Approximation Algorithms for Minimum-Length Corridors

Teofilo F. Gonzalez

Department of Computer Science
University of California at Santa Barbara
teo@cs.ucsb.edu
(Co-author: Arturo González-Gutiérrez)
Outline

- Introduction
- Preliminaries and Related Problems
- Parameterized Approximation Algorithm $\text{Alg}(S)$
- Selector Function S
- Constant Ratio Approximation
- Additional Results and Conclusion
Introduction:
Minimum-Length Corridor Problem (MLC)
Introduction:
Formal Definition of the MLC-R problem

- **INPUT:** A pair \((F,R)\), where \(F\) is a rectangular boundary partitioned into rectangles (or rooms) \(R=\{R_1,R_2,\ldots,R_r\}\).

- **OUTPUT:** A *corridor* consisting of a set of connected line segments each of which lies along the line segments that form \(F\) and/or the boundary of the rooms, that includes at least one point of \(F\) and at least one point from each of the rooms.

- **OBJECTIVE FUNCTION:** Minimize the total edge length of the corridor.
Introduction: Applications of the MLC Problem

Network Communication in Metropolitan Areas
Introduction:
Origin of the MLC Problem

- No polynomial time algorithm known
- Not even a constant ratio approximation algorithm
- Seems likely to be NP-complete but no proof known
Related Problems:
Outline

- Tree Errand Cover (TEC) problem
 - Generalization of the Group Steiner Tree (GSTP) Problem
Related Problems:

Formal Definition of the TEC problem

- **INPUT**: A connected undirected edge-weighted graph \(G=(V,E,w) \), where \(w:E \rightarrow \mathbb{R}^+ \) is an edge-weight function; a non-empty set \(C \subseteq V \), of terminals; a non-empty set \(\mathcal{E} = \{e_1,e_2,...,e_k\} \) of errands; a collection \(\mathcal{C} = \{C_1, C_2, ..., C_k\} \), where \(C_i \subseteq C \) specifies the vertices where errand \(e_i \) can be performed.

- **OUTPUT**: A tree \(T(G,\mathcal{C})=(V',E') \), where \(E' \subseteq E \) and \(V' \subseteq V \), such that for each errand \(e_i \) there is at least one vertex \(v \subseteq C_i \) and \(v \subseteq V' \), and the total length \(\sum_{e \in E'} w(e) \) is minimized.

GST problem: \(\mathcal{C} = \{C_1, C_2, ..., C_k\} \) is a partition of \(C \)
Related Problems:
MLC-R ∪ TEC

\[\mathcal{E} = \{ R_i \mid 0 \leq i \leq 9 \} \]
\[\mathcal{C} = \{ C_i \mid 0 \leq i \leq 9 \} \]

<table>
<thead>
<tr>
<th>i</th>
<th>(C_i)</th>
<th>a TEC solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>({ v_1, v_2, v_3, v_4, v_8, v_9, v_{12}, v_{13}, v_{16}, v_{17}, v_{18}, v_{19}, v_{20} })</td>
<td>(v_3)</td>
</tr>
<tr>
<td>1</td>
<td>({ v_1, v_2, v_5, v_9, v_{10} })</td>
<td>(v_5, v_{10})</td>
</tr>
<tr>
<td>2</td>
<td>({ v_2, v_3, v_5, v_6 })</td>
<td>(v_3, v_5, v_6)</td>
</tr>
<tr>
<td>3</td>
<td>({ v_3, v_4, v_6, v_7, v_8 })</td>
<td>(v_3, v_6, v_7)</td>
</tr>
<tr>
<td>4</td>
<td>({ v_9, v_{10}, v_{13}, v_{14} })</td>
<td>(v_{10}, v_{14})</td>
</tr>
<tr>
<td>5</td>
<td>({ v_5, v_6, v_7, v_{10}, v_{11}, v_{14}, v_{15}, v_{18}, v_{19} })</td>
<td>(v_5, v_6, v_7, v_{10}, v_{11}, v_{14}, v_{15})</td>
</tr>
<tr>
<td>6</td>
<td>({ v_7, v_8, v_{11}, v_{12} })</td>
<td>(v_7, v_{11})</td>
</tr>
<tr>
<td>7</td>
<td>({ v_{13}, v_{14}, v_{17}, v_{18} })</td>
<td>(v_{14})</td>
</tr>
<tr>
<td>8</td>
<td>({ v_{11}, v_{12}, v_{15}, v_{16} })</td>
<td>(v_{11}, v_{15})</td>
</tr>
<tr>
<td>9</td>
<td>({ v_{15}, v_{16}, v_{19}, v_{20} })</td>
<td>(v_{15})</td>
</tr>
</tbody>
</table>
Related Problems:
TEC Problem Performance Ratio

 - The TEC problem can be approximated to within a ratio of 2ρ in polynomial time, when each errand is assigned to at most ρ vertices.
 - For the MLC problem there are errands that may be assigned to an arbitrary number of vertices.

- GST problem
 - $(k-1) \text{OPT}$ (Ihler, E., 1991)
 - $(1 + \ln(k/2)) \cdot k^{0.5} \text{OPT}$ (Bateman, C. D. et al., 1997)
 - Polynomial time $O(k^\alpha)$-approximation algorithms, for arbitrarily small values of $\alpha > 0$ (Helvig, C. S. et al., 2001)

- These results do not generate a constant ratio approximation for the MLC and MLC-R problems.
Parameterized Approximation Algorithm: $Alg(S)$
Hierarchy of the MLC Problem
Parameterized Approximation Algorithm $Alg(S)$: Outline

MLC-R α p-MLC-R

- Parameterized algorithm $Alg(S)$ for the p-MLC-R problem.
Parameterized Approximation Algorithm $Alg(S)$: Selector Function S and the p-MLC-R_S problem

$I \in p$-MLC-R

$I \in p$-MLC-R_S

$S(2OC+)$
Parameterized Approximation Algorithm $Alg(S)$: Approximation Technique

- Feasible solutions of the p-MLC-R problem
- Feasible solutions after relaxing (LP) the set of feasible solutions of the p-MLC-R_S problem
- Feasible solutions after rounding the solution found
Parameterized Approximation Algorithm $Alg(S)$:
For p-MLC-R problem

$t(I) \leq 2 k_S r_S \text{opt}(I)$

$I = (p, F, R) \in p$-MLC-R

S

$I_S = (p, F, R, S) \in p$-MLC-R$_S$

$J = (G = (V, E, w), C) \in \text{TEC}$

$J_S = (G = (V, E, w), C_S) \in \text{TEC}_S$

Invoke Slavik’s Algorithm:
$t(I) \leq 2 k \text{opt}(I); k = \max \{|V(R_i)|\}$

Invoke Slavik’s Algorithm:
$t(I_S) \leq 2 k_S \text{opt}(I_S); k_S = |S|$

$t(I_S) \leq r_S t(I)$

$\text{opt}(I_S) \leq t(I_S) \leq r_S \text{opt}(I)$

$\text{opt}(I_S) \leq r_S \text{opt}(I)$

$t(I) = t(I_S) \leq 2 k_S r_S \text{opt}(I)$
Selector Function S

Outline

- S selects four corners: $S(4C)$
- Definition of **Special Point**
 - S selects special points: $S(+)
 - S selects two adjacent corners and one special point: $S(2AC+)$
- S selects two opposite corners and one special point: $S(2OC+)$
Selector Function S:
S selects four corners: $S(4C)$

$$k_{S(4C)} = 4$$
$$t(I_{S(4C)}(j)) \leq r_{S(4C)} t(I(j))$$

$$opt(I(j)) = 4 + (j+2)(\epsilon - \delta)$$

$$opt(I_{S(4C)}(j)) > j$$

$$opt(I_{S(4C)}(j)) \sim \frac{j}{4+(j+2)(\epsilon - \delta)} opt(I(j))$$
How about if we select the middle vertex?

\[t(I_S(j)) \leq r_S \ t(I(j)) \]

\[
\text{opt}(I(j)) = \text{opt}(I_{S(+)}(j))
\]
Selector Function S:
Definition of Special Point

p

SpP
Selector Function S: Definition of Special Point

<table>
<thead>
<tr>
<th>R_j</th>
<th>Candidates to be a special point u</th>
<th>Min-connectivity distance $CD(u,R)=CD(R_j,R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>${v_2, v_5}$</td>
<td>2</td>
</tr>
<tr>
<td>R_3</td>
<td>${v_3, v_6, v_7, v_8}$</td>
<td>2</td>
</tr>
<tr>
<td>R_5</td>
<td>${v_5, v_6, v_7, v_{11}, v_{15}, v_{19}}$</td>
<td>2</td>
</tr>
</tbody>
</table>
Selector Function S:
S selects special point: $S(+)\newline\newline$k_{S(+)}=1\newline\newlinet(I_{S(+)}(j)) \leq r_{S(+)\cdot} t(I(j))\newline\newline$\begin{align*}
opt(I(j)) = \opt(I_{S(+)}(j))
\end{align*}
Selector Function S:
S selects special points: $S(+)\
\begin{align*}
 k_{S(+) } &= 1 \\
 t(I_{S(+) (j)}) &\leq r_{S(+) } t(I(j))
\end{align*}
\[w \gg h \]

\[
 \text{opt}(I_{S(+) (j)}) \sim \frac{i}{2} \cdot \text{opt}(I(j))
\]
Selector Function S:
S selects two adjacent corners and one special point: $S(2AC+)$

\[k_{S(2AC+)} = 3 \]
\[t(I_{S(2AC+)}(j)) \leq r_{S(2AC+)} t(I(j)) \]

$w >> h$

\[\text{opt}(I_{S(2AC+)}) \sim \frac{1}{2} \cdot \text{opt}(I(j, k)) \]
Selector Function S:
Gathering properties to construct S

Special Point

Corners: Opposite ones
Constant Ratio Approximation:
Outline

- S selects two opposite corners and a special point: $S(2OC+)$
- $k_{S(2OC+)}=3$ and prove that $r_{S(2OC+)} \leq 5$
 - Ncpe/cpe rectangles and tour
 - Paths type-1 and type-2 for adjacent ncpe rectangles
 - CD(SpP_i,R) is bounded by a portion of the corridor
 - Type-1
 - Type-2
Constant Ratio Approximation:
S selects two opposite corners and a special point: S(2OC+)

\[k_{S(2OC+)} = 3 \]
\[t(I_{S(2OC+)}) \leq r_{S(2OC+)} t(I) \]

TR, BL, SpP

I ∈ \(p\)-MLC-R
Constant Ratio Approximation:
Ncpe/cpe rectangles and tour
Constant Ratio Approximation:

\[k_{S(2OC+)} = 3 \]
\[t(I_{S(2OC+)}) \leq r_{S(2OC+)} t(I) \]

For \(1 \leq i \leq q \), it is possible to connect at least one of the critical points of every ncpe rectangle \(n_i \in VR \) to the corridor, by adding line segments of length at most \(l_{i-1} + h_i + l_i \).

\[l_0 + \sum_{j=1}^{q} h_j + 2 \sum_{j=1}^{q-1} l_j + l_q < 4t(I) \]

\[r_{S(2OC+)} \leq 5 \]
Constant Ratio Approximation:
Paths type-1 and type-2 for adjacent ncpe rectangles
Constant Ratio Approximation:
CD(SpP, R) is bounded by a portion of the corridor: Type-1

If path \(T(X_{i-1}, Y_i) \) is type-1, then a critical point of \(n_i \) can be connected to the corridor by adding line segments of length at most \(l_{i-1} + h_i + l_i \).
Constant Ratio Approximation:
CD(SpP_i,R) is bounded by a portion of the corridor : Type-1

If path $T(X_{i-1},Y_{i+1})$ is type-1, then a critical point in n_i can be connected to the corridor by adding line segments of length at most $l_{i-1} + h_i + l_i$.
Constant Ratio Approximation:
CD(SpP_i, R) is bounded by a portion of the corridor: Type-1

If path $T(X_{i-1}, Y_{i+1})$ is type-1, then a critical point in n_i can be connected to the corridor by adding line segments of length at most $l_{i-1} + h_i + l_i$.
Constant Ratio Approximation:
CD(SpPᵢ, R) is bounded by a portion of the corridor: Type-1

If path $T(X_{i-1}, Y_{i+1})$ is type-1, then a critical point in n_i can be connected to the corridor by adding line segments of length at most $l_{i-1} + h_i + l_i$.
Constant Ratio Approximation:
CD(SpP_i,R) is bounded by a portion of the corridor: Type-2
Constant Ratio Approximation:
$CD(SpP_i, R) = CD(n_i, R) \leq l_{i-1} + h_i + l_i$
Additional Results and Conclusions:

Outline

- MLC_k problem, c-gons, $c \leq k$
- Rectangular group-TSP
 - Edges may be visited more than once
- Other results
Additional Results and Conclusions:

MLC_k problem

Rectilinear c-gons for $c \leq k$, and $c \geq 6$

$k_{S(C^+)} = \frac{3}{2}n - 1; r_{S(C^+)} = 5.$

$2k_{S(C^+)} \cdot r_{S(C^+)} = 2 \cdot (\frac{3}{2}n - 1) \cdot 5 = 15n - 10.$
Additional Results and Conclusions: New results

- Hans Bodlaender1, Corinne Feremans2, Alexander Grigoriev2, Eelko Penninkx1, René Sitters3, Thomas Wolle4. On the Minimum Corridor Connection Problem and Other Generalized Geometric Problems. In 4th Workshop on Approximation and Online Algorithms (WAOA) Zurich, Switzerland, September 2006.

- NP-completeness of MLC problem
- Geographic Clustering Problem:
 - NP-complete?
 - PTAS: $(1+\varepsilon)\ \text{OPT in time } n(\log n)^O(1/\varepsilon)$
- α-fatness rooms:
 - NP-complete?
 - $(16/\alpha)-1\ \text{OPT}; 0\leq \alpha\leq 1$
 - If all the rooms are squares then $\alpha=1$ and the solution is 15 times the optimal one.

1Utrecht University,2Maastricht University,3Max-Planck-Institute for Computer Science4National ICT Australia Ltd.
Additional Results and Conclusions:
Rectangular group-TSP

- Instead a tree we have a tour: $2 \times 30 = 60$
 - The Errand (Tour) Scheduling problem can be approximated to within a factor of $3 \rho / 2$ in polynomial time, when each errand is assigned to at most ρ vertices.

\[
\frac{3}{2} \cdot k_{S(2OC+)} \cdot r_{S(2OC+)}
\]

\[
k_{S(2OC+)} = 3 \text{ and } r_{S(2OC+)} = 5.
\]

This results in the approximation ratio 22.5
Additional Results and Conclusions: Rectangular group-TSP

• Mark de Berga, Joachim Gudmundssonb, Mathew J. Katzc, Christos Levcopoulosd, Mark H. Overmarse, A. Frank van der Stappene. \textit{TSP with neighborhoods of varying sizes}. J. of Algorithms 57 (2005) 22-36.
 - 1200 α^3 times the optimal, $\alpha \geq 1$
 - 93 times the optimal when the regions are squares

aTU Eindhoven, bNICTA Sydney, cBen-Gurion University, dLund University, eUtrecht University
Additional Results and Conclusions:

- TRA-MLC, TRA-MLC-R, p-MLC-R, MLC-R problems are NP-complete
- p-MLC-R_S for S(2OC+), S(4C+) are NP-complete
- Solution of the p-MLC-R and MLC-R problem is at most $2k_S r_S = 2 \times 3 \times 5 = 30$ times the optimal solution.
- Solution of the MLC_k problem is at most $15k - 10$ times the optimal solution.
- The approximation ratio is a constant!
Publications…

Thank you!

- Questions
- Comments
- Suggestions
Introduction:
Applications of the MLC Problem

- Circuit Board Layout Design
 - Wires for power supply
 - Wires for clock signal

- Building Wiring Design
 - Optical Fiber for Data Communication Networks
 - Wires for Electrical Networks
Example...

\[\{ x_1, \bar{x}_2 \} \quad \{ x_1, \bar{x}_4, x_5 \} \quad \{ \bar{x}_1, x_2 \} \]

\[\{ \bar{x}_1, \bar{x}_2, x_4 \} \quad \{ x_2, \bar{x}_4 \} \quad \{ \bar{x}_2, x_3, x_4 \} \]

\[\{ x_3, \bar{x}_4 \} \quad \{ \bar{x}_3, x_4, x_5 \} \quad \{ \bar{x}_4, \bar{x}_5 \} \]
Example...

\[\{x_1, \overline{x}_2\} \ {x_1, \overline{x}_4, x_5}\ \{\overline{x}_1, x_2\} \]

\[\{\overline{x}_1, \overline{x}_2, x_4\} \ \{x_2, \overline{x}_4\} \ \{\overline{x}_2, x_3, x_4\}\]

\[\{x_3, \overline{x}_4\} \ \{\overline{x}_3, x_4, x_5\} \ \{\overline{x}_4, \overline{x}_5\}\]

TTTTTT
Example...

\[
\{x_1, \overline{x}_2\} \quad \{x_1, \overline{x}_4, x_5\} \quad \{\overline{x}_1, x_2\}
\]

\[
\{\overline{x}_1, \overline{x}_2, x_4\} \quad \{x_2, \overline{x}_4\} \quad \{\overline{x}_2, x_3, x_4\}
\]

\[
\{x_3, \overline{x}_4\} \quad \{\overline{x}_3, x_4, x_5\} \quad \{\overline{x}_4, \overline{x}_5\}
\]
Parameterized Approximation Algorithm Alg(S)
Parameterized Approximation Algorithm \textbf{Alg}(S)
Related Problems: Tree Vertex Cover

- **INPUT**: A connected undirected edge-weighted graph $G=(V,E,w)$, where $w:E \rightarrow \mathbb{R}^+$ is an edge-weight function.

- **OUTPUT**: A tree $T=(V’,E’)$, where $E’ \subseteq E$, and $V’ \subseteq V$ is a vertex cover (i.e. every edge in G includes at least one vertex in $V’$) and the total edge-weight

$$\sum_{e \in E'} w(e)$$

is minimized.
Related Problems: Group Steiner Tree Problem
Generalization of the MLC Problem

- **INPUT**: A connected undirected edge-weighted graph $G=(V,E,w)$, where $w:E \rightarrow \mathbb{R}^+$ is an edge-weight function, a non-empty subset S, $S \subseteq V$, of *terminals*; and a partition $\{S_1,S_2,\ldots,S_k\}$ of S.

- **OUTPUT**: A tree $T(S)=(V',E')$, where $E' \not\subseteq E$ and $V' \not\subseteq V$, such that at least one terminal from each set S_i is in the tree $T(S)$ and the total length $\sum_{e \in E'} w(e)$ is minimized.
Related Problems: Group Steiner Tree Problem
Reducing the TRA-MLC to the GST

(a)
(b)
Related Problems: Group Steiner Tree Problem
Reducing the TRA-MLC to the GST
Related Problems: Group Steiner Tree Problem

<table>
<thead>
<tr>
<th>(k-1) OPT</th>
<th>Ihler, E. (1991)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 + ln(k/2)) (k^{0.5}) OPT</td>
<td>Bateman, C. D. et. al. (1997)</td>
</tr>
<tr>
<td>(O(k^{\varepsilon})), for any (\varepsilon > 0)</td>
<td>Helvig, C. S. et. al. (2001)</td>
</tr>
</tbody>
</table>
MLC Problem: Hierarchy

MLC

Geometric Clustering Problem

α-fatness Rooms Problem

MLC - R

MLC

MLC

α-fatness Rooms Problem

MLC - R

MLC
Introduction:
Hierarchy of the MLC Problem
Related Problems:
Formal Definition of the TFNS Problem

- **INPUT**: A connected undirected edge-weighted graph $G=(V,E,w)$, where $w:E \rightarrow \mathbb{R}^+$ is an edge-weight function.

- **OUTPUT**: A tree $T=(V',E')$, where $E' \not\subseteq E$, and $V' \not\subseteq V$ is a *feedback node* set (i.e. every cycle in G includes at least one vertex in V') and the total edge-weight $\sum_{e \in E'} w(e)$ is minimized.
Related Problems:
TFNS-based algorithm for MLC (from TVC)

- Uses the approximation algorithm for the weighted vertex cover and then uses an approximation algorithm for the Steiner tree problem.
- Replace the approximation algorithm for the weighted vertex cover by a constant ratio approximation algorithm for the weighted FNS problem [Chudak, F. A. et. al. (1998)].
Related Problems:
Solving instances I_j of MLC by TFNS-based algorithm

$$w \gg h$$

$$\text{opt}(I_{FNS}) \sim \frac{i}{2} \cdot \text{opt}(I(j))$$
$S(R_k)$: selecting k points randomly, $k_{S(R_k)} = k$...

$t(I_S) \leq r_S t(I)$

- Middle vertex
- Rectangle with $2 \cdot k + 3$ vertices
- δ_{2k}

\[
\frac{\binom{2k+2}{k-1}}{\binom{2k+3}{k}} = \frac{k}{2 \cdot k + 3} < \frac{1}{2}.
\]

\[
\text{opt}(I_{S(R_k)}) \geq \frac{1}{2} j
\]

\[
\text{opt}(I_{S(R_k)}) \sim \frac{j}{8 + (2j + 4)(\epsilon - \delta)} \cdot \text{opt}(I(j))
\]
$S(k+)$: selecting k special points, $k_{S(k+)} = k$...

$t(I_S) \leq r_S \cdot t(I)$

$w >> h \quad \Rightarrow \quad \text{opt}(I_{S(k+)}) \sim \frac{i}{2} \cdot \text{opt}(I(j,k))$
Additional Results and Conclusions:

- **TRA-MLC**, \(\{x_1, \bar{x}_2\} \quad \{x_1, \bar{x}_4, x_5\} \quad \{\bar{x}_1, x_2\} \quad 1LC-R
 \quad \text{problems are} \quad \{\bar{x}_1, \bar{x}_2, x_4\} \quad \{x_2, \bar{x}_4\} \quad \{\bar{x}_2, x_3, x_4\}

- **p-MLC-R_S f** \(\{x_3, \bar{x}_4\} \quad \{\bar{x}_3, x_4, x_5\} \quad \{\bar{x}_4, \bar{x}_5\} \quad \text{P-completeness}

- Solution of the **p-MLC-R** and **MLC-R** problem is at most \(2k_s r_s = 2 \times 3 \times 5 = 30 \) times the optimal solution.

- Solution of the **MLC** problem is at most \(15n - 10 \) times the optimal solution.

- The approximation ratio is a constant!
Parameterized Approximation Algorithm $\text{Alg}(S)$
NP-Completeness: TRA-MLC-R \preceq MLC-R

$$|T_{\text{MLC-R}}| \leq B + 4Y + h + w + 8 \iff |T_{\text{TRA-MLC-R}}| \leq B$$

where $Y = B + h + w + 9$, and B, w, h are greater than 2.
Example...

\[\{ x_1, x_2 \} \quad \{ x_1, x_4, x_5 \} \quad \{ \bar{x}_1, x_2 \} \]

\[\{ \bar{x}_1, \bar{x}_2, x_4 \} \quad \{ x_2, \bar{x}_4 \} \quad \{ \bar{x}_2, x_3, x_4 \} \]

\[\{ x_3, \bar{x}_4 \} \quad \{ \bar{x}_3, x_4, x_5 \} \quad \{ \bar{x}_4, \bar{x}_5 \} \]