Definitions

- **Optimization Problem**: Given an Optimization Function and a set of constraints, find an optimal solution.

Optimal Solution: A feasible solution for which the optimization function has the best possible value.

Feasible Solution: Solution that satisfies the constraints.

Example

- **Printer problem**: The constraint is to print all the jobs nonpreemptively (one at a time), and the objective is to minimize the average finish time.

- **Container Loading problem**: The constraint is that the container loaded have total weight \leq the cargo weight capacity, and the objective function is to find a largest set of containers to load. **Largest number of containers.**
Coin Changing: Give change using the least number of coins.

Greedy Method (Chapter 10.1)

Attempt to construct an optimal solution in stages.

At each stage we make a decision that appears to be the best (under some criterion) at the time (local optimum).

A decision made in one stage is not changed in a later stage, so each decision should assure feasibility.

Greedy criterion: criterion used to make the greedy decision at each stage.
Container Loading

- Large ship is to be loaded with cargo. Cargo is in equal size containers. Container i has weight w_i.

- The cargo weight capacity is c (and every $w_i \leq c$).

- Load the ship with maximum number of containers without exceeding the cargo weight capacity.

- Find values $x_i \in \{0, 1\}$ such that

\[\sum_{i=1}^{n} w_i \cdot x_i \leq c, \] and

the optimization function $(\sum_{i=1}^{n} x_i)$ is maximized.

- If $x_i = 0$ container i is not loaded.
- If $x_i = 1$ container i is loaded.
Example: $n = 8$

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
<th>w_7</th>
<th>w_8</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>90</td>
<td>150</td>
<td>50</td>
<td>20</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>400</td>
</tr>
</tbody>
</table>

Is it an optimal solution? **No!** Why? One can take out object 2 and add objects 7 and 8. That would be a better solution.

Is a feasible solution optimal if one cannot trade two objects for one (in the solution) while maintaining feasibility?

Answer: See the following non-optimal solution.

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
<th>w_7</th>
<th>w_8</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>
Algorithm

- Load ship in stages, one container per stage. At each stage we need to decide which container to load.
- **Greedy criterion:** From the remaining containers, select the one with least weight.

Example

\[
\begin{array}{cccccccccc}
 & w_1 & w_2 & w_3 & w_4 & w_5 & w_6 & w_7 & w_8 & c \\
 1 & 20 & 50 & 50 & 80 & 90 & 100 & 150 & 200 & 400 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 390
\end{array}
\]
Correctness Proof

Theorem: The above greedy algorithm generates an optimal set of containers to load.

- **Proof Idea:** No matter which feasible solution \((Y)\) you start with, it is possible to transform it to the solution generated by the algorithm without decreasing the objective function value.

- **Assume without loss of generality (wlog)**
 \[w_1 \leq w_2 \leq \ldots \leq w_n; \]

- **Let** \(X = (x_1, x_2, \ldots x_n) \) **be the solution generated by the algorithm**

Let \(Y = (y_1, y_2, \ldots y_n) \) be any feasible solution such that \(\sum w_i y_i \leq c. \)

Transform \(Y \) to \(X \) in several steps without decreasing the objective function value.
• From the way the algorithm works, there is a $k \in [0, n]$ s.t. $x_i = 1$ for $i \leq k$, and $x_i = 0$ for $i > k$. (i.e., $X = 1, 1, \ldots, 1, 0, 0, \ldots, 0$).

• Transformation: Let j be the smallest integer in $[1, n]$, s.t. $x_j \neq y_j$.

• So either:

 (1) No such j exists in which case $Y = X$.

 (2) $j \leq k$ (as otherwise Y is not feasible).

So, $x_j = 1$ and $y_j = 0$.

Change y_j to 1

• If Y is infeasible then there is an l in $[j + 1, n]$ s.t. $y_l = 1$, y_l is changed to 0, and the new Y is feasible (because $w_j \leq w_l$).

• No matter what the new Y is, it has at least as many 1s (or more) as before.

• Apply the transformation until you get $Y = X$.
Example for Proof

Solution Generated by our algorithm (X).

\[
\begin{array}{cccccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & w_6 & w_7 & w_8 & c \\
 20 & 50 & 50 & 80 & 90 & 100 & 150 & 200 & 400 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 390 \\
\end{array}
\]

Consider the following feasible solution (Y).

\[
\begin{array}{cccccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & w_6 & w_7 & w_8 & c \\
 20 & 50 & 50 & 80 & 90 & 100 & 150 & 200 & 400 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 400 \\
\end{array}
\]

Transformations as in the proof of the previous theorem. (j in the proof is 1, then 3, 4, 5, 6).
\[w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad w_6 \quad w_7 \quad w_8 \quad c \]

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>50</td>
<td>50</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>270</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>320</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>290</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>390</td>
</tr>
</tbody>
</table>

Implementation

- Remaining objects are stored in a heap ordered with respect to their weight (smallest on top of the heap).

- Algorithm talks \(O(n \log n) \) time (\(n \) deletes from a heap with initially \(n \) objects, creating the heap takes \(O(n) \) time (CMPSC 130A)).

- Alg takes \(O(n) \) time if optimal sol has very few (\(n/\log n \)) objects.
Linear Time Implementation !!

• Assume all weights are different, if there are repeated weights then a similar algorithm exists for the solution of the problem.

• We use an algorithm (which we will describe when we cover divide-and-conquer algorithms) that finds the middle object of n objects (i.e., find the element such that there are exactly $\lceil n/2 \rceil$ objects smaller or equal to it) in $O(n)$ time.

Find the median in linear time.
Our algorithm works by doing a binary Search type of search on the unsorted weights \((W)\).

Let \(S\) be the smallest \(\lceil n/2 \rceil\) objects (in \(W\)) and let \(t\) be their total weight. There are three cases:

1. If \(t > c\) then search for a solution in \(S\) only with the same capacity \(c\).

2. If \(t = c\), then add all the objects in \(S\) to the solution and end the procedure;

3. Else, add all the elements in \(S\) to the solution and set the remaining capacity to \(c - t\) and now try to add as many objects as possible from \(W - S\).

Repeat the above step until there are no objects left: \(S\) is empty or \(S\) does not change.

Time complexity is
\[
c_1 n + c_1 n/2 + c_1 n/4 + \ldots = c_2 n
\]
Example 1

- Suppose that W is: $\{6, 10, 8, 15, 22, 19, 5, 9\}$, and $c = 25$.

 The middle object is 9, $S = \{6, 8, 5, 9\}$ and $t = 28$. The objects in S do not fit.

- The new W is: $\{6, 8, 9, 5\}$, and $c = 25$.

 The middle object is 6, $S = \{6, 5\}$, and $t = 11$. The objects in S fit and are added to the solution.

- The new W is: $\{8, 9\}$, and $c = 14$.

 The middle object is 8, $S = \{8\}$, and $t = 8$. The object in S fit and are added to the solution.

- The new W is: $\{9\}$, and $c = 6$.

 The middle object is 9, $S = \{9\}$, and $t = 9$. The object in S does not fit.

- There are no objects left and we are done. The solution are the objects with weight 5, 6 and 8.
Example 2

Suppose \(W \) is: \{6, 10, 8, 15, 22, 19, 5, 9\}, and \(c = 53 \).

The middle object is 9, \(S = \{6, 8, 5, 9\} \), and \(t = 28 \). The objects in \(S \) fit and are added to the solution.

The new \(W \) is: \{10, 15, 22, 19\}, and \(c = 25 \).

The middle object is 15, \(S = \{10, 15\} \), and \(t = 25 \). The objects in \(S \) fit exactly and the algorithm finishes.

- The solution are the objects with weight 6, 8, 5, 9, 10, and 15.
Deterministic Scheduling

Printer Scheduling with Complete Information

- Problem is identical to the one in Section 10.1.1.
- At time zero there are n tasks to be printed.
- Tasks are denoted by T_1, T_2, \ldots, T_n with execution time requirements t_1, t_2, \ldots, t_n
- Once a task starts printing it will continue printing until it terminates (i.e., preemptions are not allowed).
Example: \(t_1 = 2, t_2 = 1, t_3 = 4, t_4 = 9 \). Two schedules:

<table>
<thead>
<tr>
<th>S1</th>
<th>T1</th>
<th>T3</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S2</th>
<th>T3</th>
<th>T2</th>
<th>T1</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

Let \(f_i(S) \) be the finish time for task \(T_i \) in \(S \).

The Average Finish Time (AFT) for \(S \) is \(\frac{\sum f_i(S)}{n} \).

The AFT for \(S_1 \) is \(\frac{2+16+6+15}{4} = 9.75 \), and the AFT for \(S_2 \) is \(\frac{7+5+4+16}{4} = 8.00 \).

Objective Function: Find a schedule with minimum AFT.

<table>
<thead>
<tr>
<th>T3</th>
<th>T2</th>
<th>T1</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2</th>
<th>T3</th>
<th>T1</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2</th>
<th>T1</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Shortest Processing Time First (SPT): Assign the tasks to the printer from smallest to largest.
Theorem: SPT schedules are optimal wrt AFT.

Proof: By contradiction.

Suppose that there is a problem instance I such that schedule S' (which is not an SPT schedule) is an optimal schedule wrt AFT, i.e.,

$$\sum_{i} f_i(S') < \sum_{i} f_i(SPT)$$

Since S' is not an SPT schedule there exist two tasks (T_i, T_j) such that they are scheduled one after the other in S' (first T_i and then T_j) such that $t_i > t_j$.
Construct schedule S'' from S' by interchanging task T_i, and T_j.

Since $t_i > t_j$ we know that $f_i(S') > f_j(S'')$, $f_j(S') = f_i(S'')$, and the finish time of the remaining tasks in both schedules is identical.

Therefore, $\sum_{n} f_i(S') > \sum_{n} f_i(S'')$. This contradicts that S' is an optimal schedule.