Bin Packing

- Given n items with sizes $s_1, s_2, ..., s_n$ such that $0 \leq s_i \leq 1$ for $i \leq i \leq n$, pack them into the fewest number of unit capacity bins.

- Problem is NP-hard (NP-Complete). There is no known polynomial time algorithm for its solution, and it is conjectured none exists.

- On-line algorithms: Each item must be placed in a bin (and never moved again) before the next item can be viewed (processed).

- Off-line algorithm: You may view all items before placing any item into a bin.

- We present algorithms to generate suboptimal solutions (approximations).
Next Fit (approx. alg.)

(on-line algorithm): Check to see if the current item fits in the current bin. If so, then place it there, otherwise start a new bin.

Example: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Next Fit

Optimal Packing
Theorem 10.2

Let M be the number of bins required to pack a list I of items optimally. Next Fit will use at most $2M$ bins.

Proof:

- Let $s(B_i)$ be the sum of the sizes of all the items assigned to bin B_i in the solution generated by Next Fit.

- For any two adjacent bins (B_j and B_{j+1}), we know that $s(B_j) + s(B_{j+1}) > 1$.

- Let k be the number of bins used by Next Fit for list I.

- We prove the case when k is even, the proof for the other case is omitted (as it is similar and establishes that $k < 2M + 1$).
• As stated above, $s(B_1) + s(B_2) > 1,$
 $s(B_3) + s(B_4) > 1,$..., $s(B_{k-1}) + s(B_k) > 1.$
• Adding these inequalities we know that
 $\sum s(B_i) > k/2.$
• By definition $OPT = M > k/2.$
• The solution $SOL = k < 2M.$
• Therefore, $SOL \leq 2M$ (because of odd case).
Theorem 10.2 (2nd Part)

There exist sequences such that Next Fit uses $2M - 2$ bins, where M is the number of bins in an optimal solution.

- Define an instance with $4N$ items
- The odd numbered ones have s_i value $1/2$, and the even number ones have s_i value $1/(2N)$.

\[
\begin{array}{cccccc}
0.5 & 0.5 & \cdots & 0.5 & \frac{1}{2N} & \frac{1}{2N} \\
B1 & B2 & \cdots & BN & BN+1 & 2N \text{ pieces of size } 1/(2N) \\
\end{array}
\]

\[
\begin{array}{cccc}
0.5 & 0.5 & 0.5 & 0.5 \\
\end{array}
\]

- $OPT = N + 1 = M$
- Therefore, $N = M - 1$
- Solution $SOL = 2N = 2M - 2$.
First Fit (approx. alg.): Scan the bins in order and place the new item in the first bin that is large enough to hold it. A new bin is created only when an item does not fit in the previous bins.

Example: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Can be easily implemented to take $O(n^2)$ time.
Better Implementation

- Can be implemented to take $O(n \log n)$ time.
- Idea: Use a red-black tree (or other balanced tree) with height $O(\log n)$.
- Each node has three values: index of bin, remaining capacity of bin, and best (largest) in all the bins represented by the subtree rooted at the node.
- The ordering of the tree is by the bin index.
Example

Table 1: Remaining Capacity in Bins

<table>
<thead>
<tr>
<th>Bin</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Cap.</td>
<td>.3</td>
<td>.4</td>
<td>.32</td>
<td>.45</td>
<td>.46</td>
<td>.47</td>
<td>.32</td>
<td>.48</td>
</tr>
</tbody>
</table>

- i: bin index
- RC: Remaining Capacity
- BRC: Best Remaining Capacity in subtree

Item Size Goes to Bin
- $s \leq .3$ goes to B1
- $.3 < s \leq .4$ goes to B2
- $.4 < s \leq .45$ goes to B4
- $.45 < s \leq .46$ goes to B5
- $.46 < s \leq .47$ goes to B6
- $.47 < s \leq .48$ goes to B8
Upper Bounds

- Claim: Let M be the optimal number of bins required to pack a list I of items. Then First Fit never uses more than $\lceil 1.7M \rceil$.
- Proof was not covered.
- Theorem: There exist sequences such that First Fit uses $1.7(M - 1)$ bins.

Example for 1.66...

- $6M$ items of size $\frac{1}{7} + \epsilon$.
- $6M$ items of size $\frac{1}{3} + \epsilon$.
- $6M$ items of size $\frac{1}{2} + \epsilon$.
Optimal Packing

First Fit

B1 ... BM

BM+1 ... B4M

B4M+1 ... B10M

B1 ... B6M

Optimal Packing
Best Fit (aprox. alg.)

- (on-line algorithm): New item is placed in a bin where it fits the tightest. If it does not fit in any bin, then start a new bin.

- Claim: If OPT uses M bins, then Best Fit uses at most $\sim 1.7M$.

- Can be implemented to take $O(n \log n)$.

Example: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Best Fit

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

Optimal Packing

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>
There are problems instances for which First Fit uses fewer bins than Best Fit and vice-versa.
Better Aprox. Alg.

- (off-line algorithm): First Fit Decreasing
- (off-line algorithm): Best Fit Decreasing