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ABSTRACT
We consider the problem of collectively approximating a set
of sensor signals using the least amount of space so that any
individual signal can be efficiently reconstructed within a
given maximum (L∞) error ε. The problem arises naturally
in applications that need to collect large amounts of data
from multiple concurrent sources, such as sensors, servers
and network routers, and archive them over a long period of
time for offline data mining. We present GAMPS, a general
framework that addresses this problem by combining sev-
eral novel techniques. First, it dynamically groups multiple
signals together so that signals within each group are cor-
related and can be maximally compressed jointly. Second,
it appropriately scales the amplitudes of different signals
within a group and compresses them within the maximum
allowed reconstruction error bound. Our schemes are poly-
nomial time O(α, β) approximation schemes, meaning that
the maximum (L∞) error is at most αε and it uses at most
β times the optimal memory. Finally, GAMPS maintains an
index so that various queries can be issued directly on com-
pressed data. Our experiments on several real-world sensor
datasets show that GAMPS significantly reduces space with-
out compromising the quality of search and query.

1. INTRODUCTION
Recent advances in sensing technologies have made possi-

ble, both technologically and economically, the deployment
of densely distributed sensor networks. For instance, the
Microsoft DCGenome project [23] deploys a large number of
sensors in a data center to continuously monitor the phys-
ical environment by measuring temperature and humidity
around servers. To provide near real-time visibility of the
physical conditions at the data center, the sensing must be
frequent, perhaps every few seconds, so that one can re-
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spond quickly to abnormal conditions such as sudden tem-
perature spikes. It is easy to see how this could lead to
a data glut: even a few thousand sensors, recording a few
tens of bytes per second would generate tens of gigabytes
each day. Archiving these data over a few years for his-
torical comparison and trend analysis would consume ter-
abytes to petabytes of storage and bandwidth. To mini-
mize the overhead of storing, managing and sharing these
sensor data, therefore, we must apply smart approximation
schemes that significantly reduce their size without compro-
mising our monitoring and analysis abilities. Such a solution
can benefit many other applications such as a server farm
monitoring system that collects and archives various system
counters (e.g., CPU usage) from a large number of servers,
an Internet traffic engineering system that collects/archives
various traffic flow related counters from a large number of
routers, and so on. For many useful data mining tasks, such
as analyzing and forecasting resource utilization, anomaly
detection, and forensic analysis, compressed data must guar-
antee a given maximum (L∞) decompression error.

An individual sensor’s measurements can be thought of as
a time series (or, a signal), and there are many techniques
known for compressing a single time series [1, 4, 5, 27, 10, 15,
17, 14, 21]. Our interest, however, is complementary to this
existing body of work—we focus on collectively compress-
ing data from multiple sensors for space-efficient archiving
and time-efficient querying. In other words, rather than
compressing a single time series of measurements, we wish
to consider the problem of compressing multiple time series
simultaneously, taking advantage of the correlation among
them. Unlike the single series case, however, not only is very
little known for compressing multiple signal streams, but
even the problem is somewhat difficult to formalize cleanly.
In this paper, we make a principled attempt to formalize
the multi-sensor compression problem and propose schemes
with worst-case error guarantees.

To be precise about our goals and techniques, let us em-
phasize that we are interested in lossy but combinatorial
methods with the following general desiderata: (1) to ap-
proximate sensors’ data with a worst-case guarantee on the
approximation errors, (2) to deal with L∞ norm (maximum)
error, as opposed to cumulative type errors, such as L2, or
L1, because L∞ approximation better preserves local spikes,
which are extremely important in applications intended for
local anomaly detection [23], (3) to support query-processing
directly on compressed data, so methods that use compres-
sion primarily for communication and necessitate decom-
pression before queries are not of interest. While we focus
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on efficient archiving of sensor data at a central location, we
do not directly address the important issue of transferring
data from sensors to the central location in this paper. One
can use existing energy-efficient data collection techniques
(e.g., [9]) if the sensors are energy-constrained.

There are several schemes that achieve the three goals
stated above for an individual signal, most notably [3]. How-
ever, achieving them all for multiple signals is challenging
for several reasons. First, one must decide which signals
to compress together; trying to compress uncorrelated or
weakly correlated signals together may yield suboptimal re-
sult. In a small network, such grouping can be manually
decided based on signal correlations. However, with a large
number of sensors, this needs to be done automatically—
the compression system must automatically detect corre-
lated signals such that grouping them together yields max-
imal compression. This is further complicated by the fact
that the correlation among signals can change over time due
to changes in the physical environment [23], and thus the
compression system must be able to dynamically determine
efficient grouping.

Second, interestingly, while many signals from physical
sensors differ significantly in values, they often show a re-
markable similarity in form. More precisely, even if two
signals significantly differ in their absolute values, it might
be possible to apply a transformation on them such that the
transformed signals, along with a description of the transfor-
mation, can be efficiently compressed together. We explain
this property and the physical principle behind this in Sec-
tion 4. Finding such transforms in full generality is out of
the scope of this paper, but we show that a simple linear
transform, which we call amplitude scaling, works well for
many real-world datasets.

Our main result is GAMPS (Grouping and AMPlitude
Scaling), a general framework to address the above two chal-
lenges. First, it dynamically groups signals such that com-
pressing signals within each group together yields a maxi-
mal compression ratio. To find the optimal grouping of sig-
nals, we map the problem to the facility location problem [2,
18]. Second, it uses amplitude scaling transformation to ef-
ficiently compress even the signals which differ significantly
in values. Additionally, it guarantees L∞ norm (maximum)
error, as opposed to cumulative type errors, such as L2 or
L1. Finally, GAMPS maintains an index of compressed sig-
nals so that several useful queries can be efficiently answered
without uncompressing entire signals.

Our theoretical results include a combinatorial formula-
tion of the multi-sensor data compression problem and poly-
nomial time schemes with a worst-case quality of approxi-
mation. We use a standard definition of (α, β) approxima-
tion in combinatorial optimization. Namely, suppose that
the amount of memory used by the optimal algorithm to
guarantee an L∞ error of ε is OPT . Then, an (α, β) ap-
proximation algorithm takes memory at most β OPT and
guarantees an error at most αε. In particular, for compress-
ing the sensor data directly (without scaling and group-
ing), we show a polynomial time algorithm that achieves
(5, O(log k + log(OPT )) approximation for representing k
signals using piecewise constant templates. With amplitude
scaling and grouping, we show a polynomial time algorithm
that achieves (3+4, O(log n)) approximation for represent-
ing k signals with piecewise constant ratio and template sig-
nals, where 4 is the worst case ratio of signal values at any

time t, where 1 ≤ t ≤ n.
In summary, we make the following contributions:

1. We formalize the multi-sensor compression problem as
a combinatorial optimization problem and provide a
polynomial-time scheme with a worst-case quality of
approximation.

2. We propose GAMPS, a novel framework to compress
a large number of sensor data streams. Unlike most
existing work, GAMPS guarantees a given worst-case
maximum (L∞) error. Notable features of GAMPS in-
clude (i) dynamic discovery of groups of sensor signals
that can be maximally compressed together, (ii) use
of appropriate amplitude scaling to further improve
overall compression ratio of signals, and (iii) an index
of compressed data that enables answering several im-
portant queries directly from compressed data. To the
best of our knowledge, GAMPS is the first system to
provide these attractive features.

3. We evaluate GAMPS with several real-world datasets.
Our evaluation shows significant space-efficiency of
GAMPS over the state-of-the art L∞ error approxi-
mation schemes for individual signals.

The rest of the paper is organized as follows. Section 2
discusses related work. We present our solution for multi-
sensor compression in Section 3, for a simpler scenario where
sensors share values, and in Section 4, for a more general sce-
nario. Section 5 describes how GAMPS support queries on
compressed data. Finally, we evaluate GAMPS in Section 6.

2. RELATED WORK
Time-series approximation is a hot topic in research. Re-

searchers have proposed using a variety of techniques includ-
ing Discrete Fourier Transformation (DFT) [27, 1], Discrete
Wavelet Transformation [4], Singular Value Decomposition
(SVD) [10], Discrete Cosine Transformation (DCT) [17],
Piecewise Aggregate Approximation (PAA) [15], Adaptable
Piecewise Constant Approximation (APCA) [14], Indexable
Piecewise Linear Approximation (PLA) [5], Symbolic Ag-
gregate Approximation (SAX) [21], etc. However, all these
techniques are designed for approximating a single signal,
and the focus of our work is joint approximations across
multiple signals. Among these, DCT, DFT and SVD are L2

based, while our focus is on bounded L∞ error. Wavelets
have an L∞ variant [11], but it is not clear how this can be
extended to share coefficients across signals. We focus on
using piecewise approximations, and in particular piecewise
constant approximations, but all the techniques presented
here apply to PAA, PLA, and SAX as well.

Several recent work have proposed solution for compress-
ing sensor data while exploiting correlation (see [16] for a
survey). Unlike our work, most of them consider L2 metric,
focus on reducing communication overhead, and consider
compressing only a single sensor signal exploiting tempo-
ral correlation. SBR [9] and RIDA [7], like ours, compress
multiple sensor signals. However, unlike GAMPS, they are
based on L2 metric (SBR can support L∞ only with a prob-
abilistic guarantee and expensive computation), require sim-
ilar signals to be statically grouped together before running
the algorithms, and do not support query processing on com-
pressed data.

Like this work, distributed source coding (DSC) aims to
compress signals from multiple sources together [29, 31, 33].

2



0.4

0.5

0.6

0.7

0.8

0.9

1

 0  500  1000  1500  2000  2500  3000

# 
of

 C
on

ne
ct

ed
 U

se
rs

Time

 32

 34

 36

 38

 40

 42

 44

 46

 48

 0  2000  4000  6000  8000

R
el

at
iv

e 
H

um
id

ity
 (

%
)

Time

(a) Server data (b) DataCenter data

Figure 1: Portions of two real-world datasets.

However, our requirement is less stringent than classical
DSC, as our compression is centralized. Unlike GAMPS,
DSC schemes are either lossy or primarily L2 based, and
processing queries on data compressed with source coding is
very expensive.

There is a vast literature on grouping (or clustering) time
series (e.g., see [22, 25] for related work). The primary goal
of grouping in GAMPS is different from that of existing
techniques: it needs to group those signals together that
can share representations for maximal compression. There-
fore, our grouping algorithm is different from the existing
techniques.

Many existing time-series index structures enable fast de-
tection of similar series under a variety of similarity mea-
sures with reduced dimensions [10, 28, 32]. The work in [6]
is closely related to our work, in the sense that the authors
propose an index structure that allows fast matching of time
series, which are similar under scaling/shifting transforms.
Our index structure requirements are different, as we store
both signals and transformations and our similarity metric
is based on L∞. Such constraints are not simultaneously
handled in any prior work.

3. MULTI SENSOR DATA COMPRESSION
We use three real datasets in this paper to motivate and

evaluate different techniques.

DataCenter dataset: This contains measurements of rel-
ative humidity by 24 sensors in a real data center over
a period of two years [23].

Intel-Berkeley Temperature (IBT) dataset: This con-
tains temperature measurements by 54 sensors deployed
on a single floor of the Intel-Berkeley Research lab,
over the period of one month [12].

Server Dataset: This is a 2-weeks long trace from 240
production servers of a large instant messaging ser-
vice. The trace contains several performance counters
such as number of connected users, CPU utilization,
memory usage, etc.

In all three cases, each sensor reports a measurement every
30 seconds.

In this section, we formally introduce our multi-sensor
compression problem. We start with a simple scenario where
signals share data values with each other, although the shar-
ing can change over time (Figure 1(a)). In Section 4, we will
consider a more general scenario where signals differ signif-
icantly in values, but have similar forms (Figure 1(b)).

3.1 Problem Formulation
Our general methodology can be summarized as follows.

Given a set of k sensors, with the ith sensor generating an or-
dered list of measurements Si = {vi(t), t = 1, 2, . . . , n}, our

scheme produces a set of template signals L = {L1, L2, . . . , L`}
that are used as approximations for the sensor measure-
ments. Each sensor’s measurements are then partitioned
into time intervals, so that for each interval a single tem-
plate is used for approximation. Specifically, the compressed
representation αi for the ith sensor includes a partition of
the time line (ti

0, t
i
1, . . . , t

i
mi

), and a template Li
j+1 for each

(semi-open) interval [ti
j , t

i
j+1), where Li

j+1 ∈ L. The inter-
pretation is that the value of sensor i during the time inter-
val [ti

j , t
i
j+1) is approximated by the template signal Li

j+1.
For an arbitrary time instant t, we will slightly abuse the
notation to write αi(t) as shorthand for the value this ap-
proximation. (That is, if t ∈ [ti

j , t
i
j+1), then αi(t) equals

Li
j+1 evaluated at t.)
Finally, suppose that template Li requires mi memory

to store and is shared by di signals, then our (compressed)
representation for all the sensor signals requires memory

∑̀
i=1

(mi + di)

The error of our approximation for k sensors is

E(L) = max
1≤t≤n

max
1≤i≤k

|vi(t)− αi(t)|

which is the maximum difference at any time between the
true signal and its approximation. Our optimization prob-
lem can be formulated as follows:

Given S1, S2, . . . , Sk and an error bound ε, choose
template signals L with E(L) ≤ ε such that the

memory required,
∑`

i=1(mi + di), is as small as
possible.

At this level of generality, a good treatment of the problem
remains elusive because arbitrary template signals are diffi-
cult to compute with and analyze. If, however, we approx-
imate the signals with piecewise constant functions, then
one can compute a polynomial-time approximation with a
worst-case error bound. We call this the interval sharing
scheme. Since piecewise constant approximation for single
time series are popular, this result generalizes those approx-
imations to multi-sensor data, taking advantage of periods
when groups of sensors have similar values.

In the rest of the section, we present our Interval Sharing
Algorithm (ISA) that, using the set cover heuristics, achieves
a worst-case bound on the quality of approximation, given
a memory budget for data representation. ISA accepts as
input a set S = {S1, S2, . . . , Sk} of signals and an error
parameter ε. Our scheme works in two phases: the first
phase approximates individual signals using piecewise con-
stant curves; the second phase uses the well-known greedy
set cover algorithm to share signal representation across
sensors. The first phase uses the simple greedy bucketing
scheme of Buragohain et al. [3]; also see [19]. For the sake
of completeness, we briefly describe the bucketing scheme
of [3] below since our set-covering phase both generalizes it
and extends its error analysis to multiple signals.

3.2 Approximation of a Single Signal
Given a single time series and the maximum allowable

relative error ε, the bucketing scheme of [3] greedily scans
the series in order, inserting data items in the first bucket
until the difference between the maximum and the minimum
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t1 t2 t3 t4 t5 t6 t7

Figure 2: 9 approximation segments corresponding
to 3 different signals. These segments result in a
division of the time-axis into 8 pieces.

t1 t2 t3 t4 t5 t6

2ε

6ε

S1

S2

t7

Figure 3: Between time instants t3 and t7, the re-
laxed approximation segment bounding rectangles
for signal s1 intersects the approximation segment
bounding rectangles of s2.

entries in the bucket exceeds 2ε, at which point a new bucket
is created. Since the gap between the maximum and the
minimum entry in any bucket is less than 2ε, all these entries
can be approximated within the tolerance of ε by the average
of the max and the min. Viewed graphically, one can also see
that all entries in a bucket are contained in an axis-parallel
rectangle whose height is at most 2ε. See Figure 3 for an
illustration. It is shown in [3] that this greedy scheme uses
an optimal number of buckets.

Now suppose that each of the k signals in our set have
been approximated using this scheme. The second phase of
our algorithm attempts to achieve additional compression
by sharing portions of buckets across different sensor series.
It is instructive to take a geometric view. Each bucket in
the individual series representation is a rectangular box. In
order to share these boxes, we increase the error tolerance
from ε to 3ε and formulate a set-covering problem that at-
tempts to find the smallest number of rectangular boxes that
cover all the signals.

3.3 Compression by Interval Sharing
Suppose the bucket representation of signal Si has size zi,

meaning it uses zi rectangles. We partition the time axis
into z−1 non-overlapping pieces, where z =

∑
1≤i≤k zi. See

Figure 2 for illustration, where we show 8 segments corre-
sponding to 3 signals and 7 pieces formed by the approx-
imation segment endpoints. Next, for each series Si, we
construct

(
z−1
2

)
sets, where a set corresponds to a possible

subinterval of time for which we consider interval sharing.
With each such interval, we associate a weight wi

jl, which
corresponds to the representation cost of signal Si in the
interval between time instants tj and tl.

We now explain how the weights are chosen. Please refer
to Figure 3, which shows two signals, S1 and S2, and their
approximations obtained by the bucketing algorithm. In
addition to the bounding boxes for the approximation of
S2, we also show relaxed boxes for the S1 approximation. A
relaxed box is obtained by scaling a box along the y-axis by
a factor of 3. (Since the original boxes obtained from the

bucketing approximation have width at most 2ε, the relaxed
boxes have width at most 6ε.) We say that a signal Si fully
covers another signal Sj in the time interval (tu, tv) if the
relaxed boxes of Si in this interval intersect all the bounding
boxes of Sj in that range. Intuitively, such an intersection
implies that Sj can be approximated by Si in this interval
within L∞ error at most 5ε.

The weight wi
jl is a fraction, where the numerator denotes

the representation cost (memory) of Si’s (bucket-based) ap-
proximation in the range (tj , tl), and the denominator is the
sum of these costs over all those series that Si fully covers
in the range (tj , tl). (Of course, the set corresponding to
wi

jl is nothing but the collection of all the pieces of those
time series that are fully covered by Si in the range (tj , tl).)
As an example consider the weight corresponding to range
(t3, t7) in Figure 3. If the memory needed to represent a
contiguous set of s segments is 2s + 1, then for the weight
corresponding to S1 in range (t3, t7) the numerator is 5 (2*2
+ 1) and the denominator is 12 ((2*2 + 1) + (2*3 + 1))
(partial segment is counted as 1).

We derive weights for all the sets in the manner described
above. The universe consists of all the pieces and now we run
a weighted set cover approximation algorithm [13] to get a
solution to our problem. The set covering scheme proposed
above achieves an (α, β) approximation, where α = 5 and
β = O(log k + log(OPT )). Due to lack of space, we omit a
detailed analysis of this scheme, and simply summarize the
main result.

Theorem 1. There is a polynomial time algorithm that
achieves (5, O(log k + log(OPT )) approximation for repre-
senting k time series using piecewise constant templates.

A similar result also holds for piecewise linear templates,
although in our simulations and empirical evaluation we use
piecewise constant templates due to their compact represen-
tation and ease of computation.

4. GAMPS: COMPRESSION BY GROUPING
AND AMPLITUDE SCALING

Interval sharing is effective when multiple sensor’s data
have roughly the same values over periods of time. While
some signals demonstrate this property (e.g., Figure 1(a)),
many sensor signals from physical sensors do not share the
same data value, yet demonstrate strong correlation in their
patterns. For example, the data from 6 humidity sensors
in Figure 1(b) are all different in values, but strongly cor-
related. In this section we show that our basic compres-
sion framework is still useful for such signals. Our general
framework, called GAMPS, consists of two major compo-
nents: grouping, which groups similar, but potentially non-
overlapped, signals together, and amplitude scaling, which
transforms signals in each group to a form suitable for tem-
plate sharing. We describe these two components in the rest
of the section.

4.1 Amplitude Scaling
One possible way to transform signals is to use linear re-

gression. Suppose, two signals Si and Sj are correlated and
Si can be approximated as Si = a ∗ Sj + b, where the scalar
coefficients a and b are determined to minimize a target er-
ror metric. Then, a compressed representation of Si can
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be reconstructed from a compressed representation of Sj to-
gether with the coefficients a and b. In practice, signals
need to be segmented appropriately before parameters a, b
are determined for each segment. SBR [9] uses standard re-
gression techniques to compute a and b to minimize the L2

error metric. Calculating the a, b parameters for our target
L∞ metric is hard to accomplish—the solution is based on
the well known Chebyshev approximation problem, which
can be solved with a randomized linear programming algo-
rithm. But this is an expensive operation and can provide
only a probabilistic guarantee on L∞ error. Moreover, to
support a small L∞ error bound, the parameters a, b need
to be computed on small segments of the signals, which re-
duces overall compression ratio and introduces additional
computation load to determine the optimal segment size.

We address these difficulties by independently transform-
ing individual data points in Sj , instead of using the same
transformation parameters a, b for the entire signal (or seg-
ment). More precisely, we use a ratio signal of Si and Sj . Let
Si = {vi(t), t = 1, 2, . . . , n} and Sj = {vj(t), t = 1, 2, . . . , n}
be the signals of sensors i and j. For the analysis shown
in the rest of this paper, we assume that all signal val-
ues are positive, the equations for the signals with negative
values can be obtained by using the absolute values. Let
ρi

j(t) = vi(t)/vj(t) be the ratio between the signals of i and
j at time t. Then, we may define the ratio signal to be the
time-ordered series of these ratios, namely,

R(Si, Sj) = {ρi
j(t), t = 1, 2, . . . , n},

which measures the relative values of Si with respect to Sj .
That is, we interpret Sj as a base signal, then the ratio terms
tell us how to obtain corresponding terms of the signal Si.

4.1.1 Using ratio signals
In addition to, or in place of, the ratio signal mentioned

above, one can imagine using a delta signal, where ρi
j(t) =

vi(t) − vj(t). Ideally, we would like these signals to be as
flat as possible, so that they can be compressed using less
space. The natural question, therefore, is this: which signal
is more compressible?

Interestingly, we found that ratio signal is significantly
more compressible than delta signal for many real-world sen-
sor signals. For the ratio signal to be effective, it needs to
be relatively flat: that is, at any time t, the ratio vi(t)/vj(t)
does not change much within a small window of time ∆. A
sufficient condition for this to hold is (vi(t + ∆) − vi(t)) ≈
c(vj(t+∆)−vj(t)), where c = vi(t)/vj(t). In other words, a
higher signal value changes more than a lower signal value,
in approximately the same ratio of the signal values. This
is generally the case for many correlated physical sensors, as
we argue below.

1. When multiple sensors are deployed in the same physical
environment, one sensor signal Si can be related to another
signal Sj according to a function Si = F (Sj). According
to the Linear System theory, even if the function F is non-
linear, over a small time window ∆, the change of the two
signals can be linearly approximated well as (Si(t + ∆) −
Si(t)) = c(Sj(t + ∆) − Sj(t)), for a constant c dependent
on Si(t) and Sj(t) [30]. For such systems, a ratio signal
can be very flat, since Sj(t)/Si(t) ≈ Sj(t + ∆)/Si(t + ∆),
while a delta signal can be noisy. To make it more concrete,
suppose in a data center, two temperature sensors deployed
at two servers placed on top of each other report readings

Si(t) and Sj(t). The signal Sj is coming from the top sensor
and suppose that due to thermodynamics in the data center,
Sj(t) > Si(t). Now, due to increased CPU load, both servers
become hot resulting in Si(t + 1) = Si(t) + δ. In addition,
the heat dissipated by the lower server will move upwards
(as hot air rises) to make the upper sensor’s measurement
Sj(t + 1) = Sj(t) + δ + f(Si(t + 1)). The function f can
be non-linear, and the difference Sj(t + 1) − Si(t + 1) may
vary a lot, but according to the Linear System theory, the
ratio Sj(t+1)/Si(t+1) will be approximately constant. The
same is true in scenarios where sensors are deployed in an
open space or in water and wind or water flow can push a
physical phenomenon (e.g., heat) in one direction, causing
some sensors to experience more cumulative effect than the
others.

2. The ratio signal can be relatively flat even if the sensors
do not directly affect each other. Some physical properties
depend on another physical property in a non-linear way—
for instance, the relative humidity depends on temperature
in a non-linear way; we omit the physics behind this for lack
of space. Consider two humidity sensors i and j deployed
in two different locations at temperatures ti and tj , respec-
tively. Suppose temperature increases by a small value δ.
This will lead to different increases in relative humidity val-
ues at two sensors because the humidity increases at dif-
ferent rates at different temperatures. More specifically, i
will experience a larger increase in relative humidity com-
pared to j, and the humidity ratio at the new temperatures
ti + δ and tj + δ remains approximately the same as that at
temperatures ti and tj .

3. In many cases, sensing of non-physical phenomena also
yields signals that obey the ratio rule. For example, consider
the CPU loads of two servers (e.g., in the Server dataset) and
assume that the first server has more connected users and
therefore has a higher load than the second server. Now,
suppose that in the morning all users in the system start
increased activities, which will cause the first server to ex-
perience a higher additional load than the second server be-
cause of its larger user base. The delta between the loads
of the two servers will change, but their ratio will remain
approximately constant.

More generally, when signals change smoothly and their
changes over a small window of time are very small compared
to their absolute values, ratio signals are flatter than delta
signals. To see this, suppose vi(t + ∆) − vi(t) = δi(t) and
vj(t+∆)−vj(t) = δj(t) and δi(t), δj(t) ¿ vi(t), vj(t). Let us
denote the change in ratio signal as Dt

ratio = vi(t+∆)/vj(t+
∆) − vi(t)/vj(t) and the change in delta signal as Dt

delta =
(vi(t + ∆)− vj(t + ∆))− (vi(t)− vj(t)). It is easy to show
that Dt

ratio ≈ Dt
delta/vj(t). Thus, ratio signals have a much

smaller amplitude range, and therefore admit more space-
efficient representation for a given L∞ error ε.

In all the above scenarios, a ratio signal tends to remain
more or less constant, thereby provides better compression
ratio, than their delta signal. To confirm this empirically, we
compressed our datasets using delta signals as well but found
that the delta signals are so noisy that they make collective
compression worse than just compressing individual signals.
We therefore consider only the ratio signal in the rest of the
paper. However, delta signal might be a good choice for
some signals (especially when the sensors are independent
and are not sensing the physical world), and our framework
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supports using a delta signal as well.

4.1.2 Compressing base and ratio signals
Motivated by the above observation, we separately com-

press signal Sj and the ratio signal R(Si, Sj) so that later we
can reconstruct the signal Si from these compressed versions
with a bound on the maximum error ε. We use the piecewise
constant bucket approximation of the previous section to
compress these two signals with maximum error bounds ε1

and ε2. However, the values of ε1 and ε2 must be carefully
chosen to bound the maximum error of the reconstructed
signal Si within ε. The following theorem shows relation-
ship between ε, ε1, and ε2, and can help choosing the value
of one parameter given the values of other two.

Theorem 2. Suppose a base signal Sj has a piecewise
constant approximation with L∞ error ε1 and the ratio sig-
nal R(Si, Sj) has a similar approximation with error ε2, then
the signal Si can be reconstructed with L∞ error at most

ε ≤ c1ε1 + c2ε2 + ε1ε2,

where c1 = max
1≤t≤n

vi(t)

vj(t)
, c2 = max

1≤t≤n
vj(t)

Proof. The worst-case ε is the product of the worst-case
approximation error in the base signal and the worst-case
error in the ratio signal. Consider the signal reconstruction
v̂i(t) of signal Si at time t. Then, we have

v̂i(t) ≤ (ρi
j(t) + ε2)(v

j(t) + ε1) (1)

But since the true value of the signal vi(t) satisfies vi(t) =
ρi

j(t)v
j(t), we have the following

v̂i(t) = vi(t) + ρi
j(t)ε1 + ε2v

j(t) + ε1ε2, (2)

which implies that

v̂i(t) − vi(t) = ρi
j(t)ε1 + ε2v

j(t) + ε1ε2 (3)

The difference v̂i(t) − vi(t) is the approximation error, and
so this completes the proof.

Thus, the broad outline of GAMPS is the following. First
we group the sensor signals into similar groups—this is the
step we will describe in the next subsection—and then in
each group we choose one signal as a base, and compute
the ratio signals of the rest with respect to the base signal.
In fact, the choice of the base signal is also important, and
this is also a byproduct of our grouping phase. The key
insight is that the ratio signals of all the signals in a group
are highly compressible, and are well-suited for the bucket-
ing approximation and the interval sharing scheme discussed
earlier. In fact, in practice we found that the ratio signals
were so sparse that no interval sharing was needed at all!
In the following, we illustrate the Amplitude Scaling on the
DataCenter data.

4.1.3 An Example
Consider six signals from the DataCenter data. Figure 4

(top-left) shows the original data, and (top-right) shows the
result of applying bucketing approximation to individual
sensor’s data. The bottom two figures show the results of
amplitude scaling on this data. The bottom-left shows the
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Figure 4: The top row shows the humidity data and
the result of individual signal compression. The bot-
tom row shows the bucketing compression of a base
signal, and the ratio signals of the other 5 signals.
In all cases, the maximum allowed L∞ error is 1%.

bucketing approximation of the base signal, using ε1 = 0.4ε.
The bottom-right shows the ratio signals of the other 5 sen-
sors relative to the base signal. The ratio signals are also
compressed and ε2 is determined using Theorem 2. The re-
construction of any sensor data, using our amplitude scaling,
results in L∞ error less than 1%, for any of the 6 sensors.
approximations gives error less than 1% for all 6 signals.
One can see that with amplitude scaling, we spend more
memory representing a few base signals more accurately,
but then most of the remaining signals can be represented
very sparsely using their ratio signals.

4.1.4 Analysis of Amplitude Scaling
Our compressed representation of each sensor signal spec-

ifies both a template L, namely, the base signal, and a ratio
signal R for each time subinterval. Thus, in addition to the
set of template signals L = {L1, L2, . . . , L`}, we also have a
set of ratio signals R = {R1, R2, . . . , R`′}. The value of sen-
sor i during the time interval [ti

j , t
i
j+1) is approximated by

the template signal Li
j+1 and the ratio signal Ri

j+1, where

Ri
j+1 ∈ R and Li

j+1 ∈ L. Value of approximation αi(t) (t

∈ [ti
j , t

i
j+1)) equals Li

j+1R
i
j+1 evaluated at t. Suppose that

the representation of template Li takes mi memory and is
shared by di signals, and the representation of ratio signal
Ri takes ri memory. Then the representation for all the
sensor signals requires memory

∑̀
i=1

(mi + di) +

`′∑
i=1

ri

The error of our approximation is

E(L,R) = max
1≤t≤n

max
1≤i≤k

|vi(t)− αi(t)|

Our modified optimization problem can now be formu-
lated as follows: given S1, S2, . . . , Sk, and a error bound ε,
choose the template signals L with E(L,R) ≤ ε such that

the memory required,
∑`

i=1(mi + di) +
∑`′

i=1 ri, is as small
as possible.

For this problem also, we can obtain a (α, β) approxima-
tion algorithm.

Theorem 3. There is a polynomial time algorithm that
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achieves (3 +4, O(log n)) approximation for representing k
time series with piecewise constant ratio and template sig-
nals, where 4 is the worst case ratio of signal values at any
time t, where 1 ≤ t ≤ n.

In fact, in the theorem above, 4 is the worst case ratio of
two signals that are approximated together. We implement
a variant of this algorithm, and for all datasets we used,
this factor is well below 2. Our algorithm itself is a mod-
ification of interval sharing algorithm—it involves dynamic
programming and solving (polynomially) many instances of
a set cover variant. We omit all details about the algorithm
and its proof due to space constraints.

While amplitude scaling can be combined with interval
sharing, as mentioned in the theorem above, we found that
a far superior combination was to use amplitude scaling to-
gether with a grouping scheme that groups the signals in a
way to reduce the overall cost of templates and ratio signals.

4.2 Grouping of Sensor Signals
All given signals may not form a single group to be com-

pressed together using amplitude scaling and interval shar-
ing. This is not unexpected: spatial vicinity or other envi-
ronmental factors may lead to similar trends among some
small number of sensors, but any large facility would show
significant variation across it. For instance, consider the IBT
dataset, shown in Figure 5. While there are clearly common
trends (and the ratio hypothesis holds), it is also clear that
there are multiple distinct groups showing distinct trends.
In order for our amplitude scaling to work well, we need an
algorithm that can automatically discover a good grouping.

The goal of our grouping algorithm is different from ex-
isting time series clustering algorithms—we need to group
signals together that can be compressed well with ampli-
tude scaling and interval sharing. Clustering signals based
on intuitive similarity measures can perform very badly in
worst case scenarios. Consider two signals S1 and S2, where
S2 is a shifted version of S1—in the first half S2 = 1.1S1

and in the second half S2 = 0.9S1. Using similarity metrics
such as Pearson’s correlation coefficient ρ will not put these
two signals in the same group due to a very small value of
ρ. However, when using amplitude scaling, it is easy to see
that we get much bigger memory savings by grouping and
compressing S1 with S2 together.

Fortunately, our cost metric allows us to formulate this as
a facility location problem, giving us a worst-case bound on
the approximation quality. We first describe a single-shot
(static) grouping, and then extend it to the dynamic case
where the grouping is allowed to change over time.

4.2.1 Static Grouping by Facility Location
Our goal is to identify a subset of the signals as base sig-

nals, and partition the remaining into groups so each signal
is associated with a base signal. Each of these non-base sig-
nals will be represented by a ratio signal with respect to
the base signal. Our optimization criterion, of course, is the
total representation cost subject to the constraint that any
signal can be reconstructed with L∞ error at most ε. There
are two contributing factors in our representation cost: (1)
the bucket approximation of each base signal, and (2) the
bucket representation of the ratio signals of the remaining
non-base signals. It turns out that we can formulate this as
a classic facility location problem from combinatorial opti-
mization [2, 18].
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Figure 5: A portion of the IBT dataset.

A general facility location problem is modeled as a graph
G(V, E), where a subset of the nodes F ⊆ V is chosen as
facilities (such as hospitals or fire stations) to service the
remaining nodes. Opening a facility at a node j incurs a non-
negative cost c(j). Servicing a node (client) i using facility
at node j incurs a cost w(i, j). (We assume that w(i, i) = 0,
meaning that a facility serves itself for free.) The facility
location problem is to find a set of facilities F ⊆ V that
can service all the clients with minimum possible total cost
where we assume that each client is serviced by its closest
facility. That is,

Minimize
∑
j∈F

c(j) +
∑
i∈V

w(i, F )

where w(i, F ) = minj∈F w(i, j).
In our setting, the graph has the set of signals as the

nodes, and the base signals are the facilities. Thus, c(j), the
cost of opening a facility at node j, equals the amount of
memory required for representing an approximation of the
base signal. The edge cost w(i, j) in this graph, namely, the
cost of servicing a client i using facility j, is the memory
required to represent the ratio signal R(Si, Sj). The reduc-
tion is complete: minimizing the cost of the facility location
problem minimizes the total memory needed to group the
signals in such a way as to minimize the total representation
cost for a given approximation error.

We should point out, however, that this is not a met-
ric instance of the facility location, as the edge weights do
not satisfy triangle inequality. Of course, the problem is
NP-complete, but fortunately there is a known algorithm
that yields O(log k) factor approximation, by reduction to
weighted set cover, where k is the number of signals.

Algorithm 1 gives a pseudo-code formulation of our static
grouping scheme, called StatGroup, using the facility loca-
tion algorithm as a subroutine. Let Bucket(X, ε) denote
a function which implements the bucketing algorithm, and
returns the number of segments in the approximation. Al-
gorithm 1 shows the StatGroup algorithm. Input to this
algorithm is the set of signals S = {S1, S2, . . . , Sk} to be
grouped and the desired maximum error ε. The output from
the algorithm is the grouping and total memory consumed.
The rest of the details are easily understandable from the
algorithm.

4.2.2 Dynamic Grouping
The physical environment changes over time, and so a

grouping of signals that is optimal at time t may not be op-
timal in the future. Especially when archiving data over long
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Algorithm 1 StatGroup(S, ε)

1: C = ∅, W = ∅
2: S′ = S
3: while S′ 6= ∅ do
4: Set ε1 = 0.4ε and determine ε2 using ε1.
5: Pick one signal from S′, call it Sj .
6: Let cj = Bucket(Sj , ε1).
7: C = C

⋃ {cj}
8: for all Si in S do
9: Take Sj as the base signal, and compute ratio signal

R(Si, Sj).
10: Let w(i, j) = Bucket(R(Si, Sj), ε2).
11: W = W

⋃ {w(i, j)}
12: S′ = S′ \ {Si}
13: Facility-Location(C, W)
14: Return the total cost of setting up the facilities and serving

clients.

Algorithm 2 DynGroup(S, ε)

1: wsize = 100, lastpt = 0
2: while lastpt ≤ tsize do
3: S11 = ConstructSet(S, lastpt, wsize)
4: S21 = ConstructSet(S, lastpt, wsize/2)
5: S22 = ConstructSet(S, lastpt + wsize/2, wsize/2)
6: m11 = StatGroup(S11, ε), m21 = StatGroup(S21, ε), m22

= StatGroup(S22, ε)
7: if m11 ≥ m21 + m22 then
8: lastpt + = wsize/2
9: wsize = wsize/2
10: else
11: S12 = ConstructSet(S, lastpt + wsize, wsize)
12: S3 = ConstructSet(S, lastpt, wsize ∗ 2)
13: m12 = StatGroup(S12, ε)
14: m3 = StatGroup(S3, ε)
15: if m11 + m12 ≥ m3 then
16: lastpt + = wsize ∗ 2
17: wsize = wsize ∗ 2
18: else
19: lastpt + = wsize
20: Update the index structure with the chosen representa-

tions in the last iteration.

durations of time, as in monitoring of large data centers for
humidity and temperature, we expect trends to change, and
so we need an algorithm that recomputes the groups when
the old groups become suboptimal. With this in mind, we
also implemented a dynamic version of our grouping scheme,
shown in Algorithm 2.

The idea behind the Dynamic Grouping (DynGroup) heuris-
tic is to start with a time window and compute an initial set
of groups, using the StatGroup algorithm. We recompute
the groups at each new window but we also dynamically ad-
just the window size to adapt to the underlying data. In each
round, we can double the window size, halve it, or keep the
same, depending on which size gives the best performance
in terms of the memory use.

Here wsize denotes the current group size used for group-
ing the data. ConstructSet(X, τ1, size) function constructs
a subset of set X, starting from time instant τ1 and copying
size samples of data (for all time series). To start off, the
algorithm compares the memory taken by sticking with the
current group size with the memory taken by halving the
current group size. If there is an improvement by halving,
the group size is halved. Otherwise, a memory comparison
is done by doubling the current group size, and if this gives
better memory savings group size is doubled, else it remains

1
2

m

Group-head-id
Start-time
Approximation-segments

Figure 6: The MSL Index structure.

the same. The same proceedure is followed for every batch
of data, with the batch size being the same as the current
group size. The rest of algorithm is self-explanatory.

5. QUERYING COMPRESSED DATA
The primary goal of archiving sensor data is to be able

to query it in future. An attractive aspect of our combi-
natorial compression is that the approximate representation
of the signal lives in the original value space, and there-
fore lends itself to query processing, as opposed to schemes
where the data must first be decompressed (e.g., schemes
based on DFT). In this section, we describe a simple index
structure, which we call Multi Skip List (MSL), which allows
efficient processing of many generic queries. For illustrative
purposes, we focus on the following basic queries.

• Point Query : Retrieve the value of the signal Si at
time tj . This is the basic recall query which GAMPS
can answer within an error bound of ε.

• Range Query : Reconstruct the signal Si in the time
period [t1, t2], where 1 ≤ t1, t2 ≤ n. In this case, we
want a piecewise linear approximation of the signal
values for the period [t, t′] so that at no time does the
approximation differ from the true value by more than
ε.

• Similarity Query : Given two signals Si and Sj , find
how similar they are within a time range [t, t′]. Like [8],
we use Jaccard similarity coefficient as the similarity
metric.

Note that the output of a range query can be used by
a variety of data mining queries. Our index structure is
designed around the skip list, and is discussed below.

5.1 The Multi Skip List (MSL) Index
A pictorial representation of the index structure is shown

in Figure 6. The first component of the MSL is the Signal ID
Index (SI-Index) that maintains a mapping between the id
of a signal and its compressed data. In Figure 6, SI-Index is
organized as an array; however, if signals have non-numeric
or non-consecutive IDs, SI-Index can be organized as a B-
Tree, a hash table, or some other index structure that can
efficiently look up the value for a given key (signal ID).

Each entry in the SI-Index points a chain that represent
the compressed data for the corresponding signal. Since
compressed data is sequentially appended in GAMPS, data
is naturally organized in sorted order of their timestamps.
For efficient lookup based on timestamp, we organize each
chain as a skip list [26]. A skip list is an ordered linked list
with additional forward links, added in a randomized way
with a geometric/negative binomial distribution, so that a
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search in the list may quickly skip parts of the list. In terms
of efficiency, it is comparable to a binary search tree (O(log
n) average time for most operations). In MSL, each skip
list node has the following fields: (Group-head-id, Start-
time, Approximation-segments). Start-time field contains
the starting time of first approximation segment. Thus, a
node with with Start-time t contains compressed data within
the time range [t, t′), where t′ is the Start-time of the next
node in the skip list. Group-head-id field contains -1 if this
signal itself is the group head within the interval [t, t′); oth-
erwise it contains the ID of its base signal. Approximation-
segments field either contains the segments approximating
the signal itself (if Group-head-id field is -1) or it contains
the segments approximating the ratio signal. Thus, if a node
represents a base signal (if Group-head-id field is -1), it can
be reconstructed by using its Approximation-segments; oth-
erwise, it can be reconstructed by using the Approximation-
segments of the base signal given by its Group-head-id, and
its Approximation-segments representing the ratio signal.

Every time the grouping structure changes for any signal,
a new node is created (the Group-head-id field reflects this
grouping information change), inserted at the front of the
corresponding skip list, and the SI-Index entry for the signal
is updated accordingly. Thus, an insertion operation takes
O(1) time. Since no existing nodes (or their pointers) need
to be modified, new nodes can be written on persistent stor-
age sequentially. This leads to latency- and energy-efficient
archival on magnetic disk and flash memory ([24] shows how
insertion-only-on-front leads to efficient skip-list implemen-
tation on flash memory). If a node size must match the
block size of persistent storage (for efficient write and read)
and the node size reaches a block size, we start a new node,
replicating the information in the Group-head-id field.

The final component of MSL is a second-level skip list em-
bedded within each first-level skip list node discussed above.
This second-level skip list is built on Approximation seg-
ments within a node so that searching within a node can be
done in logarithmic time. This is particularly useful when
a first-level skip list node contains a large number of Ap-
proximation segments over a large time window (which may
happen if the grouping of a set of signals does not change,
and hence signals are kept in the same node, for a long time).

5.2 Querying MSL Index
We now present how different queries mentioned before

can be supported in MSL.

Point query. For a point query, we are given a signal-
id, Si, and time instant, ti and we need to find the value
of Si at time ti. To answer the query, we first search the
skip-list of signal Si and find the node N that contains the
timestamp ti. Then we search its Approximation-segments
for the segment seg containing timestamp ti. If the Group-
head-id of the node N is -1, then we return the value v1

represented by segment seg. Otherwise, we repeat the above
search in the skip-list of signal given by the Group-head-id of
N , and find the value v2 at ti, and return the value (v2 ∗ v1)
as the answer. Since all the searches for locating nodes and
Approximation-segments are performed over skip lists, the
overall time taken to answer this query is O(log n).

Range query. The range query (t1, t2) can be answered
in a similar manner by first searching for time instant t2
and then following the skip list pointers till we find t1 (data

in a skip-list is stored in descending order of timestamps).
The same process is repeated for the base signal if required.
Overall, the query time is O(log n + δ), where δ is the total
number of Approximation-segments within the range [t1, t2].

Other more application specific queries, like hot-spot queries
for the sensor network signals, that asks for a histogram of
the hottest sensors in a given time range, can be efficiently
answered using these two basic queries.

Similarity query. After reconstructing signals by using
the above range query, one can use any existing technique
for measuring similarity between two signals. However, the
grouping algorithm of GAMPS naturally and efficiently sup-
ports similarity queries based on signals’ shapes (not abso-
lute data values). Such a query is useful to identify signals
that have similar trends, even though their absolute values
can be different (e.g., Figure 1(b)). The key observation is
that GAMPS groups two signals together if they have sim-
ilar shapes within a time window represented by the group.
Suppose, the function bSi,Sj (t) returns 1 if two signals Si

and Sj are in the same group at time t, and 0 otherwise.
Then, we define the similarity score simSi,Sj between sig-
nals Siand Sj within the range [t1, t2] as follows:

simSi,Sj =

∑t2
t=t1

bSi,Sj (t)

t2 − t1
(4)

Note that our similarity score is the same as the Jaccard
similarity coefficient (for binary attributes bSi,Sj (t)), which
has been shown effective to identify similarity and rarity of
data streams [8].

To find the similarity score between two signals within a
time range [t1, t2] using MSL, we first find the first skip
nodes (i.e., nodes containing the timestamp t2) for both
signals. This takes O(log n) time. Then, we sequentially
scan both skip lists in parallel and accumulate the time
over which both signals share the same group. Since the
Group-head-id is defined once per node, this entire scan
takes O(max(k1, k2)) time, where k1 and k2 are the numbers
of skip nodes two signals have within the given time range.
In contrast, had we first retrieved both signals and then used
some linear time similarity algorithm, the total cost would
have been O(log n + δ1 + δ2 +(t2− t1)), where δ1 and δ2 are
the total number of Approximation-segments of two signals
within the range [t1, t2]. Apart from the higher time com-
plexity, this scheme might produce less accurate similarity
results, as the similarity scores would be computed over ap-
proximate reconstruction of the original data; in contrast,
our algorithm uses grouping information based on original
signals. In Section 6, we will evaluate the effectiveness of
our algorithm

Many other approximate forms of data analysis can be
supported by GAMPS. For instance, the grouping informa-
tion of GAMPS can be used to prune the search for anomaly
detection. In particular, for detecting magnitude anomalies,
we only need to look within a group; and for detecting trend
anomalies, we need to only compare group heads of differ-
ent groups. For more details on these anomalies we refer the
reader to [20].

6. EXPERIMENTS
In this section, we report on our experimental evaluation

of GAMPS, using 3 real-world data sets DataCenter (24 sig-
nals), IBT (54 signals), and Server (240 signals) described
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Figure 7: Compression obtained by GAMPS as com-
pared to (a) raw data and (b) individually com-
pressed signals.

in the beginning of Section 3. We implemented the algo-
rithm described in Algorithm 2. The facility location part
(Facility-Location()) is formulated as a linear program (LP)
and we use an open source LP solver for it. We evaluate
GAMPS’ compression performance, its dependence on error
tolerance ε, the effect of grouping, and the accuracy of its
similarity queries.

6.1 Compression Performance
Our first experiment confirms the obvious: compression

can reduce space by several orders of magnitude. We ran
GAMPS on all three data sets. Through all of our exper-
iments, we divided the approximation error ε into its two
components by choosing ε1 = 0.4ε, and then calculated
the corresponding ε2. We found that different choices of ε1

had only a minor effect on the final compression, but one
can certainly tune this parameter if needed. The results are
shown in Figure 7(a). GAMPS reduces space by a factor
between 100 and 490 on Server data, and between 25 to 125
for the other two datasets even for very small values of the
approximation error ε, which is kept in the range [0.01, 0.02]
(1–2%). The performance for the Server dataset is the best
because it is the largest dataset and it has the largest av-
erage group size. For instance, with ε = 1%, the average
group size is 60 for the Server dataset, while it is only 4.5
and 6 for IBT and DataCenter datasets, respectively.

But how good is GAMPS compared to some other approx-
imation schemes? We are not aware of any multi-sensor
compression scheme that guarantees L∞ error, so we do the
next best thing, and compare GAMPS to the state of the
art individual signal compression scheme. That is, suppose
we compress each signal Si individually to approximation
error ε, how much additional compression can we expect
from inter-signal correlation? The bucketing scheme of [3]
is known to be optimal, so we use that to approximate indi-
vidual signals, and compare the result with that of GAMPS.
Pleasantly, we find that GAMPS is able to deliver space sav-
ing by a factor of 2 to 10 for an error of 1.5%, depending on
the data (Figure 7(b)).

Figure 7 also shows the relative compression performance
of GAMPS with increasing approximation error. Since in-
creasing the error tolerance also improves the compression of
individual signals, it is remarkable that on the Server data,
the advantage of GAMPS continues to grow as ε grows. By
the very nature of the problem, compression across multiple
sensors is only possible when those sensors show data cor-
relation (which can vary dynamically over time). Thus, the
performance of GAMPS is only significant when sensors can
be grouped in large groups. We explore this aspect in the
our next experiment.
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Figure 8: Compression vs. the group size. The com-
pression factor improves from 3 to 12 as the number
of signals in the group varies from 10 to 60.

6.2 Scaling with Group Size
In this experiment, we evaluate the effect of group size on

the compression performance. We demonstrate this on the
240-signal Server data because that is our largest dataset.
From this data, we extracted one group with 60 signals in
order to evaluate the scaling of compression factor with in-
creasing group size. Once again, we compare the perfor-
mance of GAMPS relative to the best compression achieved
by individual signal approximation using the bucketing scheme [3].
The results for this experiment are plotted in Figure 8. For
this 60-signal Server data, GAMPS outperforms the individ-
ual signal compression by a factor between 8 when ε = 1%
and 12 when ε = 2%.

6.3 Compression Gain of Grouping
In this section, we empirically evaluate the significance

of grouping in GAMPS by understanding how much space
saving is attributable to grouping, to what extent a near-
optimal grouping helps, and how much benefit comes from
dynamic grouping.

6.3.1 Static Grouping
In order to evaluate the importance of grouping, we first

ran the simple-minded experiment where all the data is put
in a single group. We then choose the best signal in the
group as a base, to which the remaining signals are related
by ratios. We observed uniformly poor performance because
signals unrelated to the base signal lead to very bad ratio
signals. We, therefore, considered a slightly better version,
which we call hybrid, where a single base is chosen for the
group, but then the remaining signals have the freedom to
either join the group (in which case we use its ratio signal) or
maintain its own individual compression. The choice is made
based on the cost of representation. We expect the hybrid
to do at least as well as individual compression or a single
group. Figure 9 shows the relative compression achieved
by the individual compression, the hybrid, and GAMPS,
using two data sets: the 45-signal IBT data and the 240-
signal Server data. We note that a significant part of the
compression factor for both the datasets, comes from the
grouping. For instance, for the Server dataset for an error of
1.5% the compression factor achieved by the hybrid scheme
over individual signal approximation is only 1.5 as compared
to a factor 9 achieved by GAMPS.

One interesting thing to note is that the way the group-
ing algorithm is formulated, there is no information input
to the grouping algorithm about the physical locality of the
sensors. We only calculate the cost of representing one sig-
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Figure 10: The part on the left shows the sensor layout in the Intel Berkeley lab. The right part shows the
groups found by the algorithm, along with outliers (marked by squares).
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Figure 9: Comparison between GAMPS and HY-
BRID IBT and Server datasets.

nal with another and input this to the grouping algorithm.
Given all this, it is interesting to note the geographical lo-
cality of sensors placed in the same groups. Left part of
Figure 10 shows the layout of the sensors in the Intel Berke-
ley lab, superimposed over the layout for the rooms. The
sensors are shown by the dark hexagons in the figure. The
part on the right shows the groups obtained geographically.
The sensors in each of the shaded regions were placed in the
same group by our grouping algorithm. The simplicity of
the output group boundaries conforms to the intuition that
sensors in the same group are likely to sense similar physi-
cal phenomena. Similar intuition has been presented by the
authors of [12] who were behind the setup of this network.
The authors in their work hand mapped a similar set of ge-
ographical regions in order to form an input for their model
for prediction of sensor values, noting that the sensors in
the same region, were expected to have similar sensed val-
ues. The sensors marked with crosses are the ones for which
the data was not available for that day. The sensors marked
with rectangles are outliers, i.e. the grouping algorithm used
individual approximations for these sensors. Most of these
outlier sensors are actually in or around conference rooms.

6.3.2 Dynamic Grouping
Next, we evaluate the power of dynamic grouping, rela-

tive to static grouping. Dynamic grouping has its tradeoffs.
Every time we regroup, we need to store additional informa-
tion about the new groups. There are also non-full buckets
at the group boundary, which cause some waste of space.
On the other hand, if the grouping interval is too long, we
might not get the compression benefit which we can achieve
by changing the grouping. In order to evaluate these pros
and cons, we use the DataCenter data shown in Figure 11 for
the experiment. Figure 12 shows our results on this dataset.

The key observation is that our dynamic grouping con-
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Figure 11: Approximately 9 days of data for 12 sen-
sors in the DataCenter dataset.
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Figure 12: Comparison between dynamic grouping
(GAMPS), static grouping, and periodic grouping.

sistently achieves (albeit by a small margin) better per-
formance than static grouping. Furthermore, our dynamic
grouping scheme is able to adapt to data automatically in
a way that is better than any of the fixed periodic regroup-
ings we tried, with different frequencies (500, 1000, 2000 and
4000).

6.4 Signal Similarity Queries
Finally, we demonstrate the effectiveness of our similarity

query algorithm using one example scenario; qualitatively
similar results have been found with other scenarios. In this
scenario, we use DataCenter dataset, a portion of which is
shown in the top half of Figure 13. The bottom part of Fig-
ure 13 shows the output of most similar and most dissimilar
signals for a query signal. Visually, the results look quite rea-
sonable. As mentioned before, we are interested in similar-
ity/dissimilarity in signals’ shapes only. Therefore, ideally,
one would compute correlation coefficients (e.g., Pearson’s
coefficients ρ) on original signals to determine similarity—
the higher the value of ρ, the higher the similarity of two
signals’ shapes. We found that the result of our scheme is
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Figure 13: Similarity queries.

very close to this ideal scheme; in particular, for the sce-
nario in Figure 13, both our scheme and Pearson’s coeffi-
cient based scheme determine the same signal as the most
dissimilar (ρ = 0.69). For the most similar signal, the ideal
scheme returns the most correlated signal with ρ = 0.98,
while our scheme chooses the second most correlated signal
with ρ = 0.975 which is very close to 0.98. In general, we
found that our scheme may miss the most similar/dissimilar
signal, but the ρ values of the selected signals are very close
to the true ones selected by the ideal scheme.

7. CONCLUSION
In this paper we have made a principled attempt to for-

malize the multi-sensor compression problem and proposed
schemes with worst-case error guarantees. We have pro-
posed GAMPS, a novel framework to compress a large num-
ber of sensor data streams. Unlike most existing work,
GAMPS guarantees a given worst-case maximum (L∞) er-
ror. Notable features of GAMPS include i) it dynamically
discovers groups of sensor signals that can be maximally
compressed together, ii) it further improves overall compres-
sion ratio of signals using appropriate amplitude scaling,
and iii) it maintains an index that enables answering sev-
eral important queries directly from compressed data. To
the best of our knowledge, GAMPS is the first system to
provide these features. Evaluation of GAMPS with several
real-world datasets shows significant benefit.
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