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Abstract

We consider the following question: Given a subdivi-
sion of space into n convex polyhedral cells, what is
the worst-case complexity of a binary space partition
(BSP) for the subdivision? We show that if the subdi-
vision is rectangular and axis-aligned, then the worst-
case complexity of an axis-aligned BSP is Ω(n4/3) and
O(nα log2 n), where α = 1+log2(4/3) = 1.4150375 . . . .
By contrast, it is known that the BSP of a collection of
n rectangular cells not forming a subdivision has worst-
case complexity Θ(n3/2). We also show that the worst-
case complexity of a BSP for a general convex polyhe-
dral subdivision of total complexity O(n) is Ω(n3/2).

1 Introduction

A binary space partition (BSP) is a recursive convex
subdivision of space, defined with respect to some set
of objects S. Given an open convex region of space
containing S, a BSP partitions the region and objects
with a cutting plane, then recursively partitions the
two subproblems that result. The process stops when
each open partition region intersects at most one object
of S. In the ideal case, the number of regions in the
final BSP would be at most n, the number of input
objects. However, because a BSP may fracture input
objects many times, the BSP size may be much larger
than n.

Binary space partitions were introduced in the
graphics community [8, 13] to solve hidden surface
removal problems, and since then have been used for a
wide variety of applications, including solid modeling,
ray tracing, shadow generation, and robotics, to name
only a representative sample [1, 4, 5, 9, 10, 14]. Because
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most computer graphics is concerned with visualizing
3-space, R3 is the most important setting for BSPs.

Computational geometers have studied BSPs since
the work of Paterson and Yao in the late 1980s [11, 12].
Because BSPs are often used to decompose large data
sets, the size of a BSP (the number of regions in the
final decomposition) can be crucial to the performance
of BSP-based applications. Thus theoreticians have
focused on finding upper and lower bounds on the sizes
of BSPs in various settings.

In two dimensions, there are linear-size BSPs for
axis-aligned segments [11], segments with a fixed num-
ber of orientations [15], segments with lengths in a
bounded range [6], and fat objects or homothets [6].
For arbitrary segments in the plane, an optimal BSP
has size O(n log n) and Ω(n log n/ log log n) [11, 16].

In three dimensions, a collection of n arbitrarily-
oriented segments requires a BSP of worst-case size
Θ(n2); axis-aligned segments or rectangles have a
smaller BSP of worst-case size Θ(n3/2) [11, 12]. Bounds
can also be obtained for axis-aligned hyperrectangles in
Rd, for d > 3 [7].

In all of these cases, the input consists of disjoint
objects that do not cover their containing space. In
this paper we consider the case in which we are given
a convex subdivision of space as input. (BSPs of
rectilinear subdivisions in the plane have previously
been considered; however, in two dimensions, the
improvement is only in the constant factors, not in
asymptotic complexity [2].) We are interested in the
complexity of refining an arbitrary convex subdivision
into a binary space partition In this case, the known
lower bounds do not tell us anything nontrivial. For
example, in the lower bound construction for axis-
aligned BSPs [12], just filling in the space around
the n line segments requires Θ(n3/2) cells. Thus for
that construction, the BSP size is linear in the size
of the subdivision. Similarly, converting the lower
bound construction for arbitrary segments [11] into a
subdivision requires Θ(n2) additional cells, trivializing



the Ω(n2) lower bound for arbitrary BSPs.
Our main results apply to BSPs for axis-aligned

convex subdivisions. We show that the complexity
bounds for segments and rectangles do not apply in
this case. If every cell in the input subdivision is an
axis-aligned box, then the worst-case size of a BSP
for the subdivision is strictly less than the Θ(n3/2)
bound for non-subdivision input. In particular, we
show that the BSP size is O(nα log2 n), for α = 1 +
log2(4/3) = 1.4150375 . . . . On the other hand, we
exhibit subdivisions such that any axis-aligned BSP
must have size Ω(n4/3). If the vertices of the input
subdivision are constrained to lie on c axis-aligned
planes, for c ≤ n1/3, then the BSP has worst-case size
Ω(nc) and O(nc log c). If the input is an unconstrained
convex subdivision, then we show that there are linear-
size subdivisions whose BSPs must have size Ω(n3/2).
We have no improvements in the upper bound at the
moment.

2 Preliminaries

The input to a binary space partition problem consists
of an open convex region C of Rd, along with a set
S of interior-disjoint objects that are contained in C.
(The restriction to disjoint objects can be relaxed,
but it complicates the bounds.) A BSP partitions C
and S with a hyperplane into {C1, C2} and {S1, S2},
then recursively partitions (C1, S1) and (C2, S2). The
partitioning stops when for every subproblem (Ci, Si),
|Si| ≤ 1.

A BSP corresponds to a binary tree. Each internal
node of the tree represents an open region Ci, its
corresponding set of objects Si, and the plane that
splits Ci and Si in two. A leaf of the tree represents a
leaf cell Ci whose set Si contains at most one object.
The height of the tree is important for applications
such as point location; however, we focus our attention
on the number of leaves, that is, the size of the final
partition.

Free cuts are important for efficient construction
of BSPs. A free cut is a partition that separates the
object set without splitting any object. See Figure 1.
When a subproblem (Ci, Si) has a free cut, it is always
worth splitting at the free cut, since it does necessary
work—separating objects that must be separated by
the BSP—without increasing the complexity of the
subproblems (and hence the final BSP size). A BSP
that uses only free cuts necessarily has size less than
n. Of course, not all subdivisions admit a free cut.

We focus on BSPs for convex subdivisions of 3-
space. The objects to be partitioned are the convex

Figure 1: A free cut (shown thickened) in a planar
subdivision.

polyhedral cells of the subdivision. It follows that
every subdivision face must be included in a splitting
plane of the BSP. Because most of our attention will
be devoted to axis-aligned convex subdivisions, we give
a few definitions specific to this case:

A box is an axis-aligned rectangular paral-
lelepiped. A box subdivision is a partition of
some box (called the outer box or boundary
of the subdivision) into smaller boxes called
cells.

A rod is a cell of a box subdivision that is inci-
dent to two opposite faces of the subdivision’s
outer box. If a rod is incident to two oppo-
site faces F1 and F2 of the subdivision’s outer
box, the rod’s orientation is the direction nor-
mal to F1 and F2. A rod may have one, two,
or three orientations, depending on the num-
ber of opposite face pairs it touches. We call
such rods singly-oriented, doubly-oriented, or
triply-oriented, respectively.

Lemma 2.1. A cell C of a box subdivision is a rod if
and only if it has all its vertices on the outer box of the
subdivision.

Proof. If C is a rod, then it has two opposite faces F1

and F2 that are contained in faces of the subdivision’s
outer box. But all the vertices of C belong to one or
the other of F1 and F2, and so all the vertices of C lie
on the subdivision’s outer box.

Suppose C is not a rod. Then C has three faces,
one for each dimension, that do not lie on the outer
box. These three faces (denoted Fx, Fy, and Fz) share
a common vertex, since none of them is opposite the
other. Each of the planes supporting one of Fx, Fy, and
Fz intersects the interior of the outer box. Therefore,
their common intersection, which is a vertex of C, must
lie in the interior of the outer box.



3 Lower bounds for box subdivi-
sions

Paterson and Yao gave a configuration of 3n (non-
space-filling) axis-aligned rods such that any BSP
for the configuration cuts the rods into Ω(n3/2) sub-
cells [12]. We describe a variant of the Paterson-Yao
construction in some detail, because it is the basis of
our lower bound for box subdivisions.

The rods of the Paterson-Yao construction belong
to three families, each parallel to one of the coordinate
axes, and form an interlocking grid. See Figure 2.
Without loss of generality, assume that n = m2 for
some integer m. The x-, y-, and z-parallel families
consist of boxes indexed by 1 ≤ i, j, k ≤ m, described
by the following Cartesian products:

[0.5,m + 0.5]× [j, j + 0.5]× [k, k + 0.5]

[i, i + 0.5]× [0.5,m + 0.5]× [k − 0.5, k]

[i− 0.5, i]× [j − 0.5, j]× [0.5,m + 0.5]

Figure 2: The Paterson-Yao lower bound construction,
with the rods slightly separated and lengthened to
make them easier to see.

It is straightforward to observe that the rods in
each family are disjoint. Furthermore, rods in different
families are disjoint, because for each pair of families
there is one of the three dimensions (x, y, or z) in which
the two families lie in disjoint ranges: for one family,
any rod’s coordinates lie in the range [A,A + 0.5],
for some integer A; for the other family, any rod’s
coordinates lie in [B − 0.5, B], for integral B. Further
observe that each grid point (i, j, k), for 1 ≤ i, j, k ≤ m,
is incident to one rod from each of the three families.

For each grid point (i, j, k), for 1 ≤ i, j, k ≤ m,
consider the box

[i− 0.5, i + 0.5]× [j − 0.5, j + 0.5]× [k − 0.5, k + 0.5].

These boxes are interior-disjoint, and each must be cut
by a BSP plane passing through (i, j, k), since the BSP
must separate the three rods in the neighborhood of
(i, j, k). The first plane that passes through (i, j, k)
must cut at least one of the three rods inside the box
centered on (i, j, k). Since all the boxes are disjoint,
the total number of rod cuts is at least m3 = n3/2.

The Paterson-Yao construction is opaque, in the
sense that every axis-parallel line passing through the
big cube

[0.5, m + 0.5]× [0.5,m + 0.5]× [0.5,m + 0.5]

intersects the closure of at least one rod. However, the
configuration of rods is not a subdivision: the rods do
not fill space. This is easy to prove by observing that
the total volume of the big cube is m3, and the total
volume of each rod inside the cube is m/4. There are
3m2 rods, for a total rod volume inside the cube of
0.75m3, which is less than m3. The empty space is
distributed in 2m3 little cubes. In particular, for each
grid point (i, j, k) inside the big cube, the little cubes

[i− 0.5, i]× [j, j + 0.5]× [k − 0.5, k]

and
[i, i + 0.5]× [j − 0.5, j]× [k, k + 0.5]

are empty. Each of these little cubes has volume 1/8.
See Figure 3.

empty

(behind)

Figure 3: A unit cube centered on a grid point in the
Paterson-Yao construction.

Converting the Paterson-Yao configuration into
a subdivision requires adding Θ(m3) new cells—two
cubic cells for each triple (i, j, k). Thus the Ω(m3)
lower bound on the BSP complexity becomes trivial—
it is linear in the input size. However, with a little
more work, we can extend the construction to give a
nontrivial lower bound.

Theorem 3.1. There is a three-dimensional subdivi-
sion of space into n axis-aligned boxes such that any
axis-aligned binary space partition for the subdivision
cuts the boxes into Ω(n4/3) subcells.



Proof. We begin with a Paterson-Yao construction
consisting of 3m2 rods, and then extend it to a subdivi-
sion of the cube [0.5,m+0.5]3 by adding the 2m3 little
cube cells needed to fill in the empty space between the
rods. We then subdivide each rod longitudinally into
m parallel sub-rods.

As in the original Paterson-Yao argument, each of
the unit cubes centered on a grid point (i, j, k) must
be cut by at least one BSP plane, since the BSP must
separate the cells incident to (i, j, k). The first plane
that cuts a unit cube must completely cross one of the
original rods, and hence it cuts at least m sub-rods.
The total number of rod cuts is at least m3 × m =
m4. The total number of cells in our subdivision is
n = 3m2 ×m + 2m3 = 5m3, and hence the number of
subcells produced by the BSP is Ω(n4/3).

4 Upper bounds for box subdi-
visions

We begin by showing that the difficulty of computing a
BSP for a box subdivision is due to cells with vertices
not on the boundary of the subdivision, that is, non-
rod cells. We first establish a useful technical lemma.

Lemma 4.1. Consider a box subdivision with n cells,
all of them rods. If each rod in the subdivision is singly-
oriented, then all the rods, taken together, have at most
two orientations.

Proof. Suppose to the contrary that A, B, and C are
three rods with three different orientations. Let `A,
`B , and `C be lines running down the centers of A, B,
and C, respectively, parallel to their rods’ orientations.
These are three axis-parallel skew lines. Let PAB be
the axis-aligned plane containing `A and intersecting
`B (see Figure 4). Define PBC and PCA similarly. Note
that PAB does not intersect `C , because it is parallel
to it. The point PAB ∩ `B lies inside B—PAB lies
between the planes supporting the outer box faces that
`B pierces. Now PAB∩PBC is a line parallel to `A that
intersects `B . It follows that PAB∩PBC is disjoint from
A and intersects B. Similar claims hold for PBC ∩PCA

and PCA ∩ PAB .
Let p be the point PAB ∩ PBC ∩ PCA. Point p is

disjoint from A ∪ B ∪ C; p also lies inside the outer
box, since it is connected by three orthogonal lines to
the points PAB ∩ `B , PBC ∩ `C , and PCA ∩ `A, all of
which lie inside the outer box. Now we claim that the
cell containing p cannot be a rod: for each of the axis-
parallel directions, there is a line (e.g., PAB ∩ PBC)
that intersects one of A, B, and C, and hence the cell

P
AB

^ P
BC

P
CA

^

P
AB

l
C

l
B

l
A

Figure 4: Singly-oriented rods with three different
orientations imply the existence of an interior vertex.

containing p cannot touch any pair of opposite faces of
the outer box. This completes the proof.

Lemma 4.2. If a box subdivision with n cells has no
vertices in the interior of its outer box, then it has a
BSP of size O(n).

Proof. All the cells in the subdivision are rods, by
Lemma 2.1. A triply-oriented rod completely fills the
outer box, and no BSP cuts are needed. If a rod
is doubly-oriented, any of its faces not on the outer
box touches four faces of the outer box. That is, we
can make a free cut along such a face and recursively
partition the resulting two subdivisions. Thus, we
may assume that all rods are singly-oriented. By
Lemma 4.1, therefore, all the rods in the subdivision
have at most two different orientations. We handle the
two cases below separately.

If the rods in the subdivision have two different
orientations, we produce a free cut. See Figure 5.
Suppose without loss of generality that the rods are
x- and y-oriented, and that the rod R1 with greatest
z-coordinate is x-oriented. Note that no x-oriented rod
can intersect the z-interval of a y-oriented rod, or else
the two rods would intersect. The y-oriented rod R2

with greatest z-coordinate lies strictly below R1, and
hence strictly below the top of the outer box. Let z2

be the maximum z-coordinate of R2. The part of the
outer box with z ≥ z2 contains only x-oriented rods,
and no x-oriented rod lies in the z-interval of R2. Hence
the plane z = z2 is a free cut.

If all the rods in the cell have the same orientation,
then we project them onto the plane perpendicular
to their orientation. This gives a two-dimensional
subdivision, which has a two-dimensional BSP of size



Figure 5: Singly-oriented rods with two different ori-
entations imply the existence of a free cut.

at most cn, for some small constant c [7, 12]. Extending
each linear cut of the two-dimensional BSP into a
planar cut parallel to the rod orientation, we produce
a BSP for the box subdivision of size at most cn.

Putting the pieces together, we have shown that
a subdivision containing only n rod cells always has a
free cut unless all the rods have the same orientation,
in which case a BSP of size cn is possible. The total
size of a BSP for the subdivision is therefore

f(n) ≤ max
(

max
0<i<n

(
f(i) + f(n− i)

)
, cn

)

≤ cn.

We apply the preceding lemma by slicing a sub-
division through its interior vertices, producing a col-
lection of smaller subdivisions, each of which contains
only rod cells. The lemma implies that each of these
subdivisions has a linear-size BSP. The key to efficiency
is bounding the total complexity of the rod subdivisions
produced by the slicing procedure.

Given a subdivision with n cells and k interior
vertices, we define a potential for each cell, depending
on k and the incidences between the cell and the outer
box of the subdivision.

Definition 4.3. For a given cell b, define F (b) to be
the number of faces of b that lie on the sides of the
outer box. Note that 0 ≤ F (b) ≤ 6.

Definition 4.4. For a given cell b, let δ(b) be a 0/1
variable that is 1 if b is a rod, and 0 otherwise.

The potential of a cell b is

C(b, k) =





0 if b is a doubly- or
triply-oriented rod

24−F (b)dlg ke2−δ(b) otherwise

where lg k ≡ log2 k. The maximum value of C(b, k) is
16dlg ke2 for a cell completely interior to the subdivi-
sion. The total potential of a subdivision is the sum of
the potentials of its cells. Thus the potential of a sub-
division with n cells and k interior vertices is at most
16ndlg ke2.

We use the potentials to guide our BSP construc-
tion, ensuring that our BSP cuts do not increase the
potential by too much. We argue that the total com-
plexity of the final BSP is asymptotically bounded by
the total potential added during the slicing procedure,
which we bound in Theorem 4.8. Our partition algo-
rithm is as follows:

1. If there are any free cuts available, choose one
and then recursively partition the two remaining
subdivisions. (If this step is not executed, no rod
is doubly- or triply-oriented.)

2. If the subdivision has at most one interior vertex,
slice through it (if it exists) with a single BSP cut,
then use Lemma 4.2 on the remaining pieces to
compute a linear-size BSP.

3. (The subdivision has k > 1 interior vertices, and
all rods are singly-oriented.)

(a) For each orientation θ ∈ {x, y, z}, compute
the total potential of the rods with orienta-
tion θ.

(b) For the orientation θ with minimum potential
σ, cut the subdivision with a plane perpen-
dicular to θ and passing through the median
internal vertex (≤ k/2 internal vertices lie on
either side).

(c) Recursively partition the two subdivisions
produced by the cut.

We first show that the potential of a cell increases
only when it is cut.

Lemma 4.5. For a given cell b that is not partitioned
by a particular BSP cut, its potential after the cut is
no greater than its potential before the cut.

Proof. If b is not touched by the cutting plane, the
exponents in

C(b, k) = 24−F (b)dlg ke2−δ(b)

are not changed, and the value of k cannot increase;
hence the potential does not increase. If b is adjacent
to the cutting plane but not intersected by it, then F (b)
increases, δ(b) may increase, and k does not increase.
Therefore C(b, k) decreases.



Corollary 4.6. The total potential is not increased
by the free cuts performed in Step 1.

Lemma 4.7. Suppose that Step 3 of the algorithm is
applied to a subdivision with potential Σ, and t cells
are split. Then the two resulting subdivisions have total
potential at most 4

3Σ− t.

Proof. By Lemma 4.5, we need to consider only cells
that are partitioned by the cutting plane; the potentials
of the other cells do not increase. For convenience, let
us refer to a θ-oriented rod as a θ-rod, and refer to a
cell face that is contained in a θ-extreme face of the
outer box as a θ-face. Thus a θ-rod has two θ-faces.
Consider a cell b partitioned by the cutting plane. We
analyze the potential of the two child subcells produced
from b in the following cases:

1. b is a θ-rod. It initially has potential C(b, k) =
24−F (b)dlg ke; note that F (b) ≤ 4, since Step 1 of
the algorithm was not applied. The two child cells
are both θ-rods, and have total potential at most

2 · 24−F (b)

⌈
lg

k

2

⌉
= 2 · 24−F (b)(dlg ke − 1)

= 2 C(b, k)− 2.

2. b has no θ-face. In this case F (b) ≤ 3. Each child
cell has one θ-face, and the total potential for both
of them is at most

2 · 24−F (b)−1

⌈
lg

k

2

⌉2−δ(b)

≤ 24−F (b)(dlg ke − 1)2−δ(b)

≤ C(b, k)− 1.

3. b has one θ-face. In this case one child is a θ-rod,
and the other has one θ-face. We distinguish two
subcases:

(a) b is not a rod. In this case F (b) ≤ 3, and the
children have potential at most

24−F (b)

⌈
lg

k

2

⌉2

+ 24−F (b)−1

⌈
lg

k

2

⌉

≤ 24−F (b)

⌈
lg

k

2

⌉(
dlg ke − 1 +

1
2

)

≤ 24−F (b)(dlg ke − 1)dlg ke
≤ C(b, k)− 1.

(b) b is a rod with a non-θ orientation. Then
F (b) ≤ 4. After the cut, the child that is a

doubly-oriented rod has zero potential. The
potential of the other child is at most

24−F (b)

⌈
lg

k

2

⌉

= 24−F (b) (dlg ke − 1) ≤ C(b, k)− 1.

In each case except the first, the potential of the child
cells is at least 1 less than the potential of the parent
cell that is split. In the first case, the potential is
at least 1 less than twice the potential of the parent
cell. The total potential of the cells split in the
first case is σ ≤ Σ/3. (Since the rod potentials are
partitioned among the three orientations, the potential
σ associated with the minimum-potential orientation is
at most Σ/3.) Summing over all the split cells proves
the lemma.

Theorem 4.8. A box subdivision with n cells has a
BSP of size O(nα log2 n), where α = 1 + log2(4/3) =
1.4150375 . . . .

Proof. Our partition algorithm creates a BSP tree
T . At the leaves of T are individual BSP regions.
Each internal node corresponds to a subdivision that
is further partitioned. For analysis purposes, we will
consider the subtrees that correspond to invocations of
Step 2 separately from the rest of the tree. Let T− be
the partial BSP tree obtained by removing all of the
Step 2 trees from the bottom fringe of T .

By Lemma 4.2, the number of leaves in a Step 2
subtree is proportional to the total number of cells
in the subdivision at its root. The root of a Step 2
subtree has at most as many cells as the leaf of T−

that is its parent. Thus the total number of leaves of
T (the complexity of the final BSP) is proportional to
the number of cells at the leaves of T−.

We bound the number of cells at the leaves of T−

using a credit scheme. Our partition algorithm builds
T− recursively, starting from a single node (the root).
Each recursive invocation of the algorithm applies
Step 1 or Step 3 to add two children to some leaf of the
current tree. We assign some number of credits to the
root initially, then maintain the invariant that at each
stage of the construction, the total number of credits
assigned to the tree is at least as large as the number
of cells plus the potential of the cells in the leaves’
subdivisions. Thus at the end of the construction of
T−, the number of credits bounds the number of cells at
the leaves of T−, which in turn asymptotically bounds
the complexity of the final BSP.

We assume that k > 1, since otherwise Step 2
applies immediately, and the total BSP size is O(n),
by Lemma 4.2. We assign n+16ndlg ke2 credits to the



initial subdivision (stored at the root of T−), so the
invariant holds initially.

Whenever Step 1 is applied, the total number of
cells remains constant, and their total potential does
not increase (Lemma 4.5), so the invariant continues
to hold.

Whenever we split some θ-rods with total potential
σ ≤ Σ/3 in Step 3, we increase the number of credits
by σ. Let t be the total number of cells cut by Step 3
(not just θ-rods). Let Cpre be the total potential of
the cells in the leaves’ subdivisions before Step 3 is
applied and let Cpost be the potential afterward. By
Lemma 4.7, Cpost + t ≤ Cpre +σ. If the number of cells
before the split was N , and the number of credits before
the split was A, the initial condition A ≥ Cpre + N ,
together with the preceding observation, implies that
the invariant continues to hold: A+σ ≥ Cpost +N + t.

Because Step 3 splits the current subdivision
through a median interior vertex, the number of such
splits on the path from the root of T− to any leaf of
T− is at most lg k. If we remove every non-root Step 1
node in T− by collapsing the edge joining it to its par-
ent, we are left with a tree T ∗ of height at most lg k
in which all the nodes (except possibly the root) corre-
spond to Step 3 splits. We bound the credits assigned
to T ∗ (and hence to T−) level by level. The total rod
potential at a single level of T ∗ is bounded by the num-
ber of credits at that level, and so the number of credits
assigned to the next level is at most 4/3 of that at the
current level. In the worst case, the total number of
credits assigned to T− is at most

(n + 16dlg ke2) · (4/3)lg k.

But (4/3)lg k = 2lg(4/3) lg k = klg(4/3) = O(nlg(4/3)).
Thus the number of credits, and hence the final size
of the BSP, is O(nα log2 n), where α = 1 + lg(4/3) =
1.4150375 . . . .

5 Bounds for constrained box
subdivisions

In this section we consider the special case of box
subdivisions whose vertices are constrained to lie on
a fixed set of c axis-aligned planes, where c ≤ n1/3.
Note that this is less restrictive than requiring all the
faces to lie on the fixed set of planes. We are able to
prove nearly matching lower and upper bounds on the
worst-case BSP complexity.

Theorem 5.1. For any c ≤ n1/3, there exists an n-
cell box subdivision with all of its vertices on a fixed set
of c axis-aligned planes such that any axis-aligned BSP
for the subdivision has size Ω(nc).

Proof. Let c have the form c = 3(2d + 1). Our
construction is based on the proof of Theorem 3.1. We
construct a Paterson-Yao d× d× d grid of rods, where
each rod extends from one side to the other of the cube

[0.5, d + 0.5]× [0.5, d + 0.5]× [0.5, d + 0.5].

We fill in the gaps around the rods with 2d3 little cube
cells. All the vertices of the subdivision lie on the
3(2d + 1) half-integer planes that intersect the outer
box. We further subdivide each rod into m parallel sub-
rods, for a value of m to be determined below. All the
sub-rod vertices lie on the outer box of the subdivision.
The total number of sub-rods is 3md2. As in the proof
of Theorem 3.1, the BSP complexity is Ω(md3).

To determine m, we set 2d3 + 3md2 = n. This
solves to

m =
n− 2d3

3d2
=

n

3d2
− 2d

3
.

The BSP lower bound is therefore Ω(nd/3−2d4/3). We
assumed that c ≤ n1/3, which implies that d ≤ 1

6n1/3,
and hence Ω(nd/3− 2d4/3) = Ω(nc).

Theorem 5.2. For any c ≤ n1/3, any n-cell box
subdivision with all of its vertices on a fixed set of
c axis-aligned planes has an axis-aligned BSP of size
O(nc log c).

Proof. Every cell vertex lies on one of c chosen planes.
We begin by slicing the subdivision along the chosen
planes perpendicular to the x-axis. This produces
O(nc) fragments that are x-rods in their respective
subdivisions, and O(n) fragments that are not x-rods.

Within each of the O(c) subdivisions produced by
the first round of cuts, we perform cuts along the
chosen planes perpendicular to the y-axis. We perform
these cuts in a balanced hierarchical order: we first cut
at the median y-plane, then recursively perform y-cuts
in each of the two child subdivisions. Whenever a cell is
cut by two y-cuts, the part of the cell between the two
cuts becomes a y-rod. If the cell was already an x-rod,
then it is a doubly-oriented rod, and we can remove
it immediately by free cuts along the other two (z)
faces. No further cuts are necessary for a cell removed
by free cuts. Because the y-cuts are performed in a
balanced hierarchical order, each x-rod can be cut only
O(log c) times, producing O(log c) fragments that are
removed by free cuts and at most two fragments that
are not removed by free cuts. Thus the y-cuts produce
O(nc log c) fragments from the cells that were x-rods
after the x-cuts, and O(nc) from the cells that were
not x-rods. All but O(nc) fragments in the first set
will not be cut again (because they are doubly-oriented



rods, removed by free cuts). Of the second set, O(nc)
fragments are y-rods, and O(n) are not y-rods.

Within each of the nontrivial subdivisions remain-
ing after the y-cuts, we perform z-cuts in a balanced
hierarchical order. As in the previous round of cuts,
each cell that was initially an x-rod or a y-rod can be
cut into O(log c) fragments, all but two of which will be
removed by free cuts. Each cell that was not originally
an x-rod or a y-rod may be cut up to c times. The
total complexity of the BSP that results is O(nc log c),
since each round of cuts produces O(nc log c) cells that
are removed by free cuts and O(nc) cells that are con-
sidered in the next round of cuts.

6 Bounds for general convex
subdivisions

Paterson and Yao gave a lower bound construction of
n line segments in 3-space such that any BSP for the
segments has size Ω(n2) [11]. Their construction does
not immediately give a bound for subdivisions, because
filling in the space around the segments with convex
cells increases the input size to Θ(n2). However, we
can extend the construction by using bundles of rods,
just as we did in Theorem 3.1, to get a nontrivial lower
bound.

Theorem 6.1. There is a three-dimensional subdivi-
sion of space into n convex cells with total complexity
O(n) such that any binary space partition for the sub-
division has size Ω(n3/2).

Proof. We first recap Paterson and Yao’s lower bound
for segments, which is based on a polyhedral construc-
tion first used by Chazelle [3]. Consider two sets of
lines: red lines have equation z = jx + ε, y = j,
for j ∈ {1, . . . , N/2}, and blue lines have equation
z = iy − ε, x = i, for i ∈ {1, . . . , N/2}. The red
lines lie just above the hyperboloid z = xy, and the
blue lines lie just below it. (We can choose ε = 0.1 in
this construction.) The lower bound segments are ob-
tained by clipping the red and blue lines to the range
0 ≤ x, y ≤ (N/2) + 1. See Figure 6. If we project
any pair of red and blue segments into the xy-plane,
the projections intersect at an integer grid point (i, j).
The projections of any quadruple of two red and two
blue segments form a rectangle with corners on the in-
teger grid. Paterson and Yao argued, based on earlier
work by Chazelle [3], that for any quadruple of two red
and two blue segments, any BSP must break at least
one of the subsegments that project to edges of the
rectangle. Since we can choose Θ(N2) quadruples that

project to disjoint unit squares, any BSP must have
Ω(N2) size.

Figure 6: The Ω(n2) lower bound for BSPs of arbitrary
line segments.

To get a lower bound on BSPs for convex subdivi-
sions, we replace each red or blue segment by a bun-
dle of rods. The bundle is a triangular prism, and the
rods inside the bundle are also triangular prisms whose
union is the bundle. The cross section of the bundles
can be chosen to be ε. Thus all the longitudinal (paral-
lel to the rod axis) rod edges are within ε of the position
of the original segment from which the rod is derived.
The argument of Paterson and Yao can be applied to
any quadruple of two red and two blue longitudinal rod
edges. (A rod edge is incident to multiple cells of the
subdivision. A BSP that separates the cells must also
include the edges in its splitting planes.) Thus, if every
bundle contains M rods, any BSP must break the rod
edges (and hence the rods themselves) into Ω(N2M)
pieces. The BSP must have size Ω(N2M).

Chazelle showed that Θ(N2) convex polyhedra
with total complexity Θ(N2) are needed to fill in the
space around the N bundles [3]. In fact, we can use
a BSP for the bundle edges to produce such a convex
subdivision of size Θ(N2) [11]. To balance the number
of rods and the size of the remaining subdivision, we
set M = N . The size of the subdivision is therefore
n = Θ(N2). The BSP size is Ω(N2M) = Ω(n3/2).

7 Future work

Several tantalizing questions remain to be answered for
subdivision BSPs:

• What is the worst-case complexity of an axis-
aligned BSP for a box subdivision? Though the
lower and upper bounds presented in this paper
are both tighter than what was previously known,
there is still a significant gap between them.



In joint work with Csaba Tóth, we have recently
been able to reduce the upper bound to match the
Ω(n4/3) lower bound (in preparation).

• Is there an upper bound better than O(n2) on the
size of a BSP for a general convex subdivision with
n cells of total complexity O(n)? The charging
scheme we used to prove an upper bound for box
subdivisions does not seem to apply directly to
this case, but perhaps there is some generalization
that will work.

• Do the box subdivision bounds extend to higher
dimensions? It seems likely that our techniques
will give nontrivial results in R4 and above, but
we have not worked out the details.
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