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Abstract
We explore fundamental performance limits of tracking a

target in a two-dimensional field of binary proximity sensors,
and design algorithms that attain those limits. In particular,
using geometric and probabilistic analysis of an idealized
model, we prove that the achievable spatial resolution∆ in
localizing a target’s trajectory is of the order of1

ρR, whereR
is the sensing radius andρ is the sensor density per unit area.
Using an Occam’s razor approach, we then design a geomet-
ric algorithm for computing an economical (in descriptive
complexity) piecewise linear path that approximates the tra-
jectory within this fundamental limit of accuracy. We em-
ploy analogies between binary sensing and sampling theory
to contend that only a “lowpass” approximation of the tra-
jectory is attainable, and explore the implications of thisob-
servation for estimating the target’s velocity.

We show through simulation the effectiveness of the ge-
ometric algorithm in tracking both the trajectory and the ve-
locity of the target for idealized models. For non-ideal sen-
sors exhibiting sensing errors, the geometric algorithm can
yield poor performance. We show that non-idealities can
be handled well using a particle filter based approach, and
that geometric post-processing of the output of the Particle
Filter algorithm yields an economical path description as in
the idealized setting. Finally, we report on our lab-scale ex-
periments using motes with acoustic sensors to validate our
theoretical and simulation results.
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1 Introduction
We investigate the problem of target tracking using a net-

work of binary proximity sensors: each sensor outputs a 1
when the target of interest is within its sensing range, and
0 otherwise. This simple sensing model is of both funda-
mental and practical interest for several reasons. First, be-
cause of the minimal assumption about the sensing capa-
bility, it provides a simple and robust abstraction for a ba-
sic tracking architecture of broad applicability, which can
be enhanced in a situation-specific fashion to take advan-
tage of additional information such as target velocity or dis-
tance, if available. Second, the communication requirements
for the binary proximity model are minimal—each sensor
can smooth out its noisy observations and express its out-
put as one or more disjoint intervals of time during which
the target is in its range, which can be encoded efficiently
by timestamps when the output changes from 0 to 1 and vice
versa. Finally, the simplicity of the model permits the deriva-
tion of intuitively attractive performance limits, which serve
both to guide design of tracking algorithms and to provide
lower bounds on tracking performance with more sophisti-
cated sensors.

We begin by exploring the fundamental limit ofspatial
resolutionthat can be achieved in tracking a target within a
two-dimensional field of binary proximity sensors. The spa-
tial resolution measures the accuracy with which a target’s
trajectory can be tracked, and it is defined as the worst-case
deviation between the estimated and the actual paths. We
prove that the ideal achievable resolution∆ is of the order of
1

ρR, whereR is the sensing range of individual sensors andρ
is the sensor density per unit area. This result articulatesthe
common intuition that, for a fixed sensing radius, the accu-
racy improves linearly with an increasing sensor density. But



it also shows that, for a fixed number of sensors, the accu-
racy improves linearly with an increase in the sensing radius,
which occurs because an increase in the sensing radius leads
to a finergeometric partitionof the field. Our spatial reso-
lution theorem helps explain empirical observations reported
in prior work on tracking in binary sensor networks [12].

Next, we consider minimal representations and velocity
estimation for the target’s trajectory. There are infinitely
many candidate trajectories consistent with the sensor ob-
servations and within the guaranteed spatial resolution ofthe
true trajectory, and all of which are “good enough” for local-
ization accuracy. On the other hand, the velocity estimation
for the target depends crucially on the shape of the trajectory.
We use an analogy between binary sensing and the sampling
theory and quantization to argue that “high-frequency” vari-
ations in the target’s trajectory are invisible to the sensor field
at a spatial scale smaller than the resolution∆. Therefore, we
can only hope to estimate the shape or velocity for a “low-
pass” version of the trajectory.1 We then consider piecewise
linear approximations to the trajectory that can be described
economically. We give sufficient conditions for the lowpass
version of the true target trajectory under which such mini-
mal representations can estimate the velocity accurately.

Our results on velocity estimation can be paraphrased as
follows: velocity estimates for a segment of the trajectory
approximated by a straight line are good if the segment is
long enough. This motivates an Occam’s razor approach for
describing the trajectories in terms of piecewise linear paths
in which the line segments are as long as possible, without
exceeding the approximation error limit provided by our spa-
tial resolution theorem. We develop the OCCAMTRACK al-
gorithm, which efficiently computes such piecewise linear
trajectories, and associated velocity estimates, from thesen-
sor observations. The efficacy of the algorithm in achieving
the fundamental limits on spatial resolution and velocity es-
timation error is demonstrated via simulations.

Next, we consider more realistic sensor models, in which
the coverage areas for different sensors may be different, and
not exactly known to the tracker node. For such non-ideal
sensors exhibiting sensing errors, the OCCAMTRACK algo-
rithm can yield poor performance. We show that sensor non-
idealities can be handled well using a particle filter approach
adapted to non-ideal binary sensing. While this particle fil-
ter algorithm is robust to nonidealities, the paths it outputs
are not smooth, and therefore not easy to describe economi-
cally. We show that geometric post-processing of the output
of the particle filtering algorithm leads again to minimal rep-
resentations in terms of piecewise linear trajectories with a
small number of line segments, with the required goodness
of fit guided by the fundamental limits on spatial resolution.
Simulations are used to demonstrate the effectiveness of the
overall algorithm in providing accurate tracking with mini-
mal path representations.

Finally, we carried out a lab-scale demonstration with
motes equipped with acoustic sensors for a quick validation
of our framework. We found that the coverage area varies

1A technical definition of the lowpass trajectory is given in Sec-
tion 3.4.1.

significantly across sensors, and exhibits nonmonotonicity:
the probability that a target is detected does not necessarily
go down monotonically with distance from the sensor. We
employed two approaches to deal with real-world noisy data:
(i) preprocessing of the noisy sensor outputs to clean up ob-
vious error patterns, followed by the OCCAMTRACK algo-
rithm, and (ii) the Particle Filter algorithm followed by ge-
ometric post-processing. Both these approaches show good
tracking performance.

Related Work
Object tracking has long been an active area of research

for battle-field [9], robotics [16] and other applications.Any
sensor that generates a signal dependent on distance from a
target can be used for tracking. Accordingly different sens-
ing modalities such as radar, acoustic, ultrasonic, magnetic,
seismic, video, RF and infrared [15], and occasionally com-
binations of multiple modalities [3], have been considered
for tracking applications in both theory and practice. The
range and capabilities of these sensors vary widely, and many
different approaches to modeling and data processing have
been investigated. For instance, ultrasonic signals carryrich
information about the range of the object, whereas infrared
sensors are best modeled as detectors or binary sensors [17].
We do not attempt to do justice to the vast literature on track-
ing, but briefly review closely related work.

The robustness and effectiveness of tracking using binary
sensing models has been convincingly demonstrated for a
large-scale sensor network in [1]. The success of this project
provides strong motivation for the fundamental exploration
of binary sensing undertaken here. The authors of [12]
consider a model identical to ours. They employ piece-
wise linear path approximations computed using variants of
a weighted centroid algorithm, and obtain good tracking per-
formance if the trajectory is smooth enough. Our funda-
mental limits provide an explanation for some of the empiri-
cal observations in [12], while our algorithms provide more
accurate and more economical path descriptions. Another
closely related paper is [2], which considers a different sens-
ing model, where sensors provide information as to whether
a target is moving towards or away from them. While the
specific results for this model are quite different from ours,
the philosophy is similar in that the authors of [2] use geo-
metric analysis to characterize fundamental limits. However,
the sensing model in [2] can lead to unacceptable ambigui-
ties in the target’s trajectory (the authors offer an example of
parallel trajectories that are indistinguishable withoutaddi-
tional proximity information). In contrast, the binary prox-
imity model considered here, despite its minimalism, is able
to localize the target to within a spatial resolutionO( 1

ρR).
In [13], Liu et al. present some interesting ideas using geo-
metric duality to track moving shadows in a network of bi-
nary sensors. Although their technique is not applicable to
our problem setting, their notion of cells in dual space has
some resemblance to our localization patches.

Classical tracking is often formulated as a Kalman fil-
tering problem, using Gaussian models for sensor measure-
ments and the target trajectory. Distributed tracking based
on Kalman filtering has recently been considered in [14].
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Figure 1. A target moving through a field of three binary proximity sensors,X, Y and Z; (b) shows sensor outputs as
a function of time; (c) shows thelocalization patchesto which the target is localized over time intervals with constant
signature; and (d) shows thearcsmarking boundaries between patches.

Particle filters [5] offer an alternative to Kalman filters in
non-Gaussian setting, and have been investigated for track-
ing using sensor networks in [4]. Most prior work on particle
filtering assumes more sensed information (with a more de-
tailed probabilistic model) than provided by the binary sens-
ing model of this paper. Khan et al. [10, 11] have used par-
ticle filtering for an insect tracking application, where the
insect targets are assumed to interact according to a Markov
random field. Fox et al. [7] provide a survey of particle-filter
based methods for the problem of mobile robot localization,
where robots wish to determine their location, and the lo-
cations of other robots, using sensory inputs. Our contribu-
tion in this paper is to provide a particularly simple parti-
cle filtering algorithm that provides robust performance us-
ing the minimal information obtained from non-ideal binary
sensors.

2 The Geometry of Binary Sensing
In this section, we describe an idealized model for a bi-

nary sensor network, and the structure of the geometric in-
formation it provides regarding a target’s location. This ge-
ometric structure forms the basis for our theoretical bounds
and algorithms.

Consider a network ofn sensors in a two-dimensional
plane. Each sensor detects an object within itssensing re-
gion, and generates one bit of information (1 for presence
and 0 for absence) about the target; we call this the ideal
binary sensing model. We get no other information about
the location, speed, or other attributes of the target. The in-
formation of a sensor is efficiently encoded by the transitions
between its 0 and 1 bits, and so its output can be summarized
by the timestamps marking these transitions. We assume that
the sensors are synchronized in time to sufficient accuracy—
several timing synchronization algorithms are available in
the literature (e.g., [6]). We also assume that the locationof
each sensor is known—the sensor locations can be recorded
at the time of deployment, or can be estimated using local-
ization techniques (e.g., [18]).

Our emphasis is on discovering and attaining fundamen-
tal limits of tracking performance, and therefore we abstract
away lower layer networking issues by assuming that the
sensor observations are communicated to, and fused at, a

tracker node.Given the minimal communication needs of bi-
nary proximity sensors, such a centralized architecture may
well be the most attractive choice for implementation in
many settings, using multihop wireless communication be-
tween the sensors and the tracker node(s). In any case, it
is relatively straightforward to develop communication- and
storage-efficient hierarchical distributed versions of our cen-
tralized algorithms: for example, the tracker node can be
chosen dynamically based on the target’s location, and it can
convey its summary of the particular segment of the target’s
trajectory to the next tier of the hierarchy.

For simplicity, we assume that each sensor has a circular
sensing region of radiusR: a sensor outputs a 1 if a target
falls within thesensing diskof radiusR centered at its loca-
tion. The parameterR is termed thesensing range.However,
our framework also applies to sensing regions of more com-
plex shapes that could vary across sensors. We assume noise-
less sensing for the time being: the sensor output is always
1 if a target is within its sensing range, and always 0 if there
is no target within its sensing range, with 100% accuracy.
Methods for handling noisy sensor readings are considered
in later sections.

The geometry of binary sensing is best illustrated via an
example. Figure 1(a) shows a target moving through an area
covered by three sensors. Figure 1(b) shows the sensor out-
puts as a function of time. We define thesignatureof any
point p in two-dimensional space as then-bit vector of sen-
sor readings, whoseith position represents the binary output
of sensori for a target at locationp.2 In Figure 1, if we
define the signature as the bits output by sensorsX, Y and
Z in that order, then the target’s signature evolves over time
as follows: 000,100,110,010,011,001,000. Initially, it is
outside the sensing disks of all three sensors; then it enters
the disk ofX, thenY, then it leaves the disk ofX, enters
that ofZ, and so on. The time instants{t j} mark the transi-
tions when the target either enters or leaves a sensor’s range.
Figure 1(c) shows that the target can be localized within alo-
calization patch Fj during the time interval[t j ,t j+1), which

2The notion of signature is a conceptual tool. Our algorithms
do not actually use the entire bitmap for a given target location, but
work with a much smaller localized version, as explained in the
next section.



corresponds to the set of possible locations correspondingto
the signature during this interval. When the target moves
from a patchFj to the next patchFj+1, we note that exactly
one sensor’s bit changes: either the target enters the sensing
disk of some sensor, or it leaves the disk of some sensor. The
two patches,Fj andFj+1, therefore, share alocalization arc
A j of the disk of the sensor whose reading has flipped, as
shown in Figure 1(d). A simple but important observation
is that, at the transition timest j , the two-dimensional uncer-
tainty in the target’s location is reduced to a one-dimensional
uncertainty.

In general, a localization patch need not be connected and,
correspondingly, the localization arc of two such patches can
also have two or more pieces. (As a simple example, con-
sider three sensing disksA,B,C, respectively, centered at
points(0,0), (1,0), and(2,0), where the radius of the disks
is 1.5. Then, the patch with signature(0,1,0) has two dis-
connected pieces—these are the regions that are inside disk
B but outsideA andC.) Although disconnected patches are
mainly an artifact of low sensor density, one can also create
pathological examples where a patch can have two pieces
even under high density. The non-connectivity of patches,
however, does not impact the tracking resolution, because
our Theorem 2 ensures that even if a patch is disconnected,
all of its pieces lie within the resolution bound of each other.

The preceding geometric information structure forms the
basis for our results in subsequent sections. Our derivation of
fundamental limits in Section 3 is based on estimation of the
size of the regionsFj . The geometric algorithms for comput-
ing minimal description trajectory estimates consist of com-
puting piecewise linear approximations that pass through the
patchesFj or the arcsA j in the order specified by the evolu-
tion of the target’s signature.

3 Fundamental Limits
We assume ideal sensing with sensing rangeR for each

sensor, and an average sensor density ofρ sensors per unit
area. Thus, the performance limits we derive depend only
on the parametersρ andR. We first show that the spatial
resolution cannot be better than order of1

ρR, regardless of
the spatial distribution of the sensors. We then show that this
resolution can be achieved using standard uniform random
distributions as well as regular grids. Finally, we show that
binary sensing is analogous to discrete sampling, in that it
provides information only about a “lowpass” version of the
target’s trajectory, and discuss the implications for obtaining
minimal path representations and velocity estimates.

3.1 An Upper Bound on Spatial Resolution

The localization error of an estimated trajectory is de-
fined to be the maximum deviation of the estimated path
from the actual path. This is just theL∞ norm of the differ-
ence between the actual and estimated trajectories, viewedas
functions of time. Thespatial resolutionof a binary sensor
field is the worst-case localization error for any target trajec-
tory through the field.

As observed in Section 2, binary sensing localizes a target
to within apatchcorresponding to a specific signature, or bit

vector of sensor outputs. The spatial resolution is therefore
given by thediameterof the largest patch induced by the
binary sensing field. In the following, we argue that inany
configuration of sensors, this diameter islower boundedby
c

ρR, for an absolute constantc, which gives anupper bound
on the achievable resolution.
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Figure 2. Illustration for Theorem 1.

THEOREM 1. If a network of binary proximity sensors has
average sensor densityρ and each sensor has sensing radius
R, then the worst-case L∞ error in localizing the target is at
leastΩ(1/ρR).

PROOF. We are interested in asymptotic behavior and so we
assume that the sensor field is large relative toR, and we can
ignore the boundary behavior by focusing on the portion of
the field that is at leastR away from the boundary. Since
the average sensor density isρ in the field, there must be a
circular region of radius 2Rthat contains at most (the average
number of)N = ρ(4πR2) sensors in it. Letx be the center of
this circle, letC1 denote the circle of radiusR centered atx,
and letC2 be the circle of radius 2Rcentered atx. (See Fig. 2
for illustration.) We observe that only the sensors contained
in C2 can sense a target that lies inC1. Since there are at
most N such sensors, their sensing disks can partition the
inner circleC1 into at mostN2−N + 2 “patches”. On the
other hand, the circleC1 has areaπR2, so at least one of the
patches must have area at leastcπR2/N2, for some constant
c. Plugging in the value ofN, we get that some patch inC1
must have area at least

cπR2

16π2ρ2R4 = Ω(
1

ρ2R2 ).

Therefore, thediameter(the longest projection) of this patch
is at leastΩ( 1

ρR), the square root of the area, which proves
the claim.

Theorem 1 makes no assumptions on the distribution of
sensors: it only makes use of the average sensor density
bound, and upper bounds the best resolution one can hope
to achieve in an ideal deployment. In the next subsection,
we address the complementary question: is this ideal resolu-
tion achievable, and what distributions of sensor nodes can
realize this? Our investigation here is analytic, with a goal
to show that certain simple configurations of sensors lead
to regions where the maximumL∞ error matches the bound
of Theorem 1. Algorithmic questions of computing compact
trajectory approximations are addressed in the following sec-
tion.



3.2 Achievability of Spatial Resolution Bound
The spatial resolution of Theorem 1 can be achieved (ne-

glecting edge effects) by simply arranging the sensors in a
regular grid. Since such an ideal deployment is often impos-
sible in practice, we now show that a random Poisson distri-
bution with densityρ also achieves the desired resolution. In
the process, we also derive a sharp tail bound on the size of
a localization patch.

Mathematically, the Poisson distribution of meanρ means
that (i) the number of sensors in a region of areaA is a
Poisson random variableNA with mean ρA, and (ii) for
two nonoverlappingregions, the corresponding numbers of
sensors are independent random variables. We assume an
asymptotic regime in which the probability of a point in the
plane being within range of at least one sensor tends to one.
For an arbitrary pointP, this condition is satisfied if there
is at least one sensor in a disk of radiusR centered atP.
Thus,P[no sensor in disk of radiusR] = e−ρπR2 → 0 which
requires thatρR2→ ∞. (In practice, values ofρR2 of the
order of 4 or more suffice to guarantee adequate coverage).
The following theorem states our result.

P Q
x

Ad

γ

Figure 3. Illustration for proof of Theorem 2.

THEOREM 2. Consider a network of binary proximity sen-
sors, distributed according to the Poisson distribution ofden-
sity ρ, where each sensor has sensing radius R. Then the
localization error at any point in the plane is of order1ρR.

PROOF. See Figure 3 for an illustration. Consider an arbi-
trarily chosen pointP in the plane, and an arbitrarily chosen
direction of movement, starting from that point. Given the
isotropic nature of the Poisson distribution, without lossof
generality, this direction can be chosen as going right along
the horizontal direction. LetX denote the minimum move-
ment required in that direction before there is a change in
signature (i.e., before the boundary of some sensor’s disk is
crossed). We wish to characterize the tail of the distribution
of X.

To this end, consider a pointQ that is a distancex away
from P along the direction of movement, as shown in Fig-
ure 3. Any sensor detectingP (resp.Q) must lie in the disk
of radiusR with center atP (resp. Q). Thus,P andQ have
the same signature if and only if the symmetric difference
of these two disks (the shaded region in Figure 3) contains
no sensor, assuming that eitherP or Q is detected by at least
one sensor. (Under the assumption thatρR2 is large, the last
condition is met with high probability.) LettingAd andAu,

respectively, denote the area of the symmetric difference and
the union of the two disks, it follows from the Poisson distri-
bution that

P[X > x] = e−ρAd
1−e−ρ(Au−Ad)

1−e−ρAu
, 0≤ x≤ 2R

(We note thatAd ≤ Au, with equality for x ≥ 2R, so that
P[X > x] = 0 for x≥ 2R. Thus,X is upper-bounded by 2R.)
Elementary geometric calculations yield that

Ad = (2γ+sin2γ)R2

whereγ is the angle shown in Figure 3, satisfying sinγ = x
2R.

For our purpose, it suffices to loosely boundAd below as

Ad ≥ 2R2sinγ = xR

(usingγ≥ sinγ). This implies that

P[X > x] ≤ e−ρAd ≤ e−ρRx, (1)

which guarantees the promised asymptotic decay withc, for
x= c

ρR. In fact, the exponent of decay is approximately twice
as large as that used in our proof: this follows because the
values ofx, andγ, we are considering are small, andAd ∼
2xR, which yieldsP[X > x]∼ e−2ρRx.

3.3 Remarks on Spatial Resolution Theorems

Theorems 1 and 2 show that the spatial resolution cannot
be better thanO( 1

ρR), and that this resolution can be achieved
with a random (Poisson) sensor deployment. The depen-
dence on sensor density seems to match common intuition:
the more sensors we have, the better the spatial accuracy one
should be able to achieve. On the other hand, the dependence
on sensing radius may seem counterintuitive—because these
arebinary proximitysensors, they do not actually measure
the distance to the target, and so having a large sensing radius
may seem like a disadvantage. Indeed, as the sensing radius
increases, we seem to get less information from an individual
sensor: its 1 bit localizes the target to a larger area. Neverthe-
less, as our theorem shows, at thesystem level, the accuracy
improves with larger sensing radius. This is a good example
of the advantage ofnetworkedsensing, where the increase in
an individual sensor’s uncertainty is counter-balanced bya
quadraticincrease in the number of patches into which the
sensor field is partitioned by the sensing disks. When the
sensing radius is small, the sensing disks are either disjoint
or overlap only a little, and there are onlyO(n) patches. As
the radius begins to grow, more disks pairwise intersect, and
at sufficiently large radius, all pairs intersect, partitioning the
sensor field intoΘ(n2) patches, thereby reducing the size of
each patch and improving the localization accuracy. In a fi-
nite sensor field, of course, this improvement stops when the
radius becomes comparable to the length of the field.

Our theorems also help explain some of the empirical re-
sults of Kim et al. [12] for target tracking using binary prox-
imity sensors. They found that for a fixedρR2 (which we
can interpret as fixing the average number of sensors that
can detect a target at a given position), better accuracy was
achieved for the combination of “higher density and smaller



radius” than “lower density and larger radius,” leading them
to propose that deployments with higher sensor density and
smaller sensing radius are preferable. This empirical obser-
vation is a directconsequenceof our theoretical results: for
constantρR2, reducing the sensing radius by 1/2 corresponds
to a factor of 4 increase in the density, while reducing the
density by 1/2 corresponds to

√
2 increase in the radius. The

former combination yields a higher value ofρR, which im-
plies better spatial resolution.

Finally, our resolution theorems easily generalize to any
fixed dimension, and we can show that the achievable reso-
lution in d dimensions isΘ(1/(ρRd−1)).

3.4 Sampling and Velocity Estimation
The geometric information structure introduced in Sec-

tion 2 shows that binary sensors can only localize the target
to localization patches, and the resolution theorems of Sec-
tion 3 show that these patches attain localization accuracy
of ∆ = O( 1

ρR). Thus, as far as spatial accuracy is concerned,
nothing further remains to be said. For any sequence of patch
boundaries crossed by the target, there are infinitely many
candidate trajectories crossing those patches in the same or-
der, andany oneof which is as good as another because they
all lie within the achievable localization accuracy. Clearly,
however, all these paths are not equally attractive as an es-
timate of trajectory. On grounds of “representational fru-
gality,” perhaps one would prefer a path that uses a small
number of segments as opposed to the one that uses a large
number of segments. A different criterion may be to choose
paths that track the second important quantity of interest in
target tracking: itsvelocity. It turns out that these two top-
ics (path representation and velocity estimation) are in fact
closely related, and are the focus of this section.
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Figure 4. A trajectory exhibiting high frequency varia-
tions that cannot be captured by binary sensors.

Our starting point is an analogy between binary sens-
ing and analog-to-digital conversion based on sampling and
quantization, which immediately suggests that only a “low-
pass” version of the trajectory can be reproduced. Consider,
for instance, the trajectory shown in Fig. 4, which corre-
sponds to the same sensor outputs as the trajectory of Fig. 1
but includes “high-frequency” variations around a slowly
varying trend. Within the spatial resolution afforded by our
sensor model, these two trajectories are indistinguishable.
The high-frequency trajectory of Fig. 4, however, clearly
has a higher velocity than the smooth trajectory of Figure 1.
But, as we note below, the high-frequency component of its

velocity cannot be estimated based on binary sensor read-
ings. This suggests that, among many spatially equivalent
paths, piecewise linear approximations adequately represent
the output of the sensor field in terms of both spatial resolu-
tion and velocity estimation. An analysis of velocity estima-
tion errors using such piecewise linear representations leads
to the intuitively pleasing conclusion that paths that use few
segments (frugal representation) are also the paths that lead
to good velocity estimation! These ideas lay the foundation
for our algorithms (described in Section 4) that employ an
Occam’s razor approach to the construction of estimated tra-
jectories.

3.4.1 Lowpass Trajectories

We begin with a simple but important interpretation of a
binary sensor field as a device for spatial sampling. Letx(t)
denote the two-dimensional vector specifying the true loca-
tion of the target at timet. Using the notation of Section 2,
we can say thatx(t j) ∈ A j , where{t j} are the times at which
the target’s signature changes, andA j is the arc defining the
boundary between the patchesFj andFj+1. For a moment,
assume that agenieor anoracleactually tells us the precise
locationsx(t j), for the set of time instants{t j}. We can now
infer the following about the velocity vector~v(t) = dx/dt:

∫ t j+1

t j

~v(t) dt = x(t j+1)−x(t j).

In other words, even with the genie’s aid, all that we can
say about the target’s trajectory during the interval[t j ,t j+1)
is that (i) the target is confined to the patchFj , and (ii) the
averagevector velocity of the target in the patch is

~v j =
x(t j+1)−x(t j)

t j+1− t j

We denote the corresponding scalar average velocity byv j =
||~v j ||.

Note that we cannot infer anything about the deviation
~v(t)−~v j in the vector velocity from its average over the path,
since this deviation integrates to zero in the time interval
[t j ,t j+1). This means that any high-frequency fluctuations
in the path that are of small enough amplitude to stay within
the patchFj are entirely “invisible” to the binary sensor field.

Indeed, for a one-dimensional field of sensors, the sam-
pling and quantization interpretation is immediate, without
requiring invocation of a genie: the patches reduce to inter-
vals and the arcs reduce to points. In this case, the binary
sensor field is identical to a level-crossing analog-to-digital
converter [19].

Therefore, at best we can hope to reconstruct alowpass
representationof the target’s trajectory, which wedefineas a
piecewise linear approximation over spatial scale∆, with line
segments connecting the sequence of pointsx(t1),x(t2), . . ..
Other definitions that interpolate more smoothly across the
arcsA j are also possible, but the piecewise linear form has
the virtue of being a minimal representation of the informa-
tion obtained from the binary sensors and the genie (in par-
ticular, it preserves information in the average velocity se-
quence{~v j}).



The trajectory shape and the velocity estimates for the
lowpass representation serve as a benchmark for comparing
the output of any algorithm based on the sensor readings.
Since this benchmark is defined with the genie’s help (which
eliminates the spatial uncertainty at each arcA j ), it is not
attainable in practice without some additional assumptions
regarding the trajectory, as discussed in the next section.

3.4.2 Velocity Estimation Error

The set of all piecewise linear paths that visit the sequence
of arcsA j in the order given by the sensor signature sequence
forms an equivalence class under the spatial resolution: all
these paths are equivalent to the lowpass trajectory defined
by the genie within the spatial resolution∆. Let us call this
setREP, for spatialResolution Equivalence Pathsclass. Even
considering the lowpass representation, where all fluctua-
tions of spatial scale smaller than∆ are removed, two paths
in REP can differ in length by a factor of 2: in a triangle
of side length∆, there are two possible paths, one of length
∆ that follows one side, and one of length 2∆ following the
other two sides. More generally, one path can be a straight
line, and the other can zig-zag taking 2∆ long detours for
each segment of length∆ covered along the straight line.

In the absence of any other information, we simply have
no way to decide which among the many candidate paths in
the equivalence classREP offers the best approximation to
the true path. The only way to decrease this uncertainty is to
assumeadditional conditions that help shrink the spread of
the path lengths in the equivalence class. In the following,we
identify simple and naturaltechnical conditionsunder which
all the paths in the equivalence class have roughly the same
length, and therefore any choice is guaranteed to give a good
approximation. In particular, just as the accuracy of spatial
resolution is controlled by size of the localization patches,
the accuracy of the velocity estimation is controlled by the
variance in the path lengths of the equivalence class.

We consider minimal representations of the trajectory in
terms of piecewise linear approximations with line segments
spanning several patches, and ask when velocity estimations
computed using such a representation are accurate. That is,
we seek conditions under which the entire class of equivalent
paths provides a good approximation to the genie-aided av-
erage scalar velocity function, which is a piecewise constant
sequence taking valuev j over the time interval[t j ,t j+1).

We first relate the relative error in velocity estimation to
the relative spread in path lengths in the equivalence class
REP. Suppose that the estimated trajectory is of lengthL
between arcsAk andAk+m. Assuming that the scalar velocity
is constant over this path segment, it can be estimated as the
length divided by the time to go between arcsAk andAk+m:
v = L/(tk+m− tk). Suppose the true trajectory betweenAk
and Ak+m has lengthL + δL. Then, our velocity estimate
error isδv = δL/(tk+m− tk). We therefore obtain that

δv
v

=
δL
L

(2)

That is, by considering the relative variationδv
v in velocity

rather than the absolute variationδv, we are able to remove
dependence on time scaling. The results we derive depend,

therefore, only on the spatial variations of the path shape and
its velocity, and not on time scale.

The main consequence of Eq. (2) is that, ifL is large
enough and the permissible variationδL (constrained both
by the sensor readings and the assumptions we make about
the true trajectory) is small enough, then we can obtain accu-
rate velocity estimates. For example, in order for a velocity
estimate to be accurate to within 10%, we need to be able
to guarantee thatδL ≤ 0.1L. If we assume that the scalar
velocity is constant over large enough path sections, then we
may be able to accurately estimate the velocityas long as the
variations in path lengths consistent with the sensor readings
can be controlled.Controlling the path length fluctuations is
the same as bounding the path length spread in our equiva-
lence classREP.

The following theorem characterizes the intrinsic ambigu-
ity (caused by the spatial resolution∆) in velocity estimation
based on straight line approximations, arguing the the rela-
tive spread in path lengths is small if the line segment is long
enough.

THEOREM 3. Suppose a portion of the trajectory is approx-
imated by a straight line segment of length L to within spatial
resolution∆. Then, the maximum variation in the velocity es-
timate due to the choice ofdifferentcandidate straight line
approximations is at most

δv
v
≤ 2

(

∆
L

)2

.

Furthermore, this also bounds the relative velocity error if
the true trajectory is well approximated as a straight line
over the segment under consideration.

PROOF. By our spatial resolution theorem, the true trajec-
tory is (approximately) a straight line that must lie within
∆ of the straight line approximations we are considering.
That is, it must lie in a rectangle of width 2∆ with s as its
long axis. The maximum deviation in length from the ap-
proximations is if the true trajectory is the diagonal of this
rectangle, whose length isL+ δL = 2

√

(L/2)2 + ∆2, which

yieldsδL ≈ 2∆2

L for ∆≪ L. Clearly, this bound also applies
for deviation of the true trajectory from the straight line ap-
proximation being considered, as long as the true trajectory
is well approximated as a straight line over the current seg-
ment. We now apply Eq. (2) to obtain the desired result.

Theorem 3 implies that, if we want to control the relative
velocity error to less thanε using a piecewise linear approxi-
mation, then the length of each line segment must be at least

L ≥ L0 =

√
2∆√
ε

. (3)

As an example, to achieve error at most 10%, segments of
length 5∆ suffice; error of 5% requires segments of length
≈ 6.32∆. Put another way, if on average each linear approx-
imation segment spansα localization arcs, then the average
relative velocity error isdv/v ≤ 2/α2. Our simulation re-
sults show that even for fairly complex (synthetic) trajecto-
ries, a piecewise linear approximation works well, withα at
least 10 on average.



Note that, for trajectories that “wiggle” while staying
within ∆ of a (long enough) straight line, Theorem 3 can
be interpreted as guaranteeing accuracy in estimation of the
projectionof the velocity along the straight line. On the other
hand, if a trajectorycurvessharply, piecewise linear approx-
imations to within∆ of the trajectory must necessarily use
shorter line segments, making the velocity estimation error
worse. But this is unavoidable because over short spans, the
relative difference between two linear segments is larger,as
implied by Theorem 3: in the extreme case, whereL≈ ∆, we
are back to the factor of two error discussed at the beginning
of Section 3.4.2.

4 Tracking Algorithms

The theoretical considerations of the previous section mo-
tivate an Occam’s razor approach to tracking. Among all
the candidate paths meeting the spatial resolution bound, a
piecewise linear approximation that uses a minimal number
of segments has the advantage of compact representation as
well as accurate velocity estimation. Using the notation of
Section 2, we know that the target is constrained to lie in re-
gion Fj during the time interval[t j ,t j+1], where{t j} are the
time instants at which there are changes in the bit vector of
sensor outputs. We formally define a localization regionFj ,
corresponding to an interval[t j ,t j+1), as follows, dropping
the subscriptj for convenience. LetI be the subset of sen-
sors whose binary output is 1 during the relevant interval,
and letZ be the remaining sensors whose binary output is 0
during this interval. Then the regionF of the plane to which
the target can be localized during this interval is given as:

F =
⋂

i∈I

Di −
⋃

i∈Z

Di ,

whereDi is the sensing disk of radiusR centered at sensor
i. Note that it is not necessary to consider the entire setZ
in order to determineF: it suffices to consider only those
sensors whose disks can intersect with any disk inI . Thus, in
our implementation, it is necessary only to maintain, for each
sensors, a neighbor listof all other sensors whose sensing
disks intersect with the disk ofs.

Figure 5. The shaded band shows the regions{Fi} to
which the trajectory is localized by the sensor outputs.

Fig. 5 shows an example trajectory and the band consist-
ing of the regions.Anytrajectory that traverses these regions

in the order specified by the sensing outputs is consistent
with the target’s true trajectory, within the accuracy bounds
of the model. Among all these possible trajectories, the Oc-
cam’s razor approach prefers the one that is the simplest. For
instance, if all the regions could be traversed by a single line,
then a linear trajectory has the simplest descriptive complex-
ity, within the theoretical accuracy of tracking. Generalizing
this, apiecewise lineartrajectory with the fewest number of
linear segments that traverses all the sensed regions in order
is the trajectory of minimal complexity. In the following sec-
tion, we describe a geometric algorithm, OCCAMTRACK, for
computing such a trajectory. Our computational model as-
sumes that a tracker node collects the output from the sensor
nodes, and runs the algorithm to compute the trajectory. The
algorithm, however, can also be implemented in a distributed
fashion by exchanging data among the neighboring nodes.

4.1 TheOCCAMTRACK Algorithm

Algorithm 1 below describes the OCCAMTRACK at a
pseudo-code level.Sis the set of all the sensors, and the algo-
rithm operates in discrete time stepsT, which are simply the
instants at which one of the sensor’s binary state changes. At
each of these discrete time stepst, the algorithm determines
the setsI andZ, and computes the regionF localizing the
target. Thetime-orderedsequence of these regionsF is the
spatial band Bthat contains the target’s trajectory. The func-
tion MINSEGPATH then computes a minimum piecewise lin-
ear path traversing the band.

Algorithm 1 OCCAMTRACK(S)
1: T← {s.start,s.end: ∀s∈ S};
2: sort(T);
3: for all t ∈ T do
4: I ← {s : t ∈ [s.start,s.end]};
5: Z←{s : s∈ I .nbrlist∧ t /∈ [s.start,s.end]};
6: F ← ⋂

i∈I Di −
⋃

i∈Z Di ;
7: B← B∪F;
8: end for
9: L← M INSEGPATH(B);

Figure 6. The path computed byOCCAMTRACK has 3
line segments. The sequence of arcs delineating the re-
gions of bandB are shown in thick lines.



In the pseudo-code for MINSEGPATH, the function FIND-
ARCS determines the ordered sequence of localization arcs
corresponding to the localization bandB.3 The function
FINDL INE either determines that a subsequence of arcs
qi ,qi+1, . . . ,q j cannot be “stabbed” (in the given order) by
a single line, or finds such a stabbing line. The algorithm
M INSEGPATH uses this function in a greedy fashion to find
the longest prefix of arcs that can be approximated by a sin-
gle line segment, removes those arcs, and then iterates on
the remaining sequence. There are only a finite number of
combinatorially distinct candidate lines one needs to testto
decide if a sequence of arcs can be stabbed by a line. In
particular, it suffices to test the lines formed by pairs of end-
points of arcs, or lines that are tangent to some arc.4 Figure 6
shows the minimal description path for the example of Fig-
ure 5.

Algorithm 2 M INSEGPATH(B)

1: A← FINDARCS(B);
2: i← 1;
3: for all j ∈ 1,2, . . . ,m do
4: if ¬ FINDL INE(Ai ,Ai+1, . . . ,A j ) then
5: L← L∪FINDL INE(Ai ,Ai+1, . . . ,A j−1);
6: i← j;
7: end if
8: end for

4.2 Analysis ofOCCAMTRACK

By construction, the piecewise linear path computed by
OCCAMTRACK intersects the regions of the bandB in the
same order as given by the binary sensors outputs—this fol-
lows because MINSEGPATH constrains the path to visit the
boundary arcs of consecutive regions in order. This, how-
ever, does not mean that the true trajectory and the piecewise
linear path visit thesame sequenceof regions. The linear
shortcuts found by OCCAMTRACK can visit additional re-
gions. This can happen if the linear segment crosses over
a non-convexvertex of one of the regions. The important
point to note, however, is that the maximum distance be-
tween the true trajectory and the computed path at any instant
(theL∞ error) is still bounded by∆ = O(1/ρR), because the
path computed by OCCAMTRACK does lie entirely within
the union of theconvex hullsof the F regions in the band
B. Since the diameter of the convex hull of anyF region is
bounded by∆, the error guarantee follows. The following

3While a localization arc can have multiple pieces in a patholog-
ical case, the union of all its sub-arcs is still within the resolution
bound (cf. Theorem 2). Thus, for the purpose of minimal path rep-
resentation, we can safely “interpolate” all the disconnected pieces
of the arc and still remain within the tolerable error. However, to
keep our implementation simple, we chose to ignore such patho-
logical contingencies, and opted to simply ignore an arc if it were
found to be disconnected.

4In computational geometry, several theoretically more efficient
methods (e.g. [8]) are known for these stabbing problems, but they
are complicated to implement and involve significant overhead in
data structures. We chose to implement our algorithm because it is
simple, compact, works fast in practice.

theorem shows that the worst-case path approximation com-
puted by MINSEGPATH uses at most twice the number of
optimal segments. (In practice, it is very close to optimal.)
Due to lack of space, we omit the proof of this theorem.

THEOREM 4. The algorithmOCCAMTRACK computes a
piecewise linear path that visits the localization arcs in or-
der and uses at most twice the optimal number of segments
in the worst-case. If there are m arcs in the sequence, then
the worst-case time complexity ofOCCAMTRACK is O(m3).

4.3 Robust tracking with non-ideal sensors

Ri
Ro

Figure 7. The non-ideal sensing model

The OCCAMTRACK algorithm assumes ideal binary sens-
ing. In practice, sensing is imperfect and noisy: a sensor
could detect an object outside its nominal range, or it may
fail to detect an object inside its range. We illustrate our ap-
proach to such non-idealities using a sensing model in which
the target is always detected within an inner disk of radius
Ri , called thedetection region, and is detected with some
nonzero probability in an annulus between the inner disk and
an outer disk of radiusRo, calleduncertain region. Targets
outside the outer disk are never detected. Figure 7 gives an il-
lustration of this model. Despite its simplicity, such a model
is of fairly broad applicability, since it arises naturallyif sen-
sors integrate noisy samples over a reasonable time scale to
make binary decisions regarding target presence or absence.

The main implication of the model in Figure 7 for the
OCCAMTRACK algorithm is that we can no longer identify
circular arcs corresponding to an object entering and leaving
a sensor’s detection range. While we can employ OCCAM-
TRACK algorithm directly by approximating the sensing re-
gion as a disk of some radiusR, whereRi ≤ R≤ Ro, sim-
ulations show that the performance can be poor. We there-
fore consider an alternative approach, in which we employ
a particle filtering algorithm to handle non-idealities. While
this produces a good approximation of the true trajectory,
it is not amenable to an economical description. We there-
fore employ a geometric post-processing algorithm to obtain
a minimal representation for the output of the particle filter-
ing algorithm. While particle filtering is a well established
technique, the main novelty of the algorithm presented here
is the way in which it exploits the constraints of the sensing
model for a simple and efficient implementation.

In order to illustrate robustness to non-ideal sensing, we
take a worst-case approach to the information provided by
the non-ideal sensing model in Figure 7, assuming the max-
imal uncertainty consistent with the sensor readings. If a



sensor output is 1, then we assume that the target is some-
where inside the large disk of radiusRo centered at the sen-
sor. If a sensor output is 0, then we assume that the target is
somewhere outside the small disk of radiusRi centered at the
sensor. A localization patchF at any time instant is given by
intersecting all such areas, just as before.

4.3.1 Particle Filtering Algorithm

We now sketch the particle filtering algorithm; a more de-
tailed description and software implementation is available
from the authors upon request. At any timen, we haveK
particles (or candidate trajectories), with the current location
for thekth particle denoted byxk[n]. At the next time instant
n+1, suppose that the localization patch isF . Choosemcan-
didates forxk[n+ 1] uniformly at random fromF . We now
havemK candidate trajectories. Pick theK particles with
the best cost functions to get the set{xk[n+1],k = 1, ...,K},
where the cost function is to specified shortly. Repeat un-
til the end of the time interval of interest. The final output
is simply the particle (trajectory) with the best cost function.
Thus, Monte Carlo simulation is an intrinsic part of this algo-
rithm, since random sampling is employed to generate candi-
dates for evaluation. The sampling time interval is chosen to
be short compared to a localization patch, so as to generate a
sufficiently rich set of candidates.

It remains to specify the cost function. We chose an addi-
tive cost function that penalizes changes in the vector veloc-
ity, in keeping with our restriction to lowpass trajectories.
Once a candidatexk[n+ 1] is chosen from the current lo-
calization patch, the increment in positionxk[n+ 1]− xk[n]
is an instantaneous estimate of the velocity vector at time
n. The corresponding increment in the cost function is the
norm squared of the difference between the velocity vector
estimates at timen andn−1. This is given by

ck[n] = ||(xk[n+1]−xk[n])− (xk[n]−xk[n−1])||2
= ||xk[n+1]+xk[n−1]−2xk[n]||2

The net cost function for a candidate trajectory up to timen
is simply the sum of these incremental costs:∑n

m=1 ck[n].

4.3.2 Geometric Postprocessing

The particle filtering algorithm described above gives a
robust estimate of the trajectory consistent with the sensor
observations, but it provides no guarantees of a “clean” or
minimal description. This suggests the possibility of apply-
ing the geometric approach of Section 4.1 to the particle filter
estimate to generate a more economical description. We omit
details due to lack of space, but provide a brief pseudo-code
description of an algorithm FITL INE to generate a piecewise
linear approximation with a small number of line segments.
In the pseudo-code,p is the ordered list of samples generated
by the particle filtering algorithm,L is the output piecewise
linear approximation, and function LINESEGMENT(Q) re-
turns a line segment that is within distance∆ of the sequence
of pointsQ.

Algorithm 3 FITL INE(p)
1: Q← φ;
2: for all i ∈ 1,2, . . . , |p| do
3: if ERROR(Q∪ pi) > ∆ then
4: L← L∪L INESEGMENT(Q);
5: Q← φ;
6: end if
7: Q←Q∪ pi;
8: end for

5 Simulation Results

We carried out extensive simulation tests to evaluate the
performance of all our algorithms, under both ideal and non-
ideal sensing models. The code for OCCAMTRACK was
written in C and C++, the code for PARTICLE-FILTER was
written in Matlab, and the experiments were performed on
an AMD Athlon 1.8 GHz PC with 350 MB RAM. We first
discuss our results for the ideal sensing model.

5.1 OCCAMTRACK with ideal sensing
Our general experimental setup simulated a 1000×1000

unit field, containing 900 sensors in a regular 30× 30 grid.
The sensing range for each sensor was set to 100 units. When
evaluating the scaling affects of the sensor parameters, we
kept the field size and one parameter fixed, while the other
parameter (radius or density) was varied.

We usedgeometric random walksto generate a variety of
trajectories. Each walk consists of 10 to 50 steps, where each
step chooses a random direction and walks in that direction
for some length, before making the next turn. Each trajectory
has the same total length, and we generated 50 such trajecto-
ries randomly.

5.1.1 Quality of trajectory approximation

On all 50 random walk trajectories, OCCAMTRACK de-
livers excellent performance. Figure 8(b) is a typical exam-
ple, where the true trajectory is virtually indistinguishable
from the approximation computed by OCCAMTRACK.

We also ran the weighted-centroid algorithm of Kim et
al. [12] on these trajectories. In our comparison, we used
theadaptive path-basedversion of their algorithm, which is
claimed to be well-suited for complex and non-linear trajec-
tories. For ease of reference, however, we still refer to this
algorithm as theweighted-centroidscheme. We ran this al-
gorithm with inner and outer radii both equal to the ideal
radius 100.

Figure 8(a) shows the output of the weighted-centroid
method, and is typical of its performance on all our ran-
dom walk trajectories. The weighted-centroid algorithm is
sample based, and it used 1000 vertices to approximate each
of the trajectories. By contrast, the OCCAMTRACK used
between 20 and 70 vertices. Despite this frugal represen-
tation, the maximum localization error for OCCAMTRACK
wasalwayssmaller than the weighted-centroid, on average
by 30%, and in some cases by afactor of five. Due to its
highly efficient structure, OCCAMTRACK is also 300 times
faster than weighted-centroid. In all cases, our algorithm
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Figure 8. Quality of trajectories produced by the weighted-centroid algorithm of [12] and OCCAMTRACK. Figure (c)
shows the results of velocity estimation byOCCAMTRACK.

took less than 10 milliseconds, while weighted-centroid took
between 2 and 20 seconds.

5.1.2 Velocity estimation performance

In our random walk trajectories, we also varied the scalar
velocity randomly at each turn, and then used OCCAM-
TRACK to estimate the scalar velocity along the trajectory.
For each linear segment in the piecewise linear path com-
puted by OCCAMTRACK, we used the first and the last lo-
calization arc to determine the time spent on that segment;
recall that sensor outputs tell us the exact times for each arc.
We estimate the scalar velocity for this segment by dividing
the length of the segment by this time. With a goal of es-
timating the velocity withinε = 0.1, namely, 10%, we esti-
mated the average velocity only over path segments of length
at leastL =

√
2∆/
√

ε, as given by Eq. 3.
In Figure 8(c), we show the results of estimating the ve-

locity for the sample trajectory of (b). The top figure shows
the overlay of both the true and the estimated velocities along
the trajectory, and one can see that the two agree very well.
In the bottom figure, we plot the relative error in the velocity
to highlight deviation. The figure shows that the maximum
deviation is always less than 10%, as predicted by theory.

The results were very similar for all 50 trajectories. In
particular, on average a segment of OCCAMTRACK’s trajec-
tory spanned about 15 patches, meaning that an average line
segment in the approximation has lengthL = 15∆, meaning
that the velocity estimates are good, as explained by Theo-
rem 3.

In the following two experiments, we evaluated the lo-
calization accuracy of OCCAMTRACK with varyingρ andR
over many random trajectories, to see how it compares to the
theoretical predictions of our theorems.

5.1.3 Spatial resolution as a function of density

In this experiment, we measured the maximum error in
localizing the target’s trajectory for a varying values of the
sensor density. We kept the size of the field and the sensing
radiusR fixed, and then varied the number of sensors in the
field from n = 100 ton = 6400. (Since the area of the field
is 106, this corresponds to variation in density from 10−4 to
6.4× 10−3.) We tried both the regular grid arrangement of
the sensors, as well as the random placement.
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Figure 9. Spatial resolution vs. sensor density.

By the spatial resolution theorem, the localization error
should decrease inversely with the density. Figure 9 shows
that the measured error follows closely the theoretical curve
of 1/ρ, both for the grid as well as the random placement.
In each case, the reported error is the maximum error for the
trajectory, averaged over 50 random walk trajectories. (The
average error for each trajectory is much smaller.)

5.1.4 Spatial resolution as a function of sensing
range

In this experiment, we kept the density constant at 900
nodes in the field, and varied the sensing radius from 50 to
400 units. Figure 10 shows the maximum error, averaged
over 50 random walk trajectories, for various values of the
sensing range. By the spatial resolution theorem, the lo-
calization error should decrease inversely with the sensing
range, and again the measured values closely follow the the-
oretical curve of 1/R.
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(a) OCCAMTRACK (b) Particle Filter (c) Particle Filter + Geometric

Figure 11. Trajectories computed by the three algorithms under the non-ideal sensing model.

5.2 Tracking with Non-Ideal Sensing

We now describe the results of our experiments with non-
ideal sensors. Our model of non-ideal sensors is the one
shown in Figure 7, where in the region between distanceRi

andRo, the target is detected with probability12. An imper-
fect detection is problematic for the ideal geometric algo-
rithm OCCAMTRACK because it relies on contiguous time
intervals during which the target is inside the range. We used
a simple hysteresis process to mitigate the affect of erratic
detection: to signal the beginning of a detection interval,we
require the sensor to output a 1 bit for 3 consecutive time
samples; similarly, to signal the end of a detection interval,
we require the sensor to output a 0 bit for 3 consecutive time
samples.

We generated a variety of geometric trajectories, sim-
ulated the sensor outputs using our non-ideal sensing
model, and ran OCCAMTRACK, PARTICLE-FILTER, and
PARTICLE-FILTER with geometric post-processing, which
we call PARTICLE FILTER + GEOMETRIC. A sample trajec-
tory, along with the outputs of the three algorithms, is shown
in Figure 11.

As expected, the ideal algorithm OCCAMTRACK per-
forms poorly when the data is imperfect: such data lead
to gaps in the sequence of localization patches and infea-
sible localization arcs. In our implementation, we simply
ignoredthese geometric inconsistencies, and just computed
the piecewise linear paths using the rest of the arcs. Of
course, in the worst-case, poor data can completely break
OCCAMTRACK, but we found that the algorithm recovers
rather well from these bad situations and produces accept-
able trajectories, although not nearly as good as in the ideal
case. In fact, compared to PARTICLE-FILTER, the output
of OCCAMTRACK looks significantly worse: it has sig-
nificantly more pronounced turns and twists. PARTICLE-
FILTER seems much better at dealing with noisy data, but its
drawback is that, like any sample-based scheme, it produces
trajectories with many vertices. This is where our combi-
nation of PARTICLE-FILTER with geometric post-processing
achieves the best of both worlds: it combines the robustness
of PARTICLE-FILTER with the economic paths of the ideal
OCCAMTRACK.

In particular, in the example of Figure 11, the output of
PARTICLE-FILTER + Geometric uses 10 segments and has
maximum error of 1.73, compared to 51 segments required

Figure 12. The setup for our acoustic motes experiment.
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Figure 13. Probability of target detection with distance
for an acoustic sensor.

for the PARTICLE-FILTER for the error of 1.19. We sim-
ulated this experiment over several trajectories, using the
non-ideal sensing, and observed the same trend. On a typ-
ical input, the maximum localization error using PARTICLE-
FILTER + Geometric was comparable to the basic particle
filter algorithm, but in the worst-case it was almost 50%
higher. On the other hand, the path description computed
by PARTICLE-FILTER + Geometric was at least afactor of 5
smaller.

6 Mote Experiments

Finally, we set up a small lab-scale experiment using
acoustic sensors to evaluate the performance of our algo-
rithms. The setup consisted of 16 MICA2 motes arranged
in a 4× 4 grid with 30 centimeter separation, as shown in
Figure 6. The motes were equipped with a MTS310 sen-
sor board, which has an acoustic sensor and a tone detec-
tor circuit. (The tone detector can detect acoustic signals
in a specific frequency range.) We adjusted the gain of the
sound sensor so that the detection range for each sensor is



(a) OCCAMTRACK (ideal) (b) OCCAMTRACK (c) Particle Filter (d) Particle Filter + Geometric

Figure 14. The output trajectories for the experiment usingacoustic sensors.

about 45 cm. The target is also a MICA2 equipped with
MIB310, which generated the acoustic signal using its on-
boardbeeper. The target is then moved through the network
in a path (shown as the dotted trajectory in Fig. 14).

We first performed some experiments with a stationary
target to determine the detection characteristics of the motes’
tone-detector. The readings from the motes turned out to
be highly non-ideal. Not only did the motes make frequent
detection errors, but the probability of detecting a targetwas
not a monotonic function of the distance from the sensor, as
shown in Fig. 13. While this detection behavior is difficult
to model, it also means that this experiment is a good test for
the robustness of our tracking algorithms.

The results of our experiment are shown in Fig. 14. The
detection readings we collection from these experiments
showed a lot of non-ideal behavior. The most extreme be-
ing that one of the sensors, shown as double circle in the
figure, failed to detect the targetentirely, even though the
target comes very close to it.

On the whole, however, even in presence of such extreme
failures, the results are very encouraging. All three algo-
rithms were able to give a reasonable estimate of the tar-
get track. Figure 14(a) shows the reference output for OC-
CAMTRACK, assuming ideal sensing—that is, assuming the
faulty sensor had also detected correctly, this is the trajec-
tory OCCAMTRACK would produce. The other three figures
show the outputs using the actual measurements from the
acoustic sensors. (The actual path of the target is shown as
a dotted line, while the estimated trajectories are shown in
bold lines.) As expected, the trajectory quality of OCCAM-
TRACK suffers the most because of the failed sensor. The
PARTICLE-FILTER does better, and again the combined al-
gorithm preserves the robustness of PARTICLE-FILTER and
approaches the minimal path description of OCCAMTRACK.

7 Closing Remarks

We have identified the fundamental limits of tracking per-
formance possible with binary proximity sensors, and have
provided algorithms that approach these limits. The results
show that the binary proximity model, despite its minimal-
ism, does indeed provide enough information to achieve re-
spectable tracking accuracy, assuming that the product of the

sensing radius and sensor density is large enough. Thus, this
model can serve as a building block for broadly applicable
and reusable tracking architectures.

The promising results obtained here and in [12], as well as
the success of the large-scale deployment in [1], motivate a
more intense investigation of tracking architectures based on
the binary proximity model. In order to focus on fundamen-
tals, we have considered a single path in our simulations and
experiments. An in-depth understanding, and accompany-
ing algorithms, for multiple targets is therefore an important
topic for future investigation. We would also like to develop
minimal modifications of the basic tracking architecture to
incorporate additional information (e.g., velocity, distance)
if available. The particle filtering framework appears to be
a promising means for achieving this. In addition to exten-
sions and implementation optimization of this framework,
an interesting question is whether it is possible to embed Oc-
cam’s razor criteria in the particle filtering algorithm, rather
than using geometric post-processing to obtain economical
path descriptions.
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