 40 60 80 100 120 140
Distance (cm)

Figure 13. Probability of target detection with distance

for an acoustic sensor.
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(a) OccAMTRACK (ideal) (b) OcCAMTRACK (c) Particle Filter (d) Particle Filter + Geometric

Figure 14. The output trajectories for the experiment usingacoustic sensors.

about 45 cm. The target is also a MICA2 equipped with sensing radius and sensor density is large enough. Thas, thi
MIB310, which generated the acoustic signal using its on- model can serve as a building block for broadly applicable
boardbeeper The target is then moved through the network and reusable tracking architectures.
in a path (shown as the dotted trajectory in Fig. 14). The promising results obtained here and in [12], as well as
We first performed some experiments with a stationary the success of the large-scale deployment in [1], motivate a
target to determine the detection characteristics of thiegho  more intense investigation of tracking architectures dase
tone-detector. The readings from the motes turned out tothe binary proximity model. In order to focus on fundamen-
be highly non-ideal. Not only did the motes make frequent tals, we have considered a single path in our simulations and
detection errors, but the probability of detecting a targes experiments. An in-depth understanding, and accompany-
not a monotonic function of the distance from the sensor, asing algorithms, for multiple targets is therefore an impaitt
shown in Fig. 13. While this detection behavior is difficult topic for future investigation. We would also like to develo
to model, it also means that this experiment is a good test for minimal modifications of the basic tracking architecture to
the robustness of our tracking algorithms. incorporate additional information (e.g., velocity, diste)
The results of our experiment are shown in Fig. 14. The if available. The patrticle filtering framework appears to be
detection readings we collection from these experimentsa promising means for achieving this. In addition to exten-
showed a lot of non-ideal behavior. The most extreme be- sions and implementation optimization of this framework,
ing that one of the sensors, shown as double circle in thean interesting question is whether it is possible to embed Oc
figure, failed to detect the targentirely, even though the  cam'’s razor criteria in the particle filtering algorithmthar
target comes very close to it. than using geometric post-processing to obtain economical
On the whole, however, even in presence of such extremepath descriptions.
failures, the results are very encouraging. All three algo-
rithms were able to give a reasonable estimate of the tar-
get track. Figure 14(a) shows the reference output for 0 Acknowledgment
CAMTRACK, assuming ideal sensing—that is, assuming the
faulty sensor had also detected correctly, this is thedraje
tory OccAMTRACK would produce. The other three figures
show the outputs using the actual measurements from the
acoustic sensors. (The actual path of the target is shown a8  References
a dotted line, while the estimated trajectories are shown in
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to their target tracking code.
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