
Geometric k Shortest Paths⇤

Sylvester Eriksson-Bique† John Hershberger‡ Valentin Polishchuk§

Bettina Speckmann¶ Subhash Surik Topi Talvitie⇤⇤ Kevin Verbeekk Hakan Yıldızk

Abstract

We consider the problem of computing k shortest paths
in a two-dimensional environment with polygonal obsta-
cles, where the jth path, for 1  j  k, is the shortest
path in the free space that is also homotopically dis-
tinct from each of the first j � 1 paths. In fact, we con-
sider a more general problem: given a source point s,
construct a partition of the free space, called the kth
shortest path map (k-SPM), in which the homotopy of
the kth shortest path in a region has the same struc-
ture. Our main combinatorial result establishes a tight
bound of ⇥(k2h + kn) on the worst-case complexity of
this map. We also describe an O((k3h + k2n) log (kn))
time algorithm for constructing the map. In fact, the al-
gorithm constructs the jth map for every j  k. Finally,
we present a simple visibility-based algorithm for com-
puting the k shortest paths between two fixed points.
This algorithm runs in O(m log n + k) time and uses
O(m + k) space, where m is the size of the visibility
graph. This latter algorithm can be extended to com-
pute k shortest simple (non-self-intersecting) paths, tak-
ing O(k2m(m+ kn) log(kn)) time.

We invite the reader to play with our applet demon-
strating k-SPMs [10].

⇤B. Speckmann and K. Verbeek were partially supported by
the Netherlands’ Organisation for Scientific Research (NWO) un-
der project nos. 639.022.707 and 639.023.208. S. Eriksson-Bique
was supported as a Graduate Student Fellow by the National Sci-
ence Foundation grant no. DGE-1342536. S. Eriksson-Bique, V.
Polishchuk and T. Talvitie were supported by the Academy of
Finland grant 1138520 and University of Helsinki Research Funds.
The research of Subhash Suri, Kevin Verbeek and Hakan Yildiz
was partially supported by the NSF grant CCF-1161495.

†Courant Institute, NYU. ebs@cims.nyu.edu
‡Mentor Graphics Corporation.

john hershberger@mentor.com

§Communications and Transport Systems, ITN, Linköping
University. firstname.lastname@liu.se

¶Dept. of Mathematics and Computer Science, TU Eindhoven.
b.speckmann@tue.nl

kComputer Science, University of California Santa Barbara.
[suri|kverbeek|hakan]@cs.ucsb.edu

⇤⇤Computer Science, University of Helsinki.
firstname.lastname@cs.helsinki.fi

1 Introduction

In many applications of mathematical optimization,
several “good” solutions are more desirable than a
single optimum. This happens because a mathematical
model is an imperfect formulation of complex reality,
and its various constraints and objectives are only
an approximation of the desired goal. Optimization
problems are also typically part of a larger system
with many interacting parts, where optimal solutions of
di↵erent parts may be incompatible. In these settings,
the system designer must find sub-optimal but high-
quality solutions for each part to construct the overall
solution. Motivated by these considerations, there is
a long history of research on finding k best solutions
for discrete optimization problems, including spanning
trees and shortest paths in graphs [6, 9, 12, 19].

In this paper, we investigate the fundamental prob-
lem of computing k distinct shortest paths among polyg-
onal obstacles in the plane. Because geometric short-
est paths live in a continuous (free) space, we need a
topological condition on paths to ensure that di↵erent
paths are non-trivially distinct: otherwise, we can create
many nearly identical shortest paths by adding infinites-
imal “bumps” to the primary shortest path. The most
natural condition is to require paths to have di↵erent
homotopy, where two paths are said to be homotopi-
cally equivalent if they can be deformed into each other
within the free space of obstacles. Intuitively, two paths
are homotopically distinct if they lie on di↵erent sides
of some obstacle. Multiple shortest paths of distinct
homotopies naturally capture the high-level design cri-
teria in geometric environments: e.g., in VLSI design
or printed circuit board routing, where obstacles are
electronic components, in robot path planning, where
obstacles are physical obstructions, in air tra�c man-
agement, where obstacles model hazardous weather or
no-fly zones, etc.

We consider a more general form of the problem:
given a source point s, construct a map of the entire
free space, partitioning it into equivalence class regions
such that the kth shortest path from s to any point in a
single region has the same structure. We call this map
the kth shortest path map (or k-SPM for short). With

the k-SPM, one can compute the kth shortest path to
any target easily. The following paragraph describes the
key results of our paper.

Our Results We prove that the edges of the
k-SPM are O(k2h + kn) linear or hyperbolic arcs,
and give a construction showing that this bound is
tight in the worst case (Section 4). We present an
O((k3h+k2n) log(kn)) time algorithm (Section 5), using
the continuous Dijkstra paradigm, for constructing the
map. The algorithm computes the jth shortest path
map for all 1  j  k. Taking this into account,
the algorithm is output sensitive: its running time is
O(log(kn)) times the total complexity of the first k
shortest path maps. By preprocessing the k-SPM for
point-location queries, we can answer kth shortest path
queries in O(log(kn)) time; if we want to report (in
implicit form) all k shortest paths, the preprocessing
time remains the same, but the storage and query
time both increase by a factor of k. (If the paths
are to be reported explicitly, the complexity of the
paths must be added to the query time.) In Section 6,
we also present a simpler, albeit asymptotically worse,
algorithm for computing the kth shortest path between
two fixed points based on the visibility graph. This
algorithm runs in O(m log n+k) time and uses O(m+k)
space, where m is the size of the visibility graph. One
advantage of this latter algorithm is that it can also be
extended to find the kth simple (non-self-intersecting)
path, taking O(k2m(m+ kn) log kn) time.

Related work Finding shortest paths is also a cen-
tral problem in the study of graph algorithms. Apart
from finding the shortest path itself, considerable atten-
tion has been paid to computing its various alternatives
including the second, third, and in general kth short-
est path between two nodes in a graph; see, e.g., [6, 9]
and references therein. On the other hand, geometric

kth shortest paths have not been explored before. (One
problem for which both the graph and the geometric
versions were considered is finding the k smallest span-
ning trees [4, 5].)

In [16] Mitchell surveys many variations of the
geometric shortest path problem; for some recent work
see [2, 3]. In addition to computing one shortest path to
a single target point, a lot of attention in the literature
has been devoted to building shortest path maps—
structures supporting e�cient shortest-path queries.
A shortest path map can be viewed as the Voronoi
diagram of vertices of the domain, where each vertex
is (additively) weighted by the shortest-path distance
from the source s [11]. Our study of “kth shortest
path maps” benefits from notions introduced by Lee [13]
for higher-order Voronoi diagrams: when bounding the
complexity of the maps in Section 4, we employ Lee’s

ideas to define “old” and “new” features of the map
and to derive relationships between them. Higher-order
Voronoi diagrams have been recently reexamined in
[1, 14, 15, 17]; in particular, [14] considered geodesic
diagrams in polygonal domains. Perhaps unsurprisingly,
the complexity of our kth shortest path map di↵ers from
that of an order-k geodesic Voronoi diagram; the major
di↵erence is that homotopies are irrelevant for Voronoi
diagrams, but are central in our work.

2 Preliminaries

We are given a closed polygonal domain P with n
vertices and h holes; the holes are also called “obstacles”
and the domain is called the “free space.” We assume
that no three vertices of P are collinear and make other
general position assumptions below, as needed. We are
also given a source point s 2 P ; unless otherwise stated,
all paths will have s as an endpoint. For a point p 2 P ,
two paths to p are homotopically equivalent if one can be
continuously deformed to the other while staying within
P . Homotopically equivalent paths form an equivalence
class (the homotopy class) in the set of s–p paths. A
path is locally shortest if its length cannot be reduced by
an infinitesimal perturbation of the path (i.e., a pulled-
taut path).

Lemma 2.1. ([8]) A locally shortest path is the unique

shortest path of its homotopy class. Furthermore, all

bends of a locally shortest path are at vertices of P and

turn toward the corresponding obstacles.

Let d(p) denote the shortest-path (geodesic) dis-
tance from s to p. A vertex v of P is a predecessor

of p if segment vp is in free space and d(p) = d(v)+ |vp|.
The shortest path map of P (or SPM for short) is the
partitioning of P such that all points within the same
cell of the SPM have the same unique predecessor. The
edges of the partition are called bisectors; points on
bisectors have more than one predecessor. We distin-
guish between two types of bisectors: walls and windows

(Fig. 1). A bisector is a wall if, for a point p on the bi-
sector, there exist two homotopically di↵erent paths to
p with length d(p). If there is a unique shortest path
to a point p on a bisector, then this bisector is a win-
dow; any point p on a window has two predecessors that
are collinear with p. We assume that there is a unique
shortest path to each vertex of P , and that there are
at most three homotopically di↵erent shortest paths to
each point in P . The former assumption implies that
walls are 1-dimensional curves. The endpoints of a wall
are either at an obstacle or at a triple point, where three
walls meet. Windows start at vertices of P and extend
until an obstacle or wall is hit. Intuitively, windows can
mostly be ignored as far as homotopy types are con-

Figure 1: An SPM; bisectors are red (windows are
dashed and walls are solid). The shortest s-t path (in
blue) reaches t via its predecessor r.

cerned; walls, by contrast, are central to our study. By
using standard point location structures on the SPM of
P , one can query the shortest path length to any point
in P in O(log n) time and, in addition, report the path
in linear output sensitive time [11]. Our goal is to com-
pute a similar structure for kth shortest paths.

We now introduce the subject of our study. For a
point p 2 P , let H(p) denote the set of locally shortest
paths from s to p of all possible homotopy types.

Definition 2.1. A path ⇡ 2 H(p) is a kth shortest
path (or is a k-path) to p if there are exactly k � 1
shorter paths in H(p).

s

t

⇡1

⇡2

⇡3

⇡4

⇡5

Figure 2: |⇡1|<|⇡2|=|⇡3|<|⇡4|<|⇡5|. ⇡1 is the shortest
path to t (a 1-path; cf. Def. 2.1), each of ⇡2 and ⇡3 is a 2-
path, ⇡4 is a 4-path, ⇡5 is a 5-path (⇡5 is nonsimple—it
has a loop going clockwise around the hole).

Figure 2 illustrates the definition. We denote the length
of the k-path(s) to p by dk(p). Notice that, under
these definitions, the term 1-path is synonymous with
“shortest path” and d(p) = d1(p).

In order to extend the map concept to k-paths, we
first generalize the definition of a predecessor. Let v be
an obstacle vertex and i be an integer between 1 and
k. For a point p in the plane, the pair (v, i) is a k-
predecessor of p if the segment vp is in free space and
dk(p) = di(v) + |vp|. This implies that a k-path to p
can be obtained by concatenating the segment vp with
the i-path to v. As with the SPM, we assume that each
obstacle vertex has a unique i-path for any i, and that
there are at most three i-paths in H(p) for each point
p 2 P . Interestingly, for i > 1, the former assumption
does not follow from a general position assumption. We
discuss this issue more in the final version. For the sake
of simplicity, we will ignore the issue in this paper and
stick to the assumption above.

Observe that, given the k-predecessors of all points
in the plane and the i-predecessors of all obstacle
vertices for 1  i  k, one can construct the k-path
to any given point p. The kth shortest path map (or k-
SPM for short) of P is a subdivision of P into cells such
that all points within the same cell have the same unique
k-predecessor. In order to construct k-paths from the
k-SPM, we also assume that it stores the i-predecessors
of all vertices, for all 1  i  k. As with the SPM, one
can use standard point location structures to report the
k-path length of a query point in O(logCk) time, where
Ck is the complexity of the k-SPM.

To distinguish the di↵erent types of bisectors that
form the boundaries of the k-SPM, we generalize the
definitions of walls and windows as follows:

Definition 2.2. A point p is on a k-wall if H(p)
contains at least two k-paths.

Definition 2.3. A point p is on a k-window if

H(p) contains exactly one k-path and p has two k-
predecessors.

Note that the two predecessors of a point p on a k-
window must be collinear with p. Furthermore, by the
definition of k-paths, a point cannot be on a k-wall and a
(k+1)-wall at the same time (if a point has two k-paths,
then it has no (k + 1)-path). Similarly to walls in the
SPM, k-walls have their endpoints either on obstacles
or at triple points, where three k-walls meet. In Section
3, we show that edges of the k-SPM are (k�1)-walls, k-
walls and k-windows. We also show that our assumption
that a k-predecessor is of the form (v, i) with 1  i  k
is indeed correct.

Figure 3 shows examples of walls in k-SPMs.

(a) walls of 1-SPM (b) walls of 2-SPM

(c) walls of 3-SPM (d) walls of 4-SPM

Figure 3: Walls in k-SPMs.

3 Structural results

Consider a path ⇡ from s to some target t 2 P . This
path crosses several walls (1-walls, 2-walls, etc.) in P .
We define the crossing sequence of ⇡ as the sequence of
positive integers that represents all the i-walls crossed
by this path going back from t to s. That is, if ⇡ crosses
an i-wall, we add i to the sequence. Although it is
not strictly necessary, we generally assume an upper
bound on the sequence values (the maximum wall class),
so that the sequence is finite. We call a sequence
a k-sequence if it adheres to the following inductive
definition:

• A 1-sequence does not contain 1.
• A k-sequence contains (k�1), the first (k�1) occurs
before the first k, and the tail of the sequence after
the first (k � 1) is a (k � 1)-sequence.

We need the following property of k-sequences, whose
proof appears with other omitted proofs in the final
version.

Lemma 3.1. A sequence � cannot be both a k-sequence
and an `-sequence if k 6= `.

The relation between k-sequences and k-paths is
summarized in the following lemma.

Lemma 3.2. A locally shortest path ⇡ is a k-path if and

only if its crossing sequence is a k-sequence.

Proof. We first show that the crossing sequence of a k-
path ⇡ is a k-sequence. Let us assume that distances
have been scaled so that the length of ⇡ is 1. Define p(x)
for 0  x  1 as the point on ⇡ such that the distance

from t to p(x) along ⇡ is x. Let �(x) be the subpath of
⇡ from p(x) to t. For any i � 1, let ⇡i denote the i-path
to t (⇡ = ⇡k). (We assume that t is not on an i-wall, for
any 1  i  k.) The concatenation of ⇡i and �(x) is a
path from s to p(x), via t; let ⇡0

i(x) denote the shortest
path of this homotopy class (Fig. 4). All paths ⇡0

i(x)
must have di↵erent homotopy classes for di↵erent i.

Let li(x) be the length of ⇡0
i(x); clearly li is con-

tinuous. By the definition of k-paths, li(0)  lj(0) for
i < j. On the other hand, lk(1) = 0 and li(1) > 0 for
i 6= k. Note that as x grows from 0 to 1, lk(x) decreases
not slower than any other li(x), i 6= k. Thus, the graph
of lk(x) crosses the graphs of all li(x) for i < k exactly
once, but no other graphs (Fig. 5).

The proof proceeds by induction. A point p(x) is on
a j-wall if lk(x) crosses some other graph at x, and there
are exactly j�1 graphs that pass below this intersection.
Clearly, if k = 1, the path ⇡k cannot cross a 1-wall, since
lk(x) cannot intersect anything. For k > 1, the first
intersection of lk(x) must be with a graph li(x) with
i < k, as described above. This means that p(x) must
cross a (k � 1)-wall before crossing a k-wall. After the
(k�1)-wall at x = x⇤, the path ⇡0

k(x
⇤) is the (k�1)-path

to p(x). By induction, the remainder of the crossing
sequence must be a (k � 1)-sequence.

Finally note that a locally shortest path ⇡ must be
an i-path for some i � 1. If the crossing sequence of ⇡ is
a k-sequence, then it cannot be an i-sequence for i 6= k
by Lemma 3.1. Thus i= k, and ⇡ is a k-path.

Lemma 3.2 implies that a k-path from s to t crosses
walls “in order”: it crosses a 1-wall, then a 2-wall, etc.,
until it crosses a (k � 1)-wall, after which it reaches t.
Also, any prefix of the k-path is an i-path if it crosses the
(i�1)-wall and not the i-wall. This property of k-paths
inspires the construction of a “parking garage” obtained
by “stacking” k copies (or floors) of P on top of each

s

t

p(x)

⇡

0

3(u)

⇡

0

1(u)

⇡

0

2(u)

⇡

0

4(u)

Figure 4: ⇡0
i(x) is the shortest path to p(x), homotopi-

cally equivalent to s–⇡i–t–p(x) (k = 4).

other and gluing them along i-walls, for 1  i  k. To
be precise, the k-garage is inductively defined as follows:

The 1-garage is simply P . The (k + 1)-garage
can be obtained by adding a copy of P (the
(k + 1)-floor) on top of the k-garage. We cut
both the k-floor of the k-garage and the (k+1)-
floor along k-walls. We then glue one side of
a k-wall on the k-floor to the opposite side of
the same k-wall on the (k + 1)-floor, and vice
versa, to obtain the (k + 1)-garage.

The k-garage resembles a covering space of P . However,
due to the triple points formed by the i-walls (i< k), the
k-garage is technically not a covering space, but some-
thing that is known as a ramified cover. Nonetheless,
each path ⇡ in the garage can be projected down to
a unique path ⇡# in P . The next lemma relates the
k-SPM of P to the SPM of the k-garage.

Lemma 3.3. If ⇡ is the shortest path in the k-garage
from s on the 1-floor to some t on the k-floor, then ⇡#

is a k-path to t.

Proof. We show that the crossing sequence of ⇡# is a
k-sequence. Then, by Lemma 3.2, ⇡# is a k-path. We
use the property that every tail of a k-sequence is an
i-sequence for some i  k. If, going back from t to
s, ⇡ only goes “down” in the k-garage, then it is easy
to see that the crossing sequence of ⇡# is a k-sequence.
(Because regions on the i-floor are bounded by (i� 1)-
and i-walls, ⇡ enters the i-floor by crossing an i-wall
and does not cross any i-wall before it exits the i-floor
by crossing an (i� 1)-wall. Thus the tail of ⇡’s crossing
sequence that starts from any point on the i-floor is
an i-sequence.) For the sake of contradiction, assume
that ⇡ also goes up in the k-garage. Then there must
be a point where ⇡ goes up to some i-floor, and then

Figure 5: lk is kth smallest at x = 0 and decreases faster
than any other li (k = 4).

goes monotonically down to the 1-floor. The crossing
sequence of the corresponding subpath of ⇡# must be
of the form � = (i � 1,�i), where �i is an i-sequence.
If � is a j-sequence for j 6= i, then �i must be a j-
sequence, which is not possible by Lemma 3.1. If � is
an i-sequence, then �i must be an (i�1)-sequence, which
again is not possible by Lemma 3.1. Finally note that
� must be a j-sequence for some j, since ⇡# is locally
shortest. Thus, ⇡ only goes down in the k-garage, and
the crossing sequence of ⇡# must be a k-sequence.

Lemma 3.3 directly implies that the SPM on the k-
floor of the k-garage is exactly the k-SPM of P . Thus,
as claimed before, the edges of the k-SPM consist of
(k�1)-walls, k-walls, and k-windows. Furthermore, the
k-predecessor of a point p 2 P must be (v, i) for some i
between 1 and k.

4 The complexity of the k-SPM

To obtain an upper bound on the complexity of the
k-SPM, we consider a sparser partitioning of P . We
define the (k)-SPM of P as the partitioning induced
by only the k-walls of P . Let Hk(p) be the set of the k
shortest homotopy classes to p 2 P . We refer to Hk(p)
as the k-homotopy set of p. We would like to claim
that the set Hk(p) is constant within each cell of the
(k)-SPM. Unfortunately we cannot claim this, since
the homotopy classes of paths with di↵erent endpoints
cannot be compared. To overcome this technicality, we
define Hk(p)�⇡ as the set of homotopy classes obtained
by concatenating each path in Hk(p) with ⇡. If ⇡ is a
path between p and p0, then we can directly compare
Hk(p)� ⇡ and Hk(p0).

Lemma 4.1. If p and p0 lie in the same cell of the (k)-
SPM, and ⇡ is a path between p and p0 that does not

cross a k-wall, then Hk(p)� ⇡ = Hk(p0).

To keep the notation simple, we simply compare
Hk(p) and Hk(p0) directly, in which case we really mean
that we compare Hk(p)� ⇡ and Hk(p0), where ⇡ is the
shortest path in P between p and p0. Note that ⇡ can
cross a k-wall. We need the following property of the
(k)-SPM.

Lemma 4.2. The cells of the (k)-SPM are simply

connected.

We now count the number of k-walls, starting with
the case k = 1. Let F1, V1, and B1 be the number
of faces, triple points, and 1-walls of the (1)-SPM,
respectively. It is easy to see that the (1)-SPM is
simply connected, hence F1 = 1. Now consider the
graph G in which each node corresponds to either a

hole (including the outer polygon) or a triple point, and
there is an edge between two nodes if there is a 1-wall
between the corresponding holes/triple points. Since
the (1)-SPM is simply connected, G must be a tree.
Hence B1 = h+V1. (The number of polygons bounding
P is h+1.) Furthermore note that the degree of a triple
point in G is three, and every node in G has degree at
least one. So, by double counting, 2B1 � 3V1 + h + 1
or V1  h� 1. To summarize, F1 = 1, V1  h� 1, and
B1 = h+ V1.

To bound the complexity of the (k)-SPM for k >
1, we relate its features to those of the (k�1)-SPM.We
consider an in-place transformation of the (k�1)-SPM
into the (k)-SPM. We use lower-case letters a, b, c, . . .
to denote the members of Hk(p). Each k-wall of the
(k)-SPM locally separates regions of P that di↵er in
exactly one of their k shortest path homotopy classes.
Note that a k-wall e of the (k)-SPM is not present in
the (k + 1)-SPM: if the k-homotopy sets belonging to
the two sides of e are H [a and H [b, with a 6= b, then
the (k+1)-homotopy set of points in the neighborhood
of e is uniformly H [{a, b}.

The triple points of the (k)-SPM fall into two
classes, which we call new and old (borrowing the
terms from [13]). If the three k-homotopy sets in
the vicinity of a triple point p are H [a, H [b,
and H [c, with a, b, and c all distinct, then p
is a new triple point. On the other hand, if the
three k-homotopy sets are H [{a, b}, H [{b, c}, and
H [{a, c}, with a, b, and c all distinct, then p is an

a b
c

ab
ac bc

abc

Figure 6:
Life cycle
of a triple
point.

old triple point. These names highlight
the di↵erence between what happens in the
vicinity of p in the (k + 1)-SPM. If p is a
new triple point in the (k)-SPM, then it
becomes an old triple point in the (k+1)-
SPM. The three (k + 1)-walls incident to p
in the (k + 1)-SPM separate points with
(k + 1)-homotopy sets (H [a) [b from
(H [a) [c, (H [b) [a from (H [b) [c,
and (H [c) [a from (H [c) [b. If p is
an old triple point in the (k)-SPM, then
the (k + 1)-homotopy set of points in the
neighborhood of e is uniformly H[{a, b, c},
and hence p is in the interior of a face of the
(k + 1)-SPM. See Fig. 6.

To transform the (k)-SPM to the (k + 1)-SPM,
we consider shortest distances to points in each face f
of the (k)-SPM from its k-walls. The distances from
a particular k-wall e are measured according to the
homotopy class belonging to the face on the opposite
side of e from f . More concretely, let p 2 f be a point
close to e, and let p0 be on the other side of f . Then
the shortest paths measured from e use the homotopy

class hf (e) = Hk(p0) \Hk(p). For every point q 2 f , we
identify the k-wall e whose homotopy class hf (e) gives
the shortest path to q. Hence Hk+1(q) = Hk(q)[hf (e),
and this partitions the face f into subfaces, one for
each k-wall e, separated by (k + 1)-walls. To finish the
construction of the (k+ 1)-SPM, we erase the k-walls
on the boundary of f (recall that their neighborhoods
have uniform (k + 1)-homotopy sets), delete any old
triple points whose neighborhoods have uniform (k+1)-
homotopy sets, and erase any newly added (k+1)-walls
incident to deleted old triple points on the boundary of
f . (These “walls” are actually just windows generated
by the triple points; they separate regions with equal
(k + 1)-homotopy sets.)

If a face f of the (k)-SPM is bounded by B k-
walls, it is initially partitioned into B subfaces. Every
pair of subfaces incident to a common old triple point
will be merged, so the final number of subfaces is
F 0 = B � W , where W is the number of old triple
points of the (k)-SPM on the boundary of f . Since
f is simply connected by Lemma 4.2, and every subface
corresponding to a k-wall e must be adjacent to e,
the dual graph of the subfaces inside f must be an
outerplanar graph. The number of triple points V 0

added inside f (all of them new) corresponds to the
number of (triangular) faces of this outerplanar graph,
and hence 0  V 0  max(F 0�2, 0). By Euler’s formula,
the number of (k + 1)-walls created inside f (duals to
the edges of the outerplanar graph) is B0 = F 0�1+V 0.

During the iterative construction of the (k)-SPM,
we count the features at each step. The description
above considers what happens within a single face
of the (k)-SPM during the transformation to the
(k + 1)-SPM. To account for what happens in all
the faces simultaneously, we note that each i-wall is
shared between two faces, and each triple point is shared
between three faces. Let Fi and Bi be the number
of faces and i-walls in the (i)-SPM. To distinguish
between new and old triple points, let Vi and Wi be
the number of new and old triple points of the (i)-
SPM, respectively. (Note that W1 = 0.) If we count
just the features added inside faces of (i)-SPM, using
primed notation, we have

F 0
i+1 = 2Bi � 3Wi

V 0
i+1  2Bi � 3Wi � 2Fi

B0
i+1 = 2Bi � 3Wi � Fi + V 0

i+1

W 0
i+1 = 0

Now let us take into account the deletion of previous i-
walls and triple points. All the i-walls and old triple
points are deleted between one phase and the next.
All new triple points turn into old ones. All subfaces
incident to an old triple point merge into one. Thus we

obtain the following recurrence relations, whose solution
is given by Lemma 4.3.

Fi+1 = F 0
i+1 �Bi +Wi = Bi � 2Wi

Vi+1 = V 0
i+1  2Bi � 3Wi � 2Fi

Bi+1 = B0
i+1 = 2Bi � 3Wi � Fi + Vi+1

Wi+1 = Vi

F1 = 1
V1  h� 1
B1 = h+ V1

W1 = 0

Lemma 4.3. The number of faces, walls, and triple

points of the (k)-SPM is O(k2h).

We now return to the complexity of the k-SPM. The
number of k-walls and (k � 1)-walls can be bounded
by Lemma 4.3. Each k-wall consists of one or more
hyperbolic arcs. Note that the number of hyperbolic
arcs for a single k-wall is exactly one more than the
number of k-windows that end on the k-wall (and a
k-window can end on only one k-wall). Hence it is
su�cient to count the number of k-windows. Each k-
window is an extension of the edge between a vertex v
of P and its i-predecessor for i  k. Thus there can be
at most O(kn) k-windows.

Theorem 4.1. The k-SPM of a polygonal domain with

n vertices and h holes has complexity O(k2h+ kn).

Lower Bound. The bound of Theorem 4.1 is in fact
tight. Here we describe an example that has ⌦(k2h)
k-walls and ⌦(kn) k-windows. The full details will be
provided in the full version.

Consider the example in Fig. 7, which is constructed
so that the shortest paths from s to the vertices p1,

s

!1 !2

!3

q

p1 p2

p3

Figure 7: Lower bound gadget.

p2, and p3 have the same length. Let q be the unique
point equidistant from p1, p2, p3. Furthermore, let ⇡ij

(i 2 {1, 2, 3} and 1  j  k) be the j-path from s
to pi, and let lij be the length of ⇡ij . If the obstacle
!i is small enough, then ⇡ij simply loops around !i

zero or more times in a clockwise or counterclockwise
direction. Hence, for any ✏ > 0, we can ensure that
|lik� li1|  ✏ for i 2 {1, 2, 3} by making the obstacles !i

small enough. Now define qabc as the unique point such
that |qabc�p1|+ l1a = |qabc�p2|+ l2b = |qabc�p3|+ l3c.
This point must exist, since it is the vertex of an
additively weighted Voronoi diagram of p1, p2, and p3.
If ✏ is chosen small enough, then qabc must lie in the
circle in Fig. 7 for a, b, c  k.

By construction there are three paths with equal
length from s to qabc, and there are exactly a+ b+ c�3
shorter paths from s to qabc. This means that qabc is
a triple point of the (a + b + c � 2)-SPM. Thus, the
number of triple points of the k-SPM is exactly the
number of triples (a, b, c) with 1  a, b, c  k for which
a + b + c � 2 = k. It is easy to see that there are
⌦(k2) triples that satisfy these conditions. Note that
the gadget has O(1) holes. By connecting ⇥(h) copies
of the basic gadget, we get a domain with h holes and
⌦(k2h) k-SPM vertices. We can also replace p3 in one
copy by a convex chain of n0 = ⇥(n) vertices v1, . . . , v0n,
such that the line through vi and vi+1 is very close to
q for 1  i < n0. This way each vertex vi contributes k
k-windows to the k-SPM. Full details will be provided
in the full version.

Theorem 4.2. The k-SPM of a polygonal domain with

n vertices and h holes can have ⌦(k2h) k-walls and

⌦(kn) k-windows.

5 Computing the k-SPM

We now describe how to compute the k-SPM in
O((k3h+ k2n) log (kn)) time. Inspired by the structure
of the k-garage and Lemma 3.3, our algorithm itera-
tively computes the k-SPM for increasing values of k,
starting from k = 1. Essentially we compute the SPM
on the k-garage, one floor at a time. To compute the
k-SPM at each iteration, we apply the “continuous Di-
jkstra” method, which Hershberger and Suri [11] used to
compute the shortest path map among polygonal obsta-
cles. We adopt most of the details of the Hershberger–
Suri algorithm unchanged, but make a few modifications
to support k-SPM computation.

The main idea of the continuous Dijkstra method is
to simulate the progress of a wavefront that emerges
from the source and expands through the free space
with unit speed. If the wavefront reaches a point p at
time t, then the shortest path distance between p and

the source is t. At any time, the wavefront consists of
circular arc wavelets, each expanding from a weighted
obstacle vertex called a generator (see Fig. 8a). A
generator � is represented as a pair (v, w), where v is an
obstacle vertex and w is the shortest path distance from
the source to v. For a generator � = (v, w) and a point p
such that the segment vp is contained in free space, the
(weighted) distance between � and p, denoted d(p, �), is
defined as w+ |vp|; it is the length of the shortest path
from the source to p that passes through v.

Points in the wavelet corresponding to a generator
� at time t satisfy the equation d(p, �) = t. We say
that a point p is claimed by � if � is the generator
whose wavelet first reaches p; this implies that the
shortest path to p passes through v and has length
d(p, �). The points where adjacent wavelets on the
wavefront meet trace out the bisectors that form the
walls and the windows of the shortest path map. Each
bisector separates two cells of the shortest path map,
each of which consists of points claimed by a particular
generator. The bisector curve separating the regions
claimed by two generators � and �0 satisfies the equation
d(p, �) = d(p, �0). Because |vp| � |v0p| = w0 � w, the
curve is a hyperbolic arc.

Using the continuous Dijkstra approach, the
Hershberger–Suri algorithm computes shortest paths
from a single source. It also works for shortest paths
from multiple sources with delays. This is summarized
in the following lemma, which was proved in [11].

Lemma 5.1. ([11]) Given a set of polygonal obstacles

with n vertices and a set of O(n) sources with delays,

one can compute the corresponding shortest path map in

O(n log n) time.

To compute the k-SPM, we apply the continuous
Dijkstra framework on each floor of the k-garage. Imag-
ine that we start a wavefront expansion from the source.
When a wavelet collides with another wavelet during
propagation (and thus forms a 1-wall), the portion of
the wavelet that is claimed by the other wavelet contin-
ues to expand on the 2-floor (see Fig. 8b). Since this
portion of the wavelet has passed through a 1-wall, it
represents a set of 2-paths, by Lemma 3.3. Any bisec-
tors formed by adjacent wavelets on the 2-floor belong to
the 2-SPM. Similarly to the 1-floor, when two wavelets
collide on the 2-floor, they form a 2-wall and continue
to expand on the 3-floor. We continue to push the col-
liding wavelets up to higher floors until they reach the
k-floor, which will correspond to the k-SPM.

Notice that the wavefront expansion on a single
floor is not a↵ected by the expansion on other floors,
with the exception of wavelet collisions on the previous
floor. We now describe a method that exploits this fact

source

1

(a)

)

1

(b)

�5
�4

�1

�2

�3

1

(c)

Figure 8: (a) An expanding wavefront. (b) Two
colliding wavelets. After the collision, a wall is formed
and both wavelets continue to grow on the next floor.
(c) A shortest path map is computed by propagating
outside generators into the region R.

to compute the k-SPM once the (k � 1)-SPM has been
computed. Thus we can construct the k-SPM by first
running the Hershberger–Suri algorithm to compute
the 1-SPM and then iteratively applying this step to
compute higher floor SPMs.

We compute the k-SPM from the (k � 1)-SPM as
follows. The boundaries of the (k� 1)-SPM are formed
by (k�1)-windows, (k�1)-walls and (k�2)-walls. The
(k � 1)-windows and (k � 2)-walls do not appear in the
k-SPM, so we simply remove them from the map. The
(k� 1)-walls remain in the map and they subdivide the
free space into simply connected regions (by Lemma
4.2). To complete the k-SPM, in each such region we
compute a special shortest path map whose walls and
windows form the k-windows and k-walls of the k-SPM.

The shortest path map computed in each region R
is drawn with respect to multiple “restricted” sources
with delays, which are determined as follows. Consider
a (k � 1)-wall W bounding R in the (k� 1)-SPM and
let � = (v, w) be the generator that claims the region
outside R in the vicinity of W . (It is possible that
both sides of W are contained in R. In this case,
our description applies to the generators claiming both
sides.) Note that W is formed by the collision of the
wavelet of � with another wavelet, and the wavelet of

� is pushed up to the k-floor inside R. Conceptually,
we want to continue expanding the wavelet of � inside
R. To do this, we introduce � as a source at v with
delay w and impose the additional restriction that all
paths from � to the interior of R pass through W .1 In
other words, we do not allow any paths from v that do
not pass through W . We create sources in this manner
for each (k� 1)-wall bounding R and draw the shortest
path map with respect to these sources (see Fig. 8c).

We can compute the shortest path map inside each
region by running a single instance of the Hershberger–
Suri algorithm for delayed sources. Our restrictions
necessitate some modifications, described in the full
version, but with these modifications the algorithm
computes the shortest path map in each region bounded
by (k � 1)-walls. Since the paths used to compute the
map in each region are k-paths by Lemma 3.3, the walls
and windows of the map form the k-walls and k-windows
of the k-SPM. This completes the construction of the k-
SPM.

Theorem 5.1. Given a source point in a polygonal

domain with n vertices and h holes, the corresponding

k-SPM can be computed in O((k3h+k2n) log (kn)) time.

If the total complexity of all i-SPMs for 1  i  k is M ,

then the running time is O(M log(kn)).

6 Visibility-based algorithms

The k-SPM provides an e�cient data structure for
querying k-paths from a fixed source s. If we are simply
interested in the k-path between two fixed points s
and t, then it may be ine�cient to construct the k-
SPM for large values of k. In this section we present a
simple visibility-based algorithm to compute the k-path
between s and t. For large k, this algorithm is faster
than the k-SPM approach. Moreover, this algorithm is
relatively easy to implement and may therefore be of
more practical interest.

We first compute the visibility graph (VG) of P
in O(n log n + m) time [7, 18], where m = O(n2) is
the size of VG. We also include visibility edges to
s and t. The graph contains every locally shortest
path from s to t and hence also the k-path to t.
However, we cannot simply compute the kth shortest
path in VG, since di↵erent paths in the graph may be
homotopic. We therefore modify VG so that locally
shortest paths are in one-to-one correspondence with
paths in the modified graph—this ensures that di↵erent
paths in the graph belong to di↵erent homotopy classes
by Lemma 2.1. (The same graph is defined in [8]
and is called the canonical graph. Here we include its

1We also require that the subpath between v and W is a
straight line.

Figure 9: Vertex expansion for the taut graph.

construction to argue the running time of computing
this graph.) First, we make the graph directed by
doubling each edge. Then we expand each vertex v
as illustrated in Fig. 9: Draw the two lines supporting
the two obstacle edges incident to v; the lines partition
the relevant visibility edges at v into two sets A and
B (the visibility edges between the lines opposite the
obstacle are irrelevant, because they cannot be used
by shortest paths). Radially sweep a line through v,
initially aligned with one of the obstacle edges, until it is
aligned with the other obstacle edge. For each visibility
edge e encountered, create a node with an incoming
edge if e2A, and an outgoing edge if e2B. Connect
all created nodes with a directed path. Also make a
copy of this construction with all edges reversed. The
expansion of v is connected with other expansions in
the obvious way, as dictated by the visibility graph.
Finally, remove edges directed toward s and away from
t. The constructed graph—which we call the taut graph
~G(P)—has O(m) vertices and O(m) edges and can be
built in O(m) time. Note that, by construction, every
path in ~G(P) must be locally shortest and every locally
shortest path from s to t exists in ~G(P).

We can now use the algorithm by Eppstein [6] to
compute the kth shortest path from s to t in ~G(P),
which corresponds to the k-path from s to t in P .

Theorem 6.1. The k-path between s and t in P can be

computed in O(m log n+k) time, where m is the size of

the visibility graph of P .

Interestingly, this approach can be extended to com-
pute the kth shortest simple path (simple k-path) be-
tween s and t in polynomial time. Here we define a sim-

ple path as a path that does not cross itself, although

repeated vertices and segments are allowed. To compute
simple k-paths, we adapt Yen’s algorithm [19] for com-
puting simple k-paths in directed graphs (here “simple”
means free of repeated nodes). The details are non-
trivial and are provided in the full version. We obtain
the following result.

Theorem 6.2. The simple k-path between s and t can
be computed in O(k2m(m + kn) log kn) time, where m
is the number of edges of the visibility graph of P .

7 Concluding remarks

We have introduced the k-SPM, a data structure that
can e�ciently answer k-path queries. We provided a
tight bound for the complexity of the k-SPM, and pre-
sented an algorithm to compute the k-SPM e�ciently.
Our algorithm simultaneously computes all the i-SPMs
for i  k. Whether there is a more direct algorithm
to compute the k-SPM is an interesting open problem.
We also provided a simple visibility-based algorithm to
compute k-paths, which may be of practical interest,
and is more e�cient for large values of k. This latter
approach can be extended to compute simple k-paths.
Unfortunately, we do not know how to extend the k-
SPM to simple k-paths. It seems that simple k-paths
lack the useful property that a subpath of a simple k-
path is a simple i-path for i  k. This makes finding
a more e�cient algorithm to compute simple k-paths a
challenging open problem.

Acknowledgments. We thank Yevgeny Schreiber,
Niko Kiirala, Jukka Suomela and Joe Mitchell for dis-
cussions and anonymous referees for useful comments.

References

[1] C. Bohler, P. Cheilaris, R. Klein, C.-H. Liu, E. Pa-
padopoulou, and M. Zavershynskyi. On the complexity
of higher order abstract Voronoi diagrams. In ICALP
(1), volume 7965 of Lecture Notes in Computer Sci-
ence, pages 208–219. Springer, 2013.

[2] D. Z. Chen, J. Hershberger, and H. Wang. Computing
shortest paths amid convex pseudodisks. SIAM J.
Comput., 42(3):1158–1184, 2013.

[3] D. Z. Chen and H. Wang. L1 shortest path queries
among polygonal obstacles in the plane. In STACS,
volume 20 of LIPIcs, pages 293–304. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2013.

[4] D. Eppstein. Finding the k smallest spanning trees.
BIT, 32(2):237–248, 1992.

[5] D. Eppstein. Tree-weighted neighbors and geometric
k smallest spanning trees. Int. J. Comput. Geometry
Appl., 4(2):229–238, 1994.

[6] D. Eppstein. Finding the k shortest paths. SIAM J.
Comput., 28(2):652–673, 1999.

[7] S. K. Ghosh and D. M. Mount. An output-sensitive al-
gorithm for computing visibility graphs. SIAM Journal
on Computing, 20(5):888–910, 1991.

[8] D. Grigoriev and A. Slissenko. Polytime algorithm for
the shortest path in a homotopy class amidst semi-
algebraic obstacles in the plane. In Proceedings of
the 1998 International Symposium on Symbolic and
Algebraic Computation, ISSAC ’98, pages 17–24. ACM,
1998.

[9] J. Hershberger, M. Maxel, and S. Suri. Finding the
k shortest simple paths: A new algorithm and its
implementation. ACM Trans. Algorithms, 3(4):45,
2007.

[10] J. Hershberger, V. Polishchuk, B. Speckmann, and
T. Talvitie. Geometric kth shortest paths: The
applet. In Proceedings of the Thirtieth Annual
Symposium on Computational Geometry, SOCG’14,
pages 96:96–96:97, New York, NY, USA, 2014.
ACM. http://www.computational-geometry.org/

SoCG-videos/socg14video/ksp/index.html.
[11] J. Hershberger and S. Suri. An optimal algorithm

for Euclidean shortest paths in the plane. SIAM J.
Comput., 28(6):2215–2256, 1999.

[12] E. L. Lawler. A procedure for computing the K best
solutions to discrete optimization problems and its
application to the shortest path problem. Management
Science, 18:401–405, 1972.

[13] D.-T. Lee. On k-nearest neighbor Voronoi diagrams
in the plane. IEEE Trans. Computers, 31(6):478–487,
1982.

[14] C.-H. Liu and D. T. Lee. Higher-order geodesic
Voronoi diagrams in a polygonal domain with holes.
In SODA, pages 1633–1645. SIAM, 2013.

[15] C.-H. Liu, E. Papadopoulou, and D. T. Lee. The k-
nearest-neighbor Voronoi diagram revisited. Algorith-
mica, 2014. To appear.

[16] J. S. B. Mitchell. Geometric shortest paths and net-
work optimization. In J.-R. Sack and J. Urrutia, edi-
tors, Handbook of Computational Geometry, pages 633–
701. Elsevier Science B.V. North-Holland, Amsterdam,
2000.

[17] E. Papadopoulou and M. Zavershynskyi. On higher
order Voronoi diagrams of line segments. In ISAAC,
volume 7676 of Lecture Notes in Computer Science,
pages 177–186. Springer, 2012.

[18] M. Pocchiola and G. Vegter. Topologically sweeping
visibility complexes via pseudotriangulations. Discrete
& Computational Geometry, 16(4):419–453, 1996.

[19] J. Y. Yen. Finding the K shortest loopless paths in a
network. Management Science, 17:712–716, 1971.

