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2.1 Introduction

In Chapter 1 we presented an overview of approximation algorithms and metaheuristics. This serves as
an overview of Parts I, II, and III of this handbook. In this chapter we discuss in more detail the basic
methodologies and apply them to simple problems. These methodologies are restriction, greedy methods,
LP rounding (deterministic and randomized), α vector, local ratio and primal dual. We also discuss in
more detail inapproximability and show that the “classical” version of the traveling salesperson problem
(TSP) is constant ratio inapproximable. In the last three sections we present an overview of the application
chapters in Parts IV, V, and VI of the handbook.

2.2 Restriction

Chapter 3 discusses restriction which is one of the most basic techniques to design approximation algo-
rithms. The idea is to generate a solution to a given problem P by providing an optimal or suboptimal
solution to a subproblem of P . A subproblem of a problem P means restricting the solution space for
P by disallowing a subset of the feasible solutions. The idea is to restrict the solution space so that it
has some structure, which can be exploited by an efficient algorithm that solves the problem optimally
or suboptimally. For this approach to be effective the subproblem must have the property that, for every
problem instance, its optimal or suboptimal solution has an objective function value that is “close” to
the optimal one for P . The most common approach is to solve just one subproblem, but there are al-
gorithms where more than one subproblem is solved and then the best of the solutions computed is the
solution generated. Chapter 3 discusses this methodology and shows how to apply it to several prob-
lems. Approximation algorithms based on this approach are discussed in Chapters 35, 36, 42, 45, 46, 54,
and 73. Let us now discuss a scheduling application in detail. This is the scheduling problem studied by
Graham [1,2].

2-1
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2.2.1 Scheduling

A set of n tasks denoted by T1, T2, . . . , Tn with processing time requirements t1, t2, . . . , tn have to be
processed by a set of m identical machines. A partial order C is defined over the set of tasks to enforce
a set of precedence constraints or task dependencies. The partial order specifies that a machine cannot
commence the processing of a task until all of its predecessors have been completed. Each task Ti has to
be processed for ti units of time by one of the machines. A (nonpreemptive) schedule is an assignment
of tasks to time intervals on the machines in such a way that (1) each task Ti is processed continuously
for ti units of time by one of the machines; (2) each machine processes at most one task at a time; and
(3) the precedence constraints are satisfied. The makespan of a schedule is the latest time at which a task is
being processed. The scheduling problem discussed in this section is to construct a minimum makespan
schedule for a set of partially ordered tasks to be processed by a set of identical machines. Several limited
versions of this scheduling problem has been shown to be NP-hard [3].

Example 2.1

The number of tasks, n, is 8 and the number of machines, m, is 3. The processing time requirements for the
tasks, and the precedence constraints are given in Figure 2.1, where a directed graph is used to represent
the task dependencies. Vertices represent tasks and the directed edges represent task dependencies. The
integers next to the vertices represent the task processing requirements. Figure 2.2 depicts two schedules
for this problem instance.

In the next subsection, we present a simple algorithm based on restriction to generate provable good
solutions to this scheduling problem. The solution space is restricted to schedules without forced “idle
time,” i.e., each feasible schedule does not have idle time from the time at which all the predecessors of
task Ti (in C ) are completed to the time when the processing of task Ti begins, for each i .
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FIGURE 2.1 Precedence constraints and processing time requirements for Example 2.1.
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FIGURE 2.2 (a) and (b) represent two different AAT schedules for Example 2.1. Schedule (b) is a minimum makespan
schedule.
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2.2.2 Partially Ordered Tasks

Let us further restrict the scheduling policy to construct a schedule from time zero till all the tasks have
been assigned. The scheduling policy is: whenever a machine becomes idle we assign one of the unassigned
tasks that is ready to commence execution, i.e., we have completed all its predecessors. Any scheduling
policy in this category can be referred to as a no-additional-delay scheduling policy. The simplest version
of this scheduling policy is to assign any of the tasks (AAT) ready to be processed. A schedule generated by
this policy is called an AAT schedule. These schedules are like the list schedules [1] discussed in Chapter 1.
The difference is that list schedules have an ordered list of tasks, which is used to break ties. The analysis
for both types of algorithms is the same since the list could be any list.

In Figure 2.2 we give two possible AAT schedules. The two schedules were obtained by breaking ties
differently. The schedule in Figure 2.2(b) is a minimum makespan schedule. The reason for this is that the
machines can only process one of the tasks T1, T5, or T8 at a time, because of the precedence constraints.

Figure 2.2 suggests that an optimal schedule can be generated by just finding a clever method to break
ties. Unfortunately, one cannot prove that this is always the case because there are problem instances for
which all minimum makespan schedules are not AAT schedules.

The makespan of an AAT schedule is never greater than 2 − 1
m times the one of an optimal schedule for

the instance. This is expressed by

f̂ I

f ∗
I

≤ 2 − 1

m

where f̂ I is the makespan of any possible AAT schedule for problem instance I and f ∗
I is the makespan

of an optimal schedule for I . We establish this property in the following theorem:

Theorem 2.1

For every instance I of the identical machine scheduling problem, and every AAT schedule, f̂ I
f ∗

I
≤ 2 − 1

m .

Proof
Let S be any AAT schedule for problem instance I with makespan f̂ I . By construction of the AAT schedules
it cannot be that at some time 0 ≤ t ≤ f̂ I all machines are idle. Let i1 be the index of a task that finishes
at time f̂ I . For j = 2, 3, . . . , if task Ti j−1 has at least one predecessor in C , then define i j as the index
of a task with latest finishing time that is a predecessor (in C) of task Ti j−1 . We call these tasks a chain
and let k be the number of tasks in the chain. By the definition of task Ti j , it cannot be that there is an
idle machine from the time when task Ti j completes its processing to the time when task Ti j−1 begins
processing. Therefore, a machine can only be idle when another machine is executing a task in the chain.
From these two observations we know that

m f̂ I ≤ (m − 1)
k∑

j=1

ti j +
n∑

j=1

t j

Since no machine can process more than one task at a time, and since not two tasks, one of which
precedes the other in C , can be processed concurrently, we know that an optimal makespan schedule
satisfies

f ∗
I ≥ 1

m

n∑
j=1

t j and f ∗
I ≥

k∑
j=1

ti j

Substituting in the above inequality, we know that f̂ I
f ∗

I
≤ 2 − 1

m .

The natural question to ask is whether or not the approximation ratio 2 − 1
m is the best possible for

AAT schedules. The answer to this question is affirmative, and a problem instance for which this bound is
tight is given in Example 2.2.
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FIGURE 2.3 (a) AAT schedule. (b) Optimal schedule for Example 2.2.

Example 2.2

There are 2m − 1 independent tasks. The first m − 1 tasks have processing time requirement m − 1, the
next m − 1 tasks have processing time requirement one, and the last task has processing time requirement
equal to m. An AAT schedule with makespan 2m − 1 is given in Figure 2.3(a), and in Figure 2.3(b) we give
a minimum makespan schedule.

Note that these results also hold for the list schedules [1] defined in Chapter 1. These type of schedules
are generated by a no-additional-delay scheduling rule that is augmented by a list that is used to decide
which of the ready-to-process tasks is the one to be assigned next.

Let us now consider the case when ties (among tasks that are ready) are broken in favor of the task with
smallest index (Ti is selected before Tj if both tasks are ready to be processed and i < j ). The problem
instance IA given in Figure 2.4 has three machines and eight tasks. Our scheduling procedure (augmented
with a tie-breaking list) generates a schedule with makespan 14. In Chapter 1, we say that list schedules
(which are this type of schedules) have anomalies. To verify this, apply the scheduling algorithm to instance
IA, but now there are four machines. One would expect a schedule for this new instance to have makespan
at most 14, but you can easily verify that this is not the case. Now apply the scheduling algorithm to the
instance IA where every task has a processing requirement decreased by one unit. One would expect a
schedule for this new instance to have makespan at most 14, but you can easily verify that is not the case.
Apply the scheduling algorithm to the problem instance IA without the precedence constraints from task
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FIGURE 2.4 (a) Problem instance with anomalous behavior. (b) AAT schedule with tie-breaking list.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C002 March 20, 2007 11:48

Basic Methodologies and Applications 2-5

4 to 5 and task 4 to 6. One would expect a schedule for this instance to have makespan at most 14, but
that is not the case. These are anomalies. Approximation algorithms suffer from this type of anomalous
behavior. We need to be aware of this fact when using approximation algorithms.

As in the case of Example 2.2, the worst case behavior arises when the task with longest processing time
is being processed while the rest of the machines are idle. Can a better approximation bound be established
for the case when ties are broken in favor of a task with longest processing time (LPT)? The schedules
generated by this rule are called LPT schedules. Any LPT schedule for the problem instance in Figure 2.3
is optimal. Unfortunately, this is not always the case and the approximation ratio in general is the same as
the one for the AAT schedules. To see this just partition task 2m −1 in Example 2.2 (see Figure 2.3[a]) into
a two-task chain. The first one has processing requirement of ε, for some 0 < ε < 1, and the second one
m − ε. The schedule generated by the LPT rule will schedule first all the tasks with processing requirement
greater than 1 and then the two tasks in the chain.

The problem with the LPT rule is that it only considers the processing requirements of the tasks ready
to process, but ignores the processing requirements of the tasks that follow it. We define the weight of a
directed path as the sum of the processing time requirements of the tasks in the path. Any directed path that
starts at task t with maximum weight among all paths that start at task t is called a critical path for task t.
The critical-path (CP) schedule is defined as a no-additional-delay schedule where the decision of which
task to process next is a task whose CP weight is largest among the ready-to-be processed tasks. The CP
schedule is optimal for the problem instance that was generated by replacing the last task in Example 2.2
by two tasks. However, Graham constructed problem instances for which the makespan of the CP schedule
is 2 − 1/m times the length of an optimal schedule.

It is not known whether or not a polynomial-time algorithm exists with a smaller approximation
ratio even when the processing time requirements for all the tasks are identical and m ≥ 3. There is
a polynomial-time algorithm that generates an optimal schedule when m = 2, but the problem with
different task processing times is NP-hard. In the next subsection we present an algorithm with a smaller
approximation ratio for scheduling independent task.

2.3 Greedy Methods

Another way to generate suboptimal solutions is to apply greedy algorithms. The idea is to generate a
solution by making a sequence of irrevocable decisions. Each of these decisions is a best possible choice at
that point, for example, select an edge of least weight, select the vertex of highest degree, or select the task
with longest processing time. Chapter 4 discusses greedy methods. The discussion also includes primal-
dual approximation algorithms falling into this category. Chapter 5 discusses the recursive greedy method.
This methodology is for the case when making the best possible decision is an NP-hard problem. A large
portion of the bin packing algorithms are greedy algorithms. Bin packing and its variants are discussed in
Chapters 32–35. Other greedy methods appear in Chapters 36, 38, 39, 44–46, 49, 50, 58, 59, and 69. Let us
now discuss the LPT scheduling rule for scheduling independent tasks on identical machines.

2.3.1 Independent Tasks

Another version of this scheduling problem that has received considerable attention is when the tasks
are independent, i.e., the partial order between the tasks is empty. Graham’s [2] elegant analysis for LPT
scheduling has become a classic. In fact, the analysis of quite a few subsequent exact and approximation
scheduling algorithms follow the same approach.

First, we analyze the LPT scheduling rule. For this case there is only one possible schedule, modulo the
relabeling of the tasks. We call this a “greedy method” because of the ordering of the tasks with respect
to their processing requirements. This tends to generate schedules where the shortest tasks end up being
processed last and the resulting schedules tend to have near-optimal makespan. However as we shall see,
one may obtain the same approximation ratio by just scheduling the tasks using a list where the 2m task
with longest processing time appear first (in sorted order) and the remaining tasks appear next in any
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order. This approach could be called “limited greedy.” We discuss other approximation algorithms for this
problem after presenting the analysis for LPT schedules.

Let I be any problem instance with n independent tasks and m identical machines. We use f̂ I , as the
makespan for the LPT schedule for I and f ∗

I as the one for an optimal schedule. In the next theorem we
establish the approximation ratio for LPT schedules.

Theorem 2.2

For every scheduling problem instance I with n independent tasks and m identical machines, every LPT
schedule satisfies f̂ I

f ∗
I

≤ 4
3 − 1

3m .

Proof
It is clear that LPT schedules are optimal for m = 1. Assume that m ≥ 2. The proof is by contradiction.
Suppose the above bound does not hold. Let I be a problem instance with the least number of tasks for which
f̂ I
f ∗
I

> 4
3 − 1

3m . Let n the number of tasks in I , m the number of machines, and assume that t1 ≥ t2 ≥ · · · ≥ tn.

Let k be the smallest index of a task that finishes at time f̂ I . It cannot be that k < n, as otherwise the
problem instance T1, T2, . . . , Tk is also a counterexample and it has fewer tasks than instance I , but by
assumption problem instance I is a counterexample with the least number of tasks. Therefore, k must be
equal to n.

By the definition of LPT schedules, we know that there cannot be idle time before task Tn begins
execution. Therefore,

n∑
i=1

ti + (m − 1)tn ≥ m f̂ I

This is equivalent to

f̂ I ≤ 1

m

n∑
i=1

ti +
(

1 − 1

m

)
tn

Since each machine cannot process more than one task at a time, we know that f ∗
I ≥ ∑n

i=1 ti /m.
Combining these two bounds we have

f̂ I

f ∗
I

≤ 1 +
(

1 − 1

m

)
tn
f ∗

I

Since I is a counterexample for the theorem, this bound must be greater than 4
3 − 1

3m . Simplifying we
know that f ∗

I < 3tn. Since tn is the task with smallest processing time requirement it must be that in an
optimal schedule, for instance, I none of the machines can process three or more tasks. Therefore, the
number of tasks n is at most 2m.

For problem instance I , let S∗ be an optimal schedule with least
∑

f 2
i , where fi is the makespan in

S∗ for machine i . Assume without loss of generality that the tasks assigned to each machine are arranged
from largest to smallest with respect to their processing times. All machines have at most two tasks, as S∗
is an optimal schedule for I which by definition is a counterexample for the theorem.

Let i and j be two machines in schedule S∗ such that fi > f j , machine i has two tasks and machine
j has at least one task. Let a and b be the task index for the last task processed by machine i and j ,
respectively. It cannot be that ta > tb , as otherwise applying the interchange given in Figure 2.5(a) results

(a) (b)

i

j

a

a

i

j

a

b

b

a

FIGURE 2.5 Schedule transformations.
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in an optimal schedule with smaller
∑

f 2
i . This contradicts the fact that S∗ is an optimal schedule with

least
∑

f 2
i . Let i and j be two machines in schedule S∗ such that machine i has two tasks. Let a be the

task index for the last task processed by machine i . It cannot be that fi − ta > f j as otherwise applying
the interchange given in Figure 2.5(b) results in an optimal schedule with smaller

∑
f 2
i . This contradicts

the fact that S∗ is an optimal schedule with least
∑

f 2
i .

Since the transformations given in Figure 2.5(a) and Figure 2.5(b) cannot apply, the schedule S∗ must
be of the form shown in Figure 2.6 after renaming the machines, i.e., machine i is assigned task Ti

(if i ≤ n) and task T2m−i+1 (if 2m − i + 1 ≤ n). But this schedule is an LPT schedule and f̂ =
f ∗. Therefore, there cannot be any counterexamples to the theorem. This completes the proof of the
theorem.

For all m there are problem instances for which the ratio given by Theorem 2.2 is tight. In Figure 2.7 we
give one of such problem instance for three machines.

The important properties needed to prove Theorem 2.2 are that the longest 2m tasks need to be scheduled
via LPT, and either the schedule will be optimal for the 2m task or at least three tasks will be assigned to a
machine. The first set of m tasks, the ones with longest processing time, will be assigned to one machine
each, so the order in which they are assigned is not really important. The next set of m tasks need to be
assigned from longest to shortest processing times as in the LPT schedule. The remaining tasks can be
assigned in any order as long as whenever a machine finishes a task the next task in the list is assigned
to that machine. Any list schedule whose list follows the above ordering can be shown to have makespan
at most 4

3 − 1
3m times the one of an optimal schedule. These type of schedules form a restriction on the

solution space.
It is interesting to note that the problem of scheduling 2m independent tasks is an NP-hard problem.

However, in polynomial time we can find out if there is an optimal schedule in which each machine has at
most two tasks. And this is all that is needed to establish the 4

3 − 1
3m approximation ratio. One of the first

.  .  .

.  .  . .  .  .
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FIGURE 2.6 Optimal schedule.
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FIGURE 2.7 (a) LPT schedule. (b) Optimal schedule.
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avenues of research explored was to see if the same approach would hold for the longest 3m tasks. That is,
give a polynomial-time algorithm that finds an optimal schedule in which each machine has at most three
tasks. If such an algorithm exists, we could use it to generate schedules that are within 5

4 − 1
4m times the

makespan of an optimal schedule. This does not seem possible as Garey and Johnson [3] established that
this problem is NP-hard.

Other approximation algorithms with improved performance were subsequently developed. Coffman
et al. [4] introduced the multifit (MF) approach. A k attempt MF approach is denoted by MFk . The MFk

procedure performs k binary search steps to find the smallest capacity c such that all the tasks can be
packed into a set of m bins when packing using first fit with the tasks sorted in nondecreasing order of
their processing times. The tasks assigned to bin i correspond to machine i and c is the makespan of
the schedule. The approximation ratio has been shown to be 1.22 + 2−k and the time complexity of the
algorithm is O(n log n + kn log m). Subsequent improvements to 1.2 + 2−k [5] and 72

61 + 1
2k [6] were

possible within the same time complexity bound. However, the latter algorithm has a very large constant
associated with the big “oh” bound.

Following a suggestion by D. Kleitman and D. E. Knuth, Graham [2] was led to consider the following
scheduling strategy. For any k ≥ 0 an optimal schedule for the longest k tasks is constructed and then the re-
maining tasks are scheduled in any order using the no-additional-delay policy. He shows that this algorithm
has an approximation ratio 1 + 1−1/m

1+�k/m� and takes O(n log m + kmk) time when there is a fixed number of
machines. This was the first polynomial-time approximation scheme for any problem. This polynomial-
time approximation scheme, as well as the ones for other problems are explained in more detail in Chapter 9.
Fully polynomial-time approximation schemes are not possible for this problem unless P = NP [3].

2.4 Relaxation: Linear Programming Approach

Let us now consider the minimum-weight vertex cover, which is a fundamental problem in the study of
approximation algorithms. This problem is defined as follows

Problem: Minimum-weight vertex cover.
Instance: Given a vertex weighted undirected graph G with the set of vertices V = {v1, v2, . . . , vn},

edges E = {e1, e2, . . . , em} and a positive real number (weight) wi assigned to each vertex vi .
Objective: Find a minimum-weight vertex cover, i.e., a subset of vertices C ⊂ V such that every edge

is incident to at least one vertex in C . The weight of the vertex cover C is the sum of the weight of
the vertices in C .

It is well known that the minimum-weight vertex cover problem is an NP-hard problem. Now consider
the following simple greedy algorithm to generate a vertex cover. Assume without loss of generality that
the graph G does not have isolated vertices, i.e., vertices without any edges. An edge is said to be uncovered
with respect to a set of vertices C if both of its endpoints are vertices in V\C , i.e., if both endpoints are
not in C .

Algorithm Min-Weight(G)
Let C = ∅;
while there is an uncovered edge do

Let U be the set of vertices adjacent to at least one uncovered edge;
Add to C a least weight vertex in set U ;

endwhile
end

Algorithm Min-Weight is not a constant-ratio approximation algorithm for the vertex cover problem.
Consider the family of star graphs K each with l + 1 nodes, l edges, the center vertex having weight k and
the l leaves having weight 1, for any positive integers k ≥ 2 and l ≥ 3. For each of these graphs Algorithm
Min-Weight generates a vertex cover that includes all the leaves in the graph and the weight of the cover
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is l . For all graphs in K with k = 2, an optimal cover has weight 2 and includes only the center vertex.
Therefore, Algorithm Min-Weight has an approximation ratio of at least l/2, which cannot be bounded
above by any fixed constant.

Algorithm Max-Weight is identical to Algorithm Min-Weight, but instead of selecting the vertex in set
U with least weight, it selects one with largest weight. Clearly, this algorithm constructs an optimal cover
for the graphs identified above where Algorithm Min-Weight performs badly. For every graph in K, this
algorithm selects as its vertex cover the center vertex which has weight k. Now for all graphs in K with
l = 2, an optimal cover consists of both leaf vertices and it has weight 2. Therefore, the approximation
ratio for Algorithm Max-Weight is at least k/2, which cannot be bounded above by any fixed constant.

All of the graphs identified above, where one of the algorithms performs badly, have the property that
the other algorithm constructs an optimal solution. A compound algorithm that runs both algorithms
and then selects the better of the two vertex covers may be a constant-ratio algorithm for the vertex cover
problem. However, this compound algorithm can also be easily fooled by just using a graph consisting
of two stars, where each of the individual algorithms failed to produce good solutions. Therefore, this
compound algorithm fails to generate constant-ratio approximate solutions. One may now argue that we
could partition the graph into connected components and apply both algorithms to each component. For
these “two-star” graphs the new compound algorithm will generate an optimal solution. But in general
this new approach fails to produce a constant-ratio approximate solution for all possible graphs. Adding
an edge between the center vertex in the “two-star” graphs gives rise to problem instances for which the
new compound algorithm fails to provide a constant ratio approximate solution.

A more clever approach is a modified version of Algorithm Min-Weight, where instead of selecting a
vertex of least possible weight in set U , one selects a vertex v in set U with least w(v)/u(v), where u(v) is the
number of uncovered edges incident to vertex v. This seems to be a better strategy because when vertex v is
added to C it covers u(v) edges at a total cost of w(v). So the cost (weight) per edge of w(v)/u(v) is incurred
when covering the uncovered edges incident to vertex v. This strategy solves optimally the star graphs in
K defined above. However, even when all the weights are equal, one can show that this is not a constant
ratio approximation algorithm for the weighted vertex cover problem. In fact, the approximation ratio for
this algorithm is about log n. Instances with a simple recursive structure that asymptotically achieve this
bound as the number of vertices increases can be easily constructed. Chapter 3 gives an example of how
to construct problem instances where an approximation algorithm fails to produce a good solution.

Other approaches to solve the problem can also be shown to fail to provide a constant-ratio approx-
imation algorithm for the weighted vertex cover. What type of algorithm can be used to guarantee a
constant-ratio solution to this problem? Let us try another approach.

Another way to view the minimum-weight vertex cover is by defining a 0/1 variable xi for each vertex vi

in the graph. The 0/1 vector X defines a subset of vertices C as follows. Vertex vi is in C if and only if xi = 1.
The set of vertices C defined by X is a vertex cover if and only if for every edge {i, j } in the graph xi +x j ≥ 1.
The vertex cover problem is expressed as an instance of the 0/1 integer linear programming (ILP) as follows:

minimize
∑

i∈V
wi xi (2.1)

subject to xi + x j ≥ 1 ∀{i, j } ∈ E (2.2)

xi ∈ {0, 1} ∀i ∈ V (2.3)

The 0/1 ILP is also an NP-hard problem.
An important methodology for designing approximation algorithms is relaxation. In this case one relaxes

the integer constraints for the xi values. That is, we replace constraint (2.3) (xi = {0, 1}) by 0 ≤ xi ≤ 1
(or simply xi ≥ 0, which in this case is equivalent). This means that we are augmenting the solution space
by adding solutions that are not feasible for the original problem. This approach will at least provide us
with what appears to be a good lower bound for the value of an optimal solution of the original problem,
since every feasible solution to the original problem is a feasible solution to the relaxed problem (but the
converse is not true). This relaxed problem is an instance of the linear programming (LP) problem which
can be solved in polynomial time. Let X∗ be an optimal solution to the LP problem. Clearly, X∗ might
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not be a vertex cover as the x∗
i values may be noninteger. The previous interpretation for the X∗ values

has been lost because it does not make sense to talk about a fractional part of a vertex being part of a
vertex cover. To circumvent this situation, we need to use the X∗ vector to construct a 0/1 vector X̂ that
represents a vertex cover. For a vector X̂ to represent a vertex cover it needs to satisfy inequality (2.2) (i.e.,
x̂ i + x̂ j ≥ 1), for every edge ek = {i, j } ∈ E . Clearly, the inequalities hold for X∗. This means that for
each edge ek = {i, j } ∈ E at least one of x∗

i or x∗
j has value at least greater than or equal to 1

2 . So the vector

X̂ defined from X∗ as x̂ i = 1 if x∗
i ≥ 1

2 (rounding up) and x̂ i = 0 if x∗
i < 1

2 (rounding down) represents a
vertex cover. Furthermore, because of the rounding up the objective function value for the vertex cover X̂
is at most 2

∑
wi x∗

i . Since
∑

wi x∗
i value is a lower bound for an optimal solution to the weighted vertex

cover problem, we know that this procedure generates a vertex cover whose weight is at most twice the
weight of an optimal cover, i.e., it is a 2-approximation algorithm. This process is called (deterministic) LP
rounding. Chapters 6, 7, 9, 11, 37, 45, 57, 58, and 70 discuss and apply this methodology to other problems.

Another way to round is via randomization, which means in this case that we flip a biased coin (with
respect to x∗

i and perhaps other factors) to decide the value for x̂ i . The probability of X̂ is a vertex cover and
its expected weight can be computed. By repeating this randomization process several times, one can show
that a cover with weight at most twice the optimal one will be generated with very high probability. In this
case it is clear that randomization is not needed. However, for other problems it is justified. Chapters 4,
6, 7, 11, 12, 57, 70, and 80 discuss LP randomized rounding, and Chapter 8 discusses more complex
randomized rounding for semidefinite programming (SDP).

The above rounding methods have the disadvantage that an LP problem needs to be solved. Experimental
evaluations over several decades have shown that the Simplex method solves quickly (in poly time) the LP
problem. But the worst-case time complexity is exponential with respect to the problem size. In Chapter 1
we have discussed the Ellipsoid algorithm and more recent ones that solve LP problems. Even though these
algorithms have polynomial-time complexity, there is a term that depends on the number of bits needed
to represent the input. Much progress has been made in speeding up these procedures, but the algorithms
are not competitive with typical O(n2) time algorithms for other problems.

Let us now discuss another approximation algorithm for the minimum vertex cover problem that it is
“independent” of LP, and then we discuss a local-ratio and a primal-dual approach to this problem.

We call this approach the α-vector approach. For every vertex i ∈ V , we define δ(i) as the set of edges
incident to vertex i . Let α = (α1, α2, . . . , αm) be any vector of m nonnegative real values, where m = |E |
is the number of edges in the graph. For all k multiply the kth edge inequality by αk ,

αk xi + αk x j ≥ αk ∀ek = {i, j } ∈ E (2.4)

The total sum of these inequalities can be expressed as∑
i∈V

∑
ek∈δ(i)

αk xi ≥
∑
ek∈E

αk (2.5)

Define βi = ∑
ek∈δ(i) αk for every vertex i ∈ V . In other words, βi be the sum of the α values of all the

edges incident to vertex i . Substituting in the above inequality we know that∑
i∈V

βi xi ≥
∑
ek∈E

αk (2.6)

Suppose that the α vector is such that wi ≥ βi for all i . Then it follows that∑
i∈V

wi xi ≥
∑
i∈V

βi xi ≥
∑
ek∈E

αk (2.7)

In other words any vector α such that the resulting vector β computed from it satisfies wi ≥ βi provides
us with the lower bound

∑
ek∈E αk for the objective function value of every vector X that represents a

vertex cover. In other words, if we assign a positive weight to each edge in such a way that the sum of the
weight of the edges incident to each vertex i is at most wi , then the sum of the weight of the edges is a
lower bound for an optimum solution.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C002 March 20, 2007 11:48

Basic Methodologies and Applications 2-11

This is a powerful lower bound. To get maximum strength we need to find a vector α such that
∑

ek∈E αk

is maximum. But finding this vector is as hard as solving the LP problem described earlier. What if we find a
maximal vector α, i.e., a vector that cannot possibly be increased in any of its components? This is a simple
task. It is just a matter of starting with an α vector with all entries being zero and then increasing one of its
components until it is no longer possible to do so. We keep on doing this until there are no edges whose
α value can be increased. In this maximal solution, we know that for each edge in the graph at least one
of its endpoints has the property that βi = wi , as otherwise the maximality of α is contradicted. Define
the vector X̂ from the α vector as follows: xi = 1 if βi = wi , and xi = 0, otherwise. Clearly, X̂ represents
a vertex cover because for every edge in the graph we know that at least one of its vertices has βi = wi .
What is the weight of the vertex cover represented by X̂? We know that

∑
wi x̂i = ∑

βi x̂ i ≤ 2
∑

αk

because each αk can contribute its value to at most two βi s. Therefore, we have a simple 2-approximation
algorithm for the weighted vertex cover problem. Furthermore, the procedure to construct the vertex cover
takes linear time with respect to the number of vertices and edges in the graph.

This algorithm was initially developed by Bar-Yehuda and Even [7] using the LP relaxation and its
dual. This approach is called the primal-dual approach. It will be discussed later in this section. The above
algorithm can be proven to be a 2-approximation algorithm without using the ILP formulation. That is,
the same result can be established by just using simple combinatorial arguments [8].

Another related approach, called local ratio, was developed by Bar-Yehuda and Even [9]. Initially, each
vertex is assigned a cost which is simply its weight and it is referred to as the remaining cost. At each step the
algorithm makes a “down payment” on a pair of vertices. This has the effect of decreasing the remaining
cost of each of the two vertices. Label the edges in the graph {e1, e2, . . . , em}. The algorithm considers one
edge at a time using this ordering. When the kth edge ek = {i, j } is considered, define γk as the minimum
of the remaining cost of vertex i and vertex j . The edge makes a down payment of γk to each of its two
endpoints and each of the two vertices has its remaining cost decreased by γk . The procedure stops when
we have considered all the edges. All the vertices whose current cost is zero have been paid for completely
and they are yours to keep. The remaining ones have not been paid for and there are “no refunds” (not
even if you talk to the store manager). The vertices that have been paid for completely form a vertex cover.
The weight of all the vertices in the cover generated by the procedure is at most twice

∑
ek∈E γk , which is

simply the sum of the down payments made. What is the weight of an optimal vertex cover? The claim is
it is equal to

∑
ek∈E γk . The reason is simple. Consider the first step when we introduce γ1 for edge e1. Let

I0 be the initial problem instance and I1 be the resulting instance after deleting edge e1 and reducing the
cost of the two endpoints of edge e1 by γ1. One can prove that f ∗(I0) = f ∗(I1) + γ1, and inductively that
f ∗(I0) = ∑

ek∈E γk [10]. The algorithm is a 2-approximation algorithm for the weighted vertex cover.
The approach is called local ratio because at each step one adds 2γk to the value of the solution generated
and one accounts for γk value of an optimal solution. This local-ratio approach has been successfully
applied to quite a few problems. The best feature of this approach is that it is very simple to understand
and does not require any LP background.

The primal-dual approach is similar to the previous ones, but it uses the foundations of LP theory. The
LP relaxation problem is

minimize
∑

i∈V
wi xi (2.8)

subject to xi + x j ≥ 1 ∀ek = {i, j } ∈ E (2.9)

xi ≥ 0 ∀i ∈ V. (2.10)

The LP problem is called the primal problem. The corresponding dual problem is

maximize
∑

ek∈E
yk (2.11)

subject to
∑

ek∈δ(i)
yk ≤ wi ∀i ∈ V (2.12)

yk ≥ 0 ∀ek ∈ E (2.13)
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As you can see the Y vector is simply the α vector defined earlier, and the dual is to find a Y vector with
maximum

∑
i∈V yi . Linear programming theory [11,12] states that any feasible solution X to the primal

problem and any feasible solution Y to the dual problem are such that∑
ek∈E

yk ≤
∑
i∈V

wi xi

This is called weak duality. Strong duality states that∑
ek∈E

y∗
i =

∑
i∈V

wi x∗
i

where X∗ is an optimal solution to the primal problem and Y ∗ is an optimal solution to the dual problem.
Note that the dual variables are multiplied by weights which are the right-hand side of the constraints in
the primal problem. In this case all of them are one.

The primal-dual approach is based on the weak duality property. The idea is to first construct a feasible
solution to the dual problem. That solution will give us a lower bound for the value of an optimal vertex
cover, in this case. Then we use this solution to construct a solution to the primal problem. The idea is
that the difference of the objective function value between the primal and dual solutions we constructed
is “small.” In this case we construct a maximal vector Y (as we did with the α vector before). Then we
note that since the Y vector is maximal, then for at least one of the endpoints (say i) of every edge must
satisfy Inequality 2.12 tight, i.e.,

∑
ek∈δ(i) yk = wi . Now define vector X with xi = 1 if inequality (2.12) is

tight in the dual solution. Clearly, X represents a feasible solution to the primal problem and its objective
function value is at most 2

∑
k yk . It then follows by weak duality that an optimal weighted vertex cover

has value at least
∑

k yk and we have a 2-approximation algorithm for the weighted vertex cover. It is
simple to see that the algorithm takes linear time (with respect to the number of vertices and edges in the
graph) to solve the problem.

There are other ways to construct a solution to the dual problem. In Chapters 4 and 13 another method
is discussed for finding a solution to the dual problem. Note the difference in the time required to construct
the solution. Chapter 13 discusses a “distributed” version of this algorithm. This algorithm makes decisions
by using only “local” information. Chapters 37, 39, 40, and 71 discuss several approximation algorithms
based on variations of the primal dual approach. Some of these methods are not exactly primal dual, but
may be viewed this way.

Linear programming has also been used as a tool to compute the approximation ratio of some algorithms.
This type of research may eventually be called the automatic analysis of approximation algorithms. Chapter 3
discusses an early approach to compute the approximation ratio, and Chapter 39 discusses a more recent
one. In the former case, a set of LP needed to be solved. Once this was computed it gave the necessary
insight on how to prove it analytically. In the latter case, one just formulates the problem and finds bounds
for the value of an optimal solution to the LP problem.

2.5 Inapproximability

Sahni and Gonzalez [13] established that constant-ratio polynomial time approximation algorithms exist
for some problems only if P = NP. In other words, finding a suboptimal solution to some problems
is as hard as finding an optimal solution. Any polynomial-time algorithm that generates k-approximate
solution can be used to find an optimal solution to the problem in polynomial-time. One of these problems
is the “classical” version of the TSP defined in Chapter 1, not the restricted one defined over metric graphs.
To prove this result we show that an NP-complete problem, called the Hamiltonian Cycle (HC) problem,
can be solved in polynomial time if there is a polynomial-time algorithm for the TSP that generates a
k-approximate solution, for any fixed constant k. The HC problem is given an undirected graph, G =
(V, E ), determine whether on not the graph has a HC. A HC for an undirected graph G is a path that
starts at vertex 1, visits each vertex exactly once, and ends at vertex 1.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C002 March 20, 2007 11:48

Basic Methodologies and Applications 2-13

To prove this result a polynomial transformation (Chapter 1 and [3]) is used. Let G = (V, E ) be any
instance of the HC problem with n = |V |. Now construct an instance G ′ = (V ′, E ′, W′) of the TSP as
follows. The graph G ′ has n vertices and it is complete (all the edges are present). The edge {i, j } in E ′
has weight 1 if the edge {i, j } is in E , and weight Z otherwise. The value of Z is (k − 1)n + 2 > 1. It
will be clear later on why it was defined this way. If the graph G has a HC, then we know that the graph
G ′ has a tour with weight n. However, if G does not have a HC, then all tours for the graph G ′ have
weight greater than or equal to n − 1 + Z . A k-approximate solution (tour) when f ∗(G ′) = n must have
weight at most f̂ (G ′) ≤ k f ∗(G ′) = kn. When G does not have a HC, the best possible tour that can be
found by the approximation algorithm is one with weight at least n − 1 + Z = kn + 1. Therefore, if the
approximation algorithm returns a tour with weight at most kn, then G has a HC, otherwise (the tour
returned has weight > kn) G does not have a HC. Since the algorithm takes polynomial-time with respect
to the number of vertices and edges in the graph, it then follows that the algorithm solves in polynomial
time the HC problem. So we say that the TSP is inapproximable with respect to any constant ratio. It is
inapproximable in the sense that a polynomial-time constant-ratio approximation algorithm implies the
solution to a computational complexity question. In this case it is the P = NP question.

In the last 15 years there have been new inapproximability results. These results have been for constant,
ln n, and nε approximation ratios. The techniques to establish some of these results are quite complex,
but an important component continues to be reducibility. Chapter 17 discusses all of this work in detail.

2.6 Traditional Applications

We have used the label “traditional applications” to refer to the more established combinatorial optimiza-
tion problems. Although some of the problems falling into the other categories also fall into this category
and vice versa. The problems studied in this part of the handbook fall into the following categories: bin
packing, packing, facility dispersion and location, traveling salesperson, Steiner tree, scheduling, planning,
generalized assignment, and satisfiability. Let us briefly discuss these categories.

One of the fundamental problems in approximations is the bin packing problem. Chapter 32 discusses
online and offline algorithms for one-dimensional bin packing. Chapters 33 and 34 discuss variants of the
bin packing problem. This include variations that fall into the following type of problems: the number of
items packed is maximized while keeping the number of bins fixed; there is a bound on the number of
items that can be packed in each bin; dynamic bin packing, where each item has an arrival and departure
time; the item sizes are not known, but the ordering of the weights is known; items may be fragmented
while packing them into fixed capacity bins, but certain items cannot be assigned to the same bin; bin
stretching; variable sized bin packing problem; and the bin covering problem.

Chapter 35 discusses several ways to generalize the bin packing problem to more dimensions. Two-
and three-dimensional strip packing, bin packing in dimensions two and higher, vector packing, and
several other variations are discussed. Primal-dual approximation algorithms for packing and stabbing (or
covering) problems are covered in Chapter 37. Cutting and packing problems with important applications
in the wood, glass, steel, and leather industries as well as in very large-scale integration (VLSI) design,
newspaper paging, and container and truck loading are discussed in Chapter 36. For several decades,
cutting and packing has attracted the attention of researchers in various areas including operations research,
computer science, manufacturing, etc.

Facility dispersion problems are covered in Chapter 38. Dispersion problems arise in a number of
applications, such as locating obnoxious facilities, choosing sites for business franchises, and selecting
dissimilar solutions in multiobjective optimization. The facility location problem that model the placement
of “desirable” facilities such as warehouses, hospitals, and fire stations are discussed in Chapter 39. These
algorithms are called “dual fitting and factor revealing.”

Very interesting approximation algorithms for the prize collecting TSP is studied in Chapter 40. In this
problem a salesperson has to collect a certain amount of prizes (the quota) by visiting cities. A known
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prize can be collected in every city. Chapter 41 discusses branch-and-bound algorithms for the TSP. These
algorithms have been implemented to run in a multicomputer environment. A general software tool for
running branch and bound algorithms in a distributed environment is discussed. This framework may
be used for almost any divide-and-conquer computation. With minor adjustments, this tool can take any
algorithm defined as a computation over directed acyclic graph, where the nodes refer to computations
and the edges specify a precedence relation between computations, and run in a distributed environment.

Approximation algorithms for the Steiner tree problem are discussed in Chapter 42. This problem has
applications in several research areas. One of these areas is VLSI physical design. In Chapter 43, practical
approximations for a restricted Steiner tree problem are discussed.

Meeting deadline constraints is of great importance in real-time systems. In situations when this is not
possible, it is often more desirable to execute some parts of every task, than to give up completely the
execution of some tasks. This model allows for the trade-off of the quality of computations in favor of
meeting the deadline constraints. Every task is logically decomposed into two subtasks, mandatory and
optional. This type of scheduling problems fall under the imprecise computation model. These problems are
discussed in Chapter 44. Chapter 45 discussed approximation algorithms for the malleable task scheduling
problem. In this model, the processing time of a task depends on the number of processors allotted to
it. A generalization of both the bin packing and TSP is the vehicle scheduling problem. Approximation
algorithms for this problem are discussed in Chapter 46.

Automated planning consists of finding a sequence of actions that transforms an initial state into one
of the goal states. Planning is widely applicable, and has been used in such diverse application domains
as spacecraft control, planetary rover operations, automated nursing aides, image processing, computer
security, and automated manufacturing. Chapter 47 discusses approximation algorithms and heuristics
for problems falling into this category.

Chapter 48 presents heuristics and metaheuristics for the generalized assignment problem. This problem
is a natural generalization of combinatorial optimization problems including bipartite matching, knapsack
and bin packing problems; and has many important applications in flexible manufacturing systems, facility
location, and vehicle routing problems.

Chapter 49 examines probabilistic greedy heuristics for maximization and minimization versions of the
satisfiability problem.

2.7 Computational Geometry and Graph Applications

The problems falling into this category have applications in several fields of study, but can be viewed as
computational geometry and graph problems. The problems studied in this part of the handbook fall
into the following categories: 2D and 3D triangulations, connectivity problems, design and evaluation
of geometric networks, pair decompositions, minimum edge length partitions, digital geometry, disjoint
path problems, graph partitioning, graph coloring, finding subgraphs or trees with certain properties, etc.

Triangulation is not only an interesting theoretical problem in computational geometry, it also has many
important applications, such as finite element methods for computer-aided design (CAD) and physical sim-
ulations. Chapter 50 discusses approximation algorithms for triangulations in two and three dimensions.

Chapter 51 examines approximation schemes for various geometric minimum-cost k-connectivity
problems and for geometric survivability problems, giving a detailed tutorial of the novel techniques
developed for these algorithms.

Geometric networks arise in many applications. Road networks, railway networks, telecommunication,
pattern matching, bioinformatics—any collection of objects in space that have some connections between
them can be modeled as a geometric network. Chapter 52 considers the problem of designing a “good”
network and the dual problem, i.e., evaluating how “good” a given network is. Chapter 53 gives an overview
of several proximity problems that can be solved efficiently using the well-separated pair decomposition
(WSPD). A WSPD may be regarded as a “small” set of edges that approximates the dense complete
Euclidean graph.
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Approximation algorithms for minimum edge length partitions of rectangles with interior points are
discussed in Chapter 54. This problem has applications in the area of CAD of integrated circuits and
systems. Chapter 55 considers partitions of finite d-dimensional integer grids by lines in two-dimensional
space or by hyperplanes and hypersurfaces in an arbitrary dimension. Some of these problems arise in
the areas of digital image processing (analysis) and neural networks. Chapter 56 discusses the problem of
finding a planar subgraph of maximum weight in a given graph. Problems of this form have applications
in circuit layout, facility layout, and graph drawing.

Finding disjoint paths in graphs is a problem that has attracted considerable attention from at least
three perspectives: graph theory, VLSI design, and network routing/flow. The corresponding literature
is extensive. Chapter 57 explores offline approximation algorithms for problems on general graphs as
influenced from the network flow perspective.

Chapter 58 surveys approximation algorithms and hardness results for different versions of the gen-
eralized Steiner network problem in which we seek to find a low-cost subgraph that satisfies prescribed
connectivity requirements. These problems include the following well-known problems: min-cost k-flow,
min-cost spanning tree, traveling salesman, directed/undirected Steiner tree, Steiner forest, k-edge/node-
connected spanning subgraph, and others.

Besides numerous network design applications, spanning trees also play an important role in several
newly established research areas, such as biological sequence alignments and evolutionary tree construc-
tion. Chapter 59 explores the problem of designing approximation algorithms for spanning-tree problems
under different objective functions. It focuses on approximation algorithms for constructing efficient
communication spanning trees.

Graph partitioning problem arises in a wide range of applications. Due to the complexity of the problem,
heuristics have to be applied to partition large graphs in a reasonable amount of time. Chapter 60 discusses
different approaches to the graph partitioning problem. The k-way partitioning of a hypergraph problem
seeks to minimize a given cost function of such an assignment. A standard cost function is net cut, which
is the number of hyperedges that span more than one partition, or, more generally, the sum of weight of
such edges. Constraints are typically imposed on the solution, and make the problem difficult. Several
heuristics for this problem are discussed in Chapter 61.

In many applications such as design of transportation networks, one often needs to identify a set of
regions/sections whose damage will cause the greatest increase in transportation cost within the network.
Once identified, extra protection can be deployed to prevent them from being damaged. A version of
this problem is finding the most vital edges whose removal will cause the greatest damage to a particular
property of the graph. The problems are traditionally referred to as prior analysis problems in sensitivity
analysis and it is discussed in Chapter 62.

Stochastic local search algorithms for the classical graph coloring problem are discussed in Chapter 63.
This problem arises in many real-life applications like register allocation, air traffic flow management,
frequency assignment, light wavelengths assignment in optical networks, or timetabling. Chapter 64 dis-
cusses ant colony optimization (ACO) for solving the maximum disjoint paths problems. This problem
has many applications including the establishment of routes for connection requests between physically
separated network endpoints.

2.8 Large-Scale and Emerging Applications

The problems arising in the areas of wireless and sensor networks, multicasting, multimedia, bioinformatics
VLSI CAD, game theory, data analysis, digital reputation, and color quantization may be referred to as
problems in “emerging” applications and normally involve large-scale problems instances. Some of these
problems also fall in the other application areas.

Chapter 65 describes existing multicast routing protocols for ad hoc and sensor networks, and analyze
the issue of computing minimum cost multicast trees. The multicast routing problem, and approximation
algorithms for mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) are presented.
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Since flat networks do not scale, it is important to overlay a virtual infrastructure on a physical network.
The design of the virtual infrastructure should be general enough so that it can be leveraged by a multitude
of different protocols. Chapter 66 proposes a novel clustering scheme based on a number of properties
of diameter-2 graphs. Extensive simulation results have shown the effectiveness of the clustering scheme
when compared to other schemes proposed in the literature.

Ad hoc networks are formed by collections of nodes which communicate with each other through radio
propagation. Topology control problems in such networks deal with the assignment of power values to the
nodes so that the power assignment leads to a graph topology satisfying some specified properties. The
problem is to minimize a specified function of the powers assigned to the nodes. Chapter 67 discusses some
known approximation algorithms for this type of problems. The focus is on approximation algorithms
with proven performance guarantees.

An important requirement of wireless ad hoc networks is that they should be self-organizing. Energy
conservation and network performance are probably the most critical issues in wireless ad hoc networks,
because wireless devices are usually powered by batteries only and have limited computing capability and
memory. Many proposed methods apply computational geometry technique (specifically, geometrical
spanner) to achieve power efficiency. In Chapter 68, approximation algorithms of power spanner for ad
hoc networks are reviewed.

As networks continue to grow explosively both in size and internal complexity, the ever-increasing
tremendous traffic load and applications drive researchers to develop techniques for analyzing network
performance and managing network resources. To accomplish this, one needs to know the current internal
structure of the network. Discovery of internal information such as topology and localized lossy links plays
an important role in resource management, loss recovery, and congestion control. Chapter 69 proposes a
way to identify this via message multicasting.

Due to the recently rapid development of multimedia applications, multicast has become the critical
technique in many network applications. In multicasting routing, the main objective is to send data from
one or more sources to multiple destinations to minimize the usage of resources such as bandwidth,
communication time, and connection costs. Chapter 70 discusses contemporary research concerning
multicast congestion problems in different type of networks.

Recent progress in audio, video, and data storage technologies has given rise to a host of high-bandwidth
real-time applications such as video conferencing. These applications require Quality of Service (QoS)
guarantees from the underlying networks. Thus, multicast routing algorithms, which manage network
resources efficiently and satisfy the QoS requirements, have come under increased scrutiny in recent years.
Chapter 71 considers the problem of finding an optimal multicast tree with certain special characteristics.
This problem is a generalization of the classical Steiner tree problem.

Scalability is especially critical for peer-to-peer systems. The basic idea of peer-to-peer systems is to
have an open self-organizing system of peers that does not rely on any central server and where peers can
join and leave, at will. This has the benefit that individuals can cooperate without fees or an investment
in additional high-performance hardware. Also, peer-to-peer systems can make use of the tremendous
amount of resources (such as computation and storage) that otherwise sit idle on individual computers
when they are not in use by their owners. Chapter 72 seeks ways of implementing join, leave, and route
operations so that for any sequence of join, leave, and route requests can be executed quickly; the degree,
diameter, and stretch factor of the resulting network are as small as possible; and the expansion of the
resulting network is as large as possible. Good approximate solutions to this multiobjective optimization
problem are discussed in Chapter 72.

Scheduling problems modeling the broadcasting of data items over wireless channels are discussed in
Chapter 73. The chapter covers exact and heuristic solutions for variants of this problem.

Microarrays have been evolving rapidly, and are among the most novel and revolutionary new biotech-
nologies. They allow us to monitor the expression of thousands of genes at once. With a single experiment
billions of individual hypotheses can be tested. Chapter 74 presents three illustrative examples in the
analysis of microarray data sets.
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Chapter 75 considers two problems from computational biology, namely, primer selection and planted
motif search. The closest string and the closest substring problems are closely related to the planted motif
search problem. Representative approximation algorithms for these problems are discussed.

There are interesting algorithmic issues that arise when length constraints are taken into account in
the formulation of a variety of problems on string similarity, particularly in the problems related to
local alignment. Chapter 76 discusses these types of problems which have their roots and most striking
applications in computational biology. Chapter 77 discusses approximation algorithms for the selection of
robust tag single nucleotide polymorphisms (SNPs). This is a problem in human genomics that arises in
the current experimental environment. Chapter 78 considers a sphere packing problem. Recent interest on
this problem was motivated by medical applications in radiosurgery. Radiosurgery is a minimally invasive
surgical procedure that uses radiation to destroy tumors inside the human body.

VLSI has produced some of the largest combinatorial optimization problems ever considered. Placement
is one of the most difficult of these problems. Placement problems with over 10 million variables and
constraints are not unusual, and problem sizes continue to grow with Moore’s law. Realistic objectives
and constraints for placement incorporate complex models of signal timing, power consumption, wiring
routability, manufacturability, noise, temperature, etc. Chapter 79 considers VLSI placement algorithms.

Due to delay scaling effects in deep-submicron technologies, interconnect planning and synthesis are
becoming critical to meeting VLSI chip performance targets with reduced design turnaround time. In
particular, the global routing phase of the design cycle is receiving renewed interest, as it must efficiently
handle increasingly more complex constraints for increasingly larger designs. Chapter 80 presents an
integrated approach for congestion and timing-driven global routing, buffer insertion, pin assignment,
and buffer/wire sizing. This is a multiobjective optimization problem.

Chapters 81–83 discuss game theory problems related to the Internet and scheduling. They deal with ways
of achieving equilibrium. Issues related to algorithmic game theory, approximate economic equilibrium
and algorithm mechanism design are discussed.

Over the last decade, the size of data seen by a computational problem has grown immensely. There
appears to be more web pages than human beings, and web pages have been successfully indexed. Routers
generate huge traffic logs, in the order of terabytes, in a short time. The same explosion of data is felt
in observational sciences because our capabilities of measurement have grown significantly. Chapter 84
considers a processing mode where input items are not explicitly stored and the algorithm just passes over
the data once.

A virtual community can be defined as a group of people sharing a common interest or goal who
interact over a virtual medium, most commonly the Internet. Virtual communities are characterized by
an absence of face-to-face interaction between participants which makes the task of measuring the trust-
worthiness of other participants harder than in nonvirtual communities. This is because of the anonymity
that the Internet provides, coupled with the loss of audiovisual cues that help in the establishment of trust.
As a result, digital reputation management systems are an invaluable tool for measuring trust in virtual
communities. Chapter 85 discusses various systems which can be used to generate a good solution to this
problem.

Chapter 86 considers the problem of approximating “colors.” Several algorithmic methodologies are
presented and evaluated experimentally. These algorithms include dimension weighted clustering approx-
imation algorithms.
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