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ABSTRACT

In this paper we study the computational aspects of the gate array global routing problem. ‘We develop
an algorithm that generates a routing with congestion bounded above by 2-OPT*, where OPT" is "close" to
the congestion of an optimal solution. Our algorithm reduces the global routing problem to a set of linear
programming problems.

INTRODUCTION

Gate arrays have been successfully used as a design tool to generate, with a fast turnaround time, com-

puter chips. In this paper we study the computational aspects of the gate array global routing problem. A

typical gate array is given in figure 1. A gate array consists of r-1 rows of active areas, i.e., where com-

- ponents (transistors or high level function blocks) have been placed. In each of the active areas there is only

one layer for routing. All the routing wires that one may introduce in these areas are wires that run along the

vertical tracks. Between every pair of adjacent active areas, there is a nonactive area or (horizontal) channel

in which two layers are available for routing. The wires in one layer must run along the vertical tracks and
the wires in the other layer must run along the horizontal tracks.
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" Figure 1: Typical gate array.

In the gate array design methodology, we initially place the components (transistors, high level func-
tion blocks, etc.) on the active areas and then we try to interconnect all points that have to be made
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electrically common by using the tracks available for wiring. This procedure is repeated until a successful
wiring is obtained, or until we have enough confidence that such wiring does not exist. In the latter case we
partition our circuit into two or more computer chips, and repeat the above procedure on each of the resulting
subproblems. ‘

In this paper we present an algorithm to solve the gate array global routing problem. The typical
approach for solving this routing problem begins by dividing the gate array into r by ¢ cells by introducing
the set of horizontal and vertical cell dividing lines given in figure 2. The cells are referred to as C; ;, for'1 <
i<randl1<j<c. Cell (i contains the set of points S; ;. The number of elements in each of these sets is
at most p. The set of points § = U §; ; in all cells are partitioned into N = { Ny, Ny, ..., N, }. Each set N; is
called a net. All the points in each net have to be made electrically common by interconnecting them by
wires. Each wire must follow a path in the routing regions specified above, and each path consists of alter-
nating vertical line segments (assigned to layer one) and horizontal line segments (assigned to layer two).
Note that in this design methodology the number of tracks available for wiring is an upper bound on the
maximum number of wires that cross from one cell to any of its adjacent cells. The typical approach for solv-
ing the gate array routing problem consists of the following two steps:

(1) Global Routing: Find a global routing, R, which specifies for each net the set of cell boundaries
crossed by the wire connecting it. In a global wiring the number of wires that cross the boundary
between adjacent cells must not exceed the capacity of the cell, i.e., the number of tracks that cross the
edge.

(2) Detail Routing: For each net specify the exact position for the wires.

Of course, not all global routings have a detailed routing. However, the complexity of our problem is greatly
reduced by dividing our routing problem into two subproblems.
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Figure 2: Partition of the gate array.

Throughout this paper we assume that all nets are of size two. An approach similar to ours can be used
to solve the more general problem; however, the approximation bound in this case is larger. Figure 3 shows
different global wires connecting a net. A wire is called a t-rurn wire if it makes at most t turns, i.e., it bends
t times (see figure 3). A global wiring R is called a r-turn global wiring if every wire isa t—turn wire. The
capacity of the edges adjacent to C; ; is given by v; j_1, vi;, li—1; and & ; (see figure 2). Of course v; o =
vie=0for1<i<r;andho;=h,;=0for 1<j <c. Fora global routing R, let x; ; (y; ;) be the number of
wires that cross the boundary between C;; and C; j11 (Cij and Ciyq ;). The objective of the global routing
problem is to find a global routing R such that the congestion, given by B = max{x; J»Yi.j 1, is least possible.
Karp et. all. [K1.] showed that the global routing problem is NP-hard even when p = 1 and all the nets are of
size two. Shing and Hu [SH] developed a polynomial time algorithm to generate suboptimal solutions to the



gate array global routing problem. Raghavan and Thompson [RT] developed algorithms that guarantee prov-
able good solution with high probability. Both of these algorithms generate a solution by reducing the global
routing problem to a linear programming problem. Other algorithms for our problem appear in [GAM],
[NH], [TT] and [VK]. The techniques behind these algorithms ranges from simple heuristics to simulated
annealing. The underlying characteristic of all the known algorithms for global routing is that none of them
have been shown to generate solutions within a fixed percentage of the optimal solution value. That is the
main difference between our algorithms and the previous algorithms for global wiring.
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Figure 3; t—turn global wires.

Let OPT; be the congestion of an optimal k—turr routing R and let OPT be the congestion of an
optimal routing R (there is no limit on the number of bends in any wire). Clearly, OPTy.q < OPTy and OPT
< OPTy. Karp et. all. [KL] also showed that for some problem instances OPT = ((r+¢)/4)OPT. Figure 4
gives one of these problem instances. The algorithm developed by Raghavan and Thomson [RT] generates a
routing with congestion at most 2 - OPT';. Clearly, this does not imply that such routing has a congestion
bounded by 2-OPT. ]
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Figure 4: Instance with OPTy =4 and OPT = 1.

A wire is said to be a t-turn falling wire if it is a t-turn wire and every horizontal cell boundary line
intersects the wire at most once. All the wires in figure 4, except for the 6—turn wire, are falling wires. A
global routing R is said to be a t-turn falling routing if all the wires are r—wrn falling wires, Let OPTy be
the congestion of an optimal k~turn falling routing R and let OPT” be the congestion of an optimal falling
routing R (there is no limit on the number of bends in each wire). Clearly, OPT, < OPT) and OPT < OPT' .
In this paper we develop an algorithm that generates a global routing with congestion bounded above by
2-:OPT’. It is interesting to note that the wirings generated by our algorithm have the same provable good

- behavior as the ones generated by the algorithm in [RT]. Our algorithm reduces the global routing problem
to a set of linear programming problems which can be solved by the classical algorithms [GA] or the newer
algorithms [Ka], [K], and [Va]. ‘



TRANSFORMATION TO THE VIA PLACEMENT PROBLEM

Let us now outline our approach in detail. First we transform our global routing problem to a via
placement problem. In the new problem we also have 7-¢ cells denoted by C; ;. Associated with cell C; ;
there is a region for placing via columns referred to as via slot V;; (see figure 5). Let us assume for the
moment that net N; consist of points located in cells Cq; and Ca4. In this case we introduce three via
columns (see figure 6). Each via column has to be placed in one of the via column slots formed by the via
slots located in the same column.” The ith via column has a pin in row ¢ and a pin in row i+1. In figure 7
(1—turn) all the via columns are placed in via column slot 4; in figure 7 (2—turn) all the via columns are
placed in via column slot 2; in figure 7 (3—turn ) the first two via columns are placed in via column slot 2 and
the last one in via column slot 4; in figure 7 (4—turn) the first via column is placed in via column slot 2 and
the other two in via column slot 3; and in figure 7 (5—turn) the ith via column is placed in the i+1st via
column slot. In the new problem we only care to count the wires that cross the thick lines (see figure 7).
Note that any ¢—turn falling wire can be obtained by placing the via columns in the appropriate via column
slots. The global routing for the original problem is obtained by ignoring the via points and considering only
the "thick" boundaries crossed by the wires.
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Figure 6: Component cells, via slots, and via columns.
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Figure 7: t—turn global wires after placement of the via columns.

At this point the original problem has been transformed to the "generalized" via placement problem. A
simplified version of this problem, the via placement problem for MPCBs, has been studied in [GK]. The
main difference between these two problems is that in the via placement problem for MPCBs we only
minimize the row congestion. The column congestion is ignored. Gonzalez and Kurki-Gowdara [GK]
present a polynomial time algorithm for the via placement problem that generates solutions that are within
twice the optimal row congestion. The main problem now is how to modify their algorithm to achieve also a
small column congestion.

Let us now explain Gonzalez and Kurki-Gowdara’s [GK] algorithm. Let P be a via placement prob-
lem. The algorithm begins by finding an optimal solution to the integer-relaxed version of P, which we call
P’. The main difference between problems P and P’ is that in problem P’ one is allowed to place fractions
of via columns at different via column slots. As a result of this there will be fractional wires throughout the
wiring. An optimal solution to problem P’ may be obtained by solving a set of linear programming prob-
lems. The optimal solution to P’ is used to obtain a (suboptimal) solution to ‘the via placement problem P .
The suboptimal solution to P is such that each wire in each region can be associated with a fractional wire of
thickness at least 1/2 ( or half wire ). That is why we can prove the approximation bound of two. In figure
8a we show the placement of via columns in P. Each wire delineated by the wiggle lines (figure 8a) in P
has associated with it a skeleton wire in P* with the property that there is at least a half wire in the region del-
ineated by the wiggle line and there are fractional wires elsewhere in the row. Gonzalez -and Kurki-
Gowdara’s algorithm can be modified so that an optimal solution to P’ also takes into account the column
congestion by artificially assigning the skeleton wire to the horizontal cell boundaries just under it. This
modification would work on row one in example 8a; however, it will not work on rows 2, 3 and 4. The rea-
son for this is that the skeleton wire in row two would contribute at least a half wire in two horizontal cell
boundaries. In row three of the exafnple given in figure 8b it is even worse, because a wiggle line crosses
two thick boundaries. This overestimation has the side effect that the optimal congestion for P’ might not be
smaller than the optimal congestion for 7, and as a result of this, the approximation bound of two will not
hold. In the linear programming formulation it is not possible to just artificially assign to one horizontal cell
boundary a skeleton wire. A skeleton wire is either assigned to all the horizontal cell boundaries in a row or
to none. This limitation arises from the reduction to a set of linear programming problems. Can we modify
our construction rules so that all problem instances are of the type given in row one in figure 8a? The answer
is yes!



Figure 8: Placement.

Let us now modify the previous transformation to achieve minimal column congestion. The main idea
is to granulate the via slots and introduce a large number of via columns in such a way that the integer-
relaxed version of this problem, P’, has an optimal solution in which whenever a vertical wire crosses a thick
line, the wiggle line in P associated with its topmost point does not cross any thick lines (see figure 10). For
this situation it is simple to see that when the skeleton wire is added to the horizontal cell boundaries
immediately below them, only one half wire will be added to one horizontal cell boundary. Note that solu-
tions that overestimate, i.e., wiggle lines crossing more than one thick boundary, are possible. The reason
why this new formulation is correct is that a solution that overestimates will always be worse than one that
does not; and there is always a solution that does not overestimate. This implies that the optimal congestion
value for f' is smaller than that for P. Hence, an algorithm similar to the one in [GK] generates a solution
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Figure 9: Component cells and via slots that allow "short" wires.
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Figure 11: OPT =4 and OPT = 1.

How far is OPT’ from OPT? The problem instance given in figure 11 (figure 4 rotated 180 degrees) is
such that OPT" =4 and OPT = 1, i.e., OPT’ is as bad as OPTy, Let us try to reduce this bound. A wire is
said to be a t-turn left-to-right wire if it is a t-turn wire and every vertical cell boundary line intersects the
wire at most once. A global routing R is said to be a t-turn left-to-right routing if all the wires are t—turn
left-to-right wires. Let OPT; be the congestion of an optimal k—turn left-to-right routing R and let OPT”
be the congestion of an optimal left-to-right routing R (there is no limit on the number of bends in each
wire). Clearly, OPT;, < OPT} and OPT < OPT”. Our algorithm generates a global routing with congestion
value bounded by 2-OPT”. Unfortunately, the example in figure 4 has the property that OPT” =4 and OPT
=1, ie., OPT” is as bad as OPT and OPT’. Let the points from net Ny be located in cells C; ; and Cy ;.
The horizontal span for net Ny is li—' [ and its vertical span is |j—j’|. A global routing R is said to be a ¢-
turn l-span routing if all the wires that connect a net with horizontal span smaller than its vertical span are
t—turn falling wires; otherwise, the net is connected by a t—murn left-to-right wire. Let OPT(" be the
congestion of an optimal k—turn 1-span routing R and let OPT" be the congestion of an optimal I-span rout-
ing R (there is no limit on the number of bends in each wire). Clearly, OPT, < OPT," and OPT < OPT" .




Our algorithm generates a global routing with congestion value bounded by 2-OPT”. We conjecture that
OPT"” is close to OPT. A global routing R is said to be a t-furn e-span routing if all the wires that connect a
net can be connected with either t—rurn falling wires and ¢—turn left-to-right wires. Let OPTB; be the
congestion of an optimal k—furn e-span routing R and let OPTB be the congestion of an optimal I-span rout-
ing R (there is no limit on the number of bends in each wire). Clearly, OPT, < OPIB; and OPT < OPIB.
We conjecture that OPTB is close to OPT. However, our algorithm can only generate a global routing with
congestion bounded above by 4-OPTB .

DISCUSSION

We presented an algorithm for the global routing problem in gate arrays. Our algorithm transforms the
problem into a set of linear programming problems, which can be solved efficiently. The main advantage of
our algorithm over previously known algorithms is that our algorithm generates solutions that are provably
good. The time complexity of our algorithm and the ones in [RT] and [SH] is dominated by the time
required to solve the linear programming problem. The main difference is that in our algorithm there are
more variables and inequalities. From the practical point of view, our algorithms are important because they
provide us with a "good" estimate of the optimal solution value. In practical situations our algorithm should
be run concurrently with the other algorithms and then select the best of the solutions. With our bound on
the optimal solution value we can estimate the quality of our solutions.
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