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3.1 Introduction

Restriction is one of the most basic techniques to design approximation algorithms. The idea is to generate
a solution to a given problem P by providing an optimal or suboptimal solution to a subproblem of P .
By a subproblem of a problem P we mean restricting the solution space for P by disallowing a subset of
the feasible solutions. The most common approach is to solve one subproblem, but there are algorithms
that first solve several subproblems and the algorithm outputs the best of these solutions. An optimal or
suboptimal solution to the subproblem(s) is generated by any of the standard methodologies.

This approach is in a sense the opposite of “relaxing a problem,” i.e., augmenting the feasible
solution space by including previously infeasible solutions. In this case one needs to solve a superprob-
lem of P . An approximation algorithm for P solves the superproblem (optimally or suboptimally) and
then transforms such solution to one that is feasible for P . Approximation algorithms based on the
linear programming methodology fall under this category. There are many different conversion tech-
niques including rounding, randomized rounding, etc. Chapters 4, 6, 7, and 12 discuss this approach
in detail. Approximation algorithms based on both restriction and relaxation exist. These algorithms
first restrict the solution space and then relaxes it. The resulting solution space is different from the
original one.

In this chapter we discuss several approximation algorithms based on restriction. When designing
algorithms of this type the question that arises is which of the many subproblems should be selected to
provide an approximation for a given problem? One would like to select a subproblem that “works best.”
But what do we mean by a subproblem that works best? The one that works best could be a subproblem,
which results in an approximation algorithm with smallest possible approximation ratio, or it could be a
subproblem whose solution can be computed the fastest, or one may use some other criteria, for example,
any of the ones discussed in Chapter 1. Perhaps “works best” should be with respect to a combination
of different criteria. But even when using the approximation ratio as the only evaluation criteria for an
algorithm, it is not at all clear how to select a subproblem that can be solved quickly and from which a
best possible solution could be generated. These are the two most important properties when choosing a
subproblem. By studying several algorithms based on restriction one learns why it works for these cases
and then it becomes easier to find ways to approximate other problems.

3-1
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The problems that we will discuss in this chapter to illustrate “restriction” are Steiner trees, the traveling
salesperson, covering points by squares, rectangular partitions, and routing multiterminal nets. The Steiner
tree and traveling salesperson problems (TSPs) are classical problems in combinatorial optimization. The
algorithms that we discuss for the TSPs are among the best known approximation algorithms for any
problem.

A closely related approach to restriction is transformation-restriction. The idea is to transform the prob-
lem instance to a restricted instance of the same problem. The difference is that the restricted problem
instance is not a subproblem of original problem instance as in the case of restriction, but it is a “simpler”
problem of the same type. In Section 3.5 we present algorithms based on this approach for routing multi-
terminal nets and embedding hyperedges in a cycle. The fully polynomial-time approximation scheme for
the knapsack problem, based on rounding discussed in Chapter 10, is based on transformation-restriction.
In Section 3.8 we summarize the chapter, and briefly discuss other algorithms based on restriction for path
problems arising in computational geometry.

3.2 Steiner Trees

The Steiner tree problem is a classical problem in combinatorial optimization. Let us define the Steiner
tree problem over an edge-weighted complete metric graph G = (V, E , w), where V is the set of n
vertices, E the set of m = n2−n

2 edges, and w : E → R+ the weight function for the edges. Since the
graph is metric the set of weights satisfies the triangle inequality, i.e., for every pair of vertices i, j , w(i, j )
is less than or equal to the sum of the weight of the edges in any path from vertex i to vertex j . The
Steiner tree problem consists of a metric graph G = (V, E , W) and a subset of vertices T ⊆ V . The
problem is to find a tree that includes all the vertices in T plus some other vertices in the graph such that
the sum of the weight of the edges in the tree is least possible. The Steiner tree problem in an NP-hard
problem.

When T = V the problem is called the minimum-weight (cost) spanning tree problem. By the 1960s
there were several well-known polynomial-time algorithms to construct a minimum-weight spanning
tree for edge-weighted graphs [1]. These simple greedy algorithms have low-order polynomial-time
complexity bounds.

Given an instance of the metric graph Steiner tree problem (G = (V, E , W), T) one may construct
a minimum-weight spanning tree for the subgraph G ′ = (T, E ′, W ′), where E ′ and W ′ include only
the edges joining vertices in T . Clearly, this minimum-weight spanning tree is a restricted version of the
Steiner tree problem and it seems a natural way to approximate the Steiner tree problem. This approach was
analyzed in 1968 by E. F. Moore (see Ref. [2]) for the Steiner tree problem defined in metric space. The metric
graph problem, we just defined, includes only a subset of all the possible points in metric space. E. F. Moore
presented an elegant proof of the fact that in metric space (and also for metric graphs) L M < L T ≤ 2L S ,
where L M , L T , and L S are the weight of a minimum-weight spanning tree, a minimum-weight tour
(solution) for the TSP and minimum-weight Steiner tree for any set of points P , respectively. We will define
the TSP in the next section. Since every spanning tree is a Steiner tree, the above bounds show that when
using a minimum-weight spanning tree to approximate the Steiner tree results in a solution whose weight is
at most twice the weight of an optimal Steiner tree. In other words, any algorithm that generates a minimum-
weight spanning tree is a 2-approximation algorithm for the Steiner tree problem. Furthermore, this
approximation algorithm takes the same time as an algorithm that constructs a minimum-weight spanning
trees for edge-weighted graphs [1], since such an algorithm can be used to construct an optimal spanning
tree for a set of points in metric space. The above bound is established by defining a transformation from any
minimum-weight Steiner tree into a TSP tour in such a way that L T ≤ 2L S [2]. Then by observing that the
deletion of an edge in an optimum tour to the TSP results in a spanning tree, one has L M < L T . The proof is
identical to the one given in the next section where we show this result, but starting from a minimum-weight
spanning tree.
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3.3 Traveling Salesperson Tours

The TSP has been studied for several decades [3]. There are many variations of this problem. One of the
simplest versions of the problem consists of an edge-weighted complete graph and the problem is to find a
minimum-weight tour that starts and ends at vertex one and visits every vertex exactly once. The weight of
a tour is the sum of the weight of the edges in the tour. Sahni and Gonzalez [4] (see Chapter 1) show that
the constant-ratio approximation problem is NP-hard, i.e., if for any constant c there is a polynomial-time
algorithm with approximation ratio c then P =NP. In this section we discuss approximation algorithms for
the TSP defined over complete metric graphs. These algorithms are among the best known approximation
algorithms for any problem. The “double-minimum-weight spanning tree” (DMWST) approximation
algorithm that we discuss in this section is widely known, and it is based on the constructive proof for
the approximation algorithm discussed in the previous section developed for the Steiner tree problem by
E. F. Moore. Additional constant-ratio approximation algorithms for this version of the TSP were developed
by Rosenkrantz et al. [5]. These algorithms as well the DMWST algorithm have an approximation ratio
of 2 − 1/n and take O(n2) time. Since the graph is complete, the time complexity is linear with respect
to the number of edges in the graph. After presenting this result we discuss the improved approximation
algorithm by Christofides [6]. This algorithm has a smaller approximation ratio, but its time complexity
grows faster than that of the previous algorithms.

In the literature you will find that the TSP is also defined with tours visiting each vertex at least once. We
now show that both versions of the TSP defined over metric graphs are equivalent problems. Consider any
optimal tour R where some vertices are visited more than once. Let vertex i be a vertex visited more than
once. Let vertices j and k be visited just before and just after vertex i . Delete from the tour the edges { j, i}
and {i, k} and add edge { j, k}. Because the graph is metric the tour weight will stay the same or decrease. If
it decreases, then it contradicts the optimality of R. So the weight of the tour must be the same as before.
After applying this transformation until it is no longer possible we obtain a tour R′ in which every vertex
is visited exactly once and the weight of R′ is identical to that of R. Since every tour that visits every vertex
exactly once also visits every vertex at least once, it follows that both versions of the problem for metric
graphs have the same optimal tour weight, i.e., both problems are equivalent. Since for the TSP defined
over metric graphs both versions of the problem are equivalent, for convenience we use the definition of
tours to visit each vertex at least once.

Now suppose that you have an optimal tour S for an instance I of the TSP. Applying the above transfor-
mation we obtain an optimal tour S ′ in which every vertex is visited exactly once. Deleting an edge from
the tour results in a spanning tree. Therefore, the weight of a minimum-weight spanning tree is a lower
bound for the weight of an optimal tour. The questions are: How good of a lower bound is it? How can
one construct a tour from a spanning tree?

How can we find a tour from a spanning tree T ? Just draw the spanning tree in the plane with a vertex
as its root and construct a tour by visiting each edge in the tree T twice as illustrated in Figure 3.1. A more

1

FIGURE 3.1 Spanning tree (solid lines) and tour constructed (broken lines).
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formal approach is to construct an Euler circuit in the multigraph (graph with multiple edges between
vertices) consisting of two copies of the edges in T . An Euler tour (or circuit) is a path that starts and
ends at the same vertex and visits every edge in the multigraph once. An Euler tour always exists for the
multigraphs we have defined because these multigraphs are connected and all their nodes are of even
degree (the number of edges incident to each vertex is even). These multigraphs are called Eulerian, and
an Euler tour can be constructed in linear time with respect to the number of nodes and edges in the
multigraph [7].

The approximation algorithm, which we refer to as DMWST, constructs a minimum weight spanning
tree, makes a copy of all the edges in the tree, and then generates a tour from this tree with weight equal to
twice the weight of a minimum weight spanning tree. We established before that an optimal tour has weight
greater than the weight of a minimum weight spanning tree, it then follows that the weight of the tour that
the DMWST algorithm generates is at most twice the weight of an optimal tour for G . Therefore, algorithm
DMWST generates 2-approximate solution. Actually the ratio is 2−1/n, which can be established when the
edge deleted for an optimal tour to obtain a spanning tree is one with largest weight. The time complexity
of the algorithm is bounded by the time complexity for generating a minimum weight spanning tree, since
an Euler tour can be constructed in linear time with respect to the number of edges in the spanning tree.
We formalize these results in the following theorem.

Theorem 3.1

For the metric traveling salesperson problem, algorithm DMWST generates a tour with weight at most (2−1/n)
times the weight of an optimal tour. The time complexity of the algorithm is O(n2) time, which is linear time
with respect to the number of edges in the graph.

Proof
The proof for the approximation ratio follows from the above discussion. As Fredman and Tarjan [8] point
out, implementing Prim’s minimum weight spanning tree algorithm by using Fibonacci heaps results in
a minimum weight spanning tree algorithm that takes O(n log n + m) time. Since the graph is complete,
the time complexity is O(n2), which is linear with respect to the number of edges in the graph.

So what is the restriction in the above algorithms? We are actually restricting tours for the TSP to traverse
the least possible number of different edges, though a tour may traverse some of these edges more than
once. The minimum number of different edges in G is n − 1 and they form a spanning tree. It is therefore
advantageous to select the edges in a spanning tree of least possible total weight. This justifies the use of a
minimum-weight spanning tree. This is another way to think about the design of the DMWST algorithm.

Christofides [6] modified the above approach so that the tours generated have total weight within
1.5 times the weight of an optimal tour. However, the currently fastest implementation of this procedure
takes O(n3) time. His modification is very simple. First observe that there are many different ways to
transform a spanning tree into an Eulerian multigraph. All possible augmentations must include at least
one edge incident to every odd degree vertex in the spanning tree. Let N be the set of odd degree vertices
in the spanning tree. Christofides, idea is to transform the spanning tree into an Eulerian multigraph by
adding the least number of edges with the least possible total weight. He showed that such set of edges
is a minimum weight complete matching on the graph G N induced by the set of vertices N in G . A
matching is a subset of the edges in a multigraph, no two of which are incident upon the same vertex.
A matching is complete if every node has an edge in the matching incident to it, and the weight of a
matching is the sum of the weights of the edges in it. A minimum weight complete matching can be
constructed in polynomial time. The edges in the complete matching plus the ones in the spanning tree
form an Eulerian multigraph, and Christofides’ algorithm generates as its solution an Euler tour of this
multigraph.

To establish the 1.5 approximation bound we observe that an optimal tour can be transformed without
increasing its total weight into another tour that visits only the vertices in N because the graph is metric.
One can partition the edges in this restricted tour into two sets such that each set is a complete matching
for the restricted graph. One set contains the even-numbered edges in the tour and the other set the
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odd-numbered edges. Since a minimum weight complete matching for G N has total weight smaller than
the above two matchings, it then follows that the minimum weight complete matching has total weight at
most half of the weight of an optimal tour. Therefore, the edges in the tour constructed by Christofides’
algorithm have weight at most 1.5 times the weight of an optimal tour. The time complexity for Christofides’
algorithm is O(n3) and it is dominated by the time required to construct a minimum weight complete
matching [9,10]. We formalize this result in the following theorem whose proof follows from the above
discussion.

Theorem 3.2 [6]

For the metric traveling salesperson problem, Christofides’ algorithm generates a tour with weight at most
1.5 times the weight of an optimal tour. The time complexity of the algorithm is O(n3).

This approach is similar to the one employed by Edmonds and Johnson [11] for the Chinese Postman
Problem. Given an edge-weighted connected undirected graph, the Chinese Postman problem is to con-
struct a minimum-weight cycle, possibly with repeated edges, which contains every edge in the graph. The
currently best algorithm to solve this problem takes O(n3) time, and it uses shortest paths and weighted
matching algorithms. There are asymptotically faster algorithms when the graphs are sparse and weight
of the edges are integers.

3.4 Covering Points by Squares

Given a set of n points, P = {(x1, y1), (x2, y2), . . . , (xn, yn)}, in two-dimensional space and an integer
D, the C S2 problem is to find the least number of D × D squares to cover P . The C S2 problem as well
as the problem of covering by disks have been shown to be NP-hard [12]. Approximation algorithm for
these problems as well as their generalizations to multidimensional space have been developed [13,14]. All
of these problems find applications in several research areas [12,15,16]. The most popular application is
to find the least number of emergency facilities such that every potential patient lives at a distance at most
D from at most one facility. This application corresponds to covering by the least number of disks with
radius D.

We discuss in this section a simple approximation algorithm based on restriction for the C S2 problem.
Assume without loss of generality that xi ≥ 0 and yi ≥ 0 and that at least one of the points has x-coordinate
value of zero. Define the function Ix (Pi ) = �xi /D�. For k ≥ 0, band k consists of all the points with
Ix (Pi ) = k.

The restriction to the solution space is to only allow feasible solutions where each square covers points
from only one band. Note that an optimal solution to the C S2 problem does not necessarily satisfy this
property. For example, the instance with P1 = (0.1, 1.0), P2 = (0.1, 2.0), P3 = (1.1, 0.9), P4 = (1.1, 2.1),
and D = 1 has two squares in optimal cover. The first square covers points P1 and P3, and the second
covers P2 and P4. However an optimal cover for the points in band 0 (i.e., P1 and P2) is one square and the
one for the points in band 1 (i.e., P3 and P4) is two squares. So an optimal cover to the restricted problem
has three squares, but an optimal cover for the C S2 problem has two squares.

One reason for restricting the solution space in this way is that an optimal cover for any given band can
be easily generated by a greedy procedure in O(n log n) time [14]. A greedy approach places a square as
high as possible provided it includes the bottommost point in the band as well as all other points in the
band at a vertical distance at most 1 from a bottommost point. All the points covered by this square are
removed and the procedure is repeated until all the points have been covered. One can easily show that
this is an optimal cover by transforming any optimal solution for the band, without increasing the number
of squares, to the cover generated by the greedy algorithm. By using elaborate data structures, Gonzalez
[14] showed that the greedy algorithm can be implemented to take (n log s ), where s is the number of
squares in an optimal solution. Actually a method that uses considerable more space can be used to solve
the problem in O(n) time [14].
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The solution generated by our algorithm for the whole problem is the union of the covers for each of
the bands generated by the greedy method. Let f̂ = E + O be the total number of squares, where E (O)
is the number of squares for the even (odd-)-numbered bands. We claim that an optimal solution to the
C S2 problem has at least max{E , O} squares. This follows from the fact that an optimal solution for the
even (odd-)-numbered bands is E (O) because it is not possible for a square to cover points from two
different even (odd-)-numbered bands. Therefore, f̂ I

f ∗
I

≤ 2, where f ∗
I is the number of squares in an

optima solution for problem instance I . This result is formalized in the following theorem whose proof
follows from the above discussion.

Theorem 3.3

For the CS2 problem the above procedure generates a cover such that f̂ I
f ∗
I

≤ 2 in O(n log s ) time, where s is
the number of squares in an optimal solution.

A polynomial-time approximation scheme for the generalization of the CS2 to d dimensions (the CSd

problem) is discussed in Chapter 9. The idea is to generate a set of solutions by shifting the bands by
different amounts and then selecting as the solution the best cover computed by the algorithm. This
approach is called shifting and was introduced by Hochbaum and Maass [13].

3.5 Rectangular Partitions

The minimum edge-length rectangular partition, RGP problem has applications in the area of computer-
aided design of integrated circuits and systems. Given a rectangle R with interior points P , the RGP

problem is to introduce a set of interior lines segments with least total length such that every point in
P is in at least one of the partitioning line segments, and R is partitioned into rectangles. Figure 3.2(a)
shows a problem instance I and Figure 3.2(b) shows an optimal rectangular partition for the problem
instance I .

A rectangular partition E is said to have a guillotine cut if one of the vertical or horizontal line segments
partitions the rectangle into two rectangles. A rectangular partition E is said to be a guillotine partition
if either E is empty, or E has a guillotine cut and each of the two resulting rectangular partitions is a
guillotine partition.

Finding an optimal rectangular partition is an NP-hard problem [17]. However, an optimal guillotine
partition can be constructed in polynomial time. Therefore, it is natural to restrict the solution space to
guillotine partitions when approximating rectangular partitions.

In Chapter 54 we prove that an optimal guillotine partition has total edge length, which is at most
twice the length of an optimal rectangular partition. Gonzalez and Zheng [18] presented a complex proof
that shows that bound is just 1.75. In Chapter 54 we also explain the basic ideas behind the proof of the
approximation ratio of 1.75. This approach has been extended to the multidimensional version of this
problem by Gonzalez et al. [19].

(a) (b) (c)

FIGURE 3.2 (a) Instance I of the RG P problem. (b) Rectangular partition for the instance I . (c) Guillotine partition
for the instance I .
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An optimal guillotine partition can be constructed in O(n5) time via dynamic programming. When n
is large this approach is not practical. Gonzalez et al. [20] showed that suboptimal guillotine partitions
that can be constructed in O(n log n) time generate solutions with total edge length at most four times
the length of an optimal rectangular partition. As in the case of optimal guillotine partitions this result
has been extended to the multidimensional version of the problem [20]. Clearly, neither of the methods
dominates the other when considering both the approximation ratio and the time complexity bound.

Chapter 42 discusses how more general guillotine cuts can be used to develop a polynomial time
approximation scheme (PTAS) for the TSP in two-dimensional space. Chapter 51 discusses this approach
for the TSP and Steiner tree problems.

3.6 Routing Multiterminal Nets

Let R be a rectangle whose sides lie on the two-dimensional integer grid. A subset of grid points on the
boundary of R that do not include the corners of R is denoted by S and its grid points are called terminal
points. Let n be the number of terminal points, i.e., the cardinality of set S, and let N1, N2, . . . , Nm a
partition of S such that each set Ni includes at least two terminal points. Each set Ni is called a net and
the problem is to make all the terminal points electrically common by introducing a set wire segments.
Terminal points from different nets should not be made electrically common. The wire segment must be
along the grid lines outside R with at most one wire segment assigned to each grid edge. When the grid
edges incident to a grid point belong to wire segments from two nets, the two wires must cross. In other
words, dog-legs (wires from two nets bending at a grid point) are not allowed. The main reasons are that
dog-legs would complicate the layer assignment without improving the layout area.

There are two layers available for the wires. Since dog-legs are not allowed, the layer assignment for the
wire segments is straightforward. All horizontal wire segments are assigned to one layer and all the vertical
ones are assigned to the other. A vertical and horizontal wire segment with a common grid point can be
made electrically common by introducing a via for the connection of the wires at that grid point.

The Multiterminal net routing Around a Rectangle (MAR) problem is given a rectangle R and a set of
nets, find a layout, subject to the constraints defined above, that fits inside a rectangle with least possible
area. Constructing a layout in this case reduces to just finding the wire segments for each net along the
grid lines (without dog-legs) outside R, since the layer assignment is straightforward.

Developing a constant-ratio approximation algorithm for this problem is complex because the objec-
tive function depends on the product of two values, rather than just one value as in most other problems.
Gonzalez and Lee [21] developed a linear-time algorithms for the MAR problem when every net consists
of two terminal points. It is conjectured that the problem is NP-hard when the nets have three terminal
points each. Gonzalez and Lee [21,22] developed constant-ratio approximation algorithms for the MAR
problem [22,23]. The approximation ratios for these algorithms are 1.69 [22] and 1.6 [23]. The approach
is to partition the set of nets into groups and then route each group of nets independently of each other.
Some of the groups are routed optimally. Since the analysis of the approximation ratio for these algo-
rithms is complex, in this section we only analyze the case when the nets contain one terminal point on the
top side of R and one or more terminal points on the bottom side of R. The set of these nets is called NTB.
The algorithm to route the NTB nets is based on restriction and it is quite interesting. Readers interested
in additional details are referred to Refs. [22,23].

Let nTB be the number of NTB nets. Let E be an optimal area layout for all the nets and let D be E
except that the set of nets in NTB are all connected by a path that crosses the left side of R. In this case the
layout for the nets NTB is restricted (only paths that cross the left side of R are allowed). We use HE (TB)
(HD(TB)) to denote the height of the layout E (D) on the top plus the corresponding height on the bottom
side of R. To simplify the analysis, let us assume that every net in NTB is connected in E by a path that
either crosses the left or right (but not both) sides of R. Gonzalez and Lee [23] explain how to modify the
analysis when some of these nets are connected by paths that cross both the left and right sides of R.

By reversing the connecting path for a net in NTB we mean to connect the net by a path that crosses the
opposite side of R, i.e., if it crossed the left side of R it will now cross the right side, or vice versa. When we
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reverse the connecting path for a net the height on the top side plus the bottom side of R increases by at most
two. We say that connecting paths for two NTB nets cross on the top side of R when their contribution to the
height of the assignment is two for at least one point in between two terminal points. When we interchange
the connecting paths for two NTB nets that cross on the top side of R we mean reversing both connecting
paths. An interchange increases by at most two the height on the top side plus the bottom side of R.

We transform E to D by reversals to quantify the difference in heights between E and D. The largest
increase in height is when all the NT B nets are connected in E by paths that cross the right side of R. In this
case we need to reverse all the connecting paths for the NTB nets, so HD(TB) ≤ HE (TB) + 2nTB. When
one plugs this in the analysis for the whole problem it results in an algorithm with an approximation ratio
greater than 2.

A better approach is to use the following restriction. All the connecting paths for the NTB nets are
identical, and either they cross the left or the right side of R. In this case we construct two different layouts.
Let Dl (Dr ) be E except that all the nets in NTB are connected by a path crossing the left (right) side of R.
Let M be a minimum area layout between Dl and Dr . In E let l(r ) be the number of NTB nets connected
by a path crossing the left (right) side of R. By reversing the minimum of {l , r } paths it is possible to
transform E to Dl or Dr . Therefore, HM(TB) ≤ HE (TB) + nTB, which is better by 50% than for the
assignment D defined above.

It is obvious that by trying more alternatives one can obtain better solutions. Let us partition the set of
nets NTB into two groups, Sl and Sr . The set Sl contains the nTB

2 nets in NTB whose terminal point on the
top side of R is closest to the left side of R, and set Sr contains the remaining ones. For i, j ∈ {l , r } let Di j

be E except that all the nets in Sl are connected by paths that cross the “i” side of R and all the nets in Sr

are connected by paths that cross the “ j ” side of R. Let P be a minimum area layout among Dll , Dlr , Drl,
and Drr . Let l1(r1) be the number of nets in Sl connected by a path that crosses the left side of R. We define
l2 and r2 similarly, but using set Sl . We show in the following lemma that HP (TB) ≤ HE (TB) + 3

4 nTB.

Lemma 3.1

Let P and E be the assignments defined above. Then HP (TB) ≤ HE (TB) + 3
4 nTB.

Proof
The proof is by contradiction. Suppose that HP (TB) > HE (TB) + 3

4 nTB. There are two cases depending
on the values of r1 and l2.

Case 1: r1 ≥ l2. To transform assignment E to Dlr we need to interchange l2 connecting paths that cross
on the top side of R and reverse r1 − l2 connecting paths. Therefore, HDlr (TB) ≤ HE (TB) + 2r1. Since
HDlr (TB) ≥ HP (TB) > HE (TB) + 3

4 nTB, we know that 2r1 > 3
4 nTB, which is equivalent to r1 > 3

8 nTB.
Since r1 + l1 = 1

2 nTB, we know that l1 < 1
8 nTB.

To transform assignment E to Dr r we need to reverse l1 + l2 connecting paths. Therefore, HDr r (TB) ≤
HE (TB)+2l1+2l2. Since HDr r (TB) ≥ HP (TB) > HE (TB)+ 3

4 nTB, we know that l1+l2 > 3
8 nTB. Applying

the same argument to assignment Dr l , we know l1 + r2 > 3
8 nTB. Adding these two last inequalities and

substituting the fact that l2 + r2 = 1
2 nTB, we know that l1 > 1

8 nTB. This contradicts our previous finding
that l1 < 1

8 nTB.

Case 2: r1 < l2. A contradiction in this case can be obtained applying similar arguments.
It must then be that HP (TB) ≤ HE (TB) + 3

4 nTB.

For three groups, rather than two, Gonzalez and Lee [22] showed that HP (TB) ≤ HE (TB) + 2
3 nTB,

where P is the best of the eight assignments generated. This is enough to prove the approximation
ratio of 1.69 for the MAR problem. If instead of three groups one uses six, one can prove HP (TB) ≤
HE (TB) + 0.6nTB, where P is the best of the 64 assignments generated. In this case, the approximation
ratio for the MAR problem is 1.6. Interestingly, partitioning into more groups results in smaller bounds for
this group, but does not reduce the approximation ratio for the MAR problem because the routing of other
nets becomes the bottleneck. We state Gonzalez and Lee’s theorem without a proof. Readers interested in
the proof are referred to Ref. [23].
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Theorem 3.4

For the MAR problem the procedure given in Ref. [23] generates a layout with area at most 1.6 times the area
of an optimal layout in O(nm) time.

An interesting observation is that the proof that the bound HP (TB) ≤ HE (TB) + (1.6)nTB holds can
be carried out automatically by solving a set of linear programming problems. The linear programming
problems find the ratios for li and ri such that the minimum increase from E to one of the layouts is
maximized. Note that some of the “natural” constraints of the problem are in terms max{r1, l2}, which
makes the solution space nonconvex. However by replacing it with inequalities of the form r1 ≤ l2

and r1 > l2 we partition the optimization region into several convex regions. By solving a set of linear
programming problems (one for each convex region) the maximum possible increase can be computed.

3.7 Variations on Restriction

A closely related approach to restriction is to generate a solution by solving a restricted problem instance
constructed from the original instance. We call this approach transformation-restriction. For example,
consider the routing multiterminal nets around a rectangle discussed in Section 3.6. Remember that there
are n terminal points and m nets. Suppose that we break every net i with ki points into ki nets with two
terminal points each. The k nets consist of adjacent terminal points of the net. In order for these ki nets to
have different terminal points we make a copy of each terminal point at half-integer points next to the old
ones. Note that a new grid needs to be redefined to include the half-integer points without introducing
more horizontal (vertical) routing tracks above or below (to the left or right) of R. Figure 3.3(b) shows the
details. The resulting 2-terminal net problems can be solved in linear time using the optimal algorithm
developed by Gonzalez and Lee [21]. A solution to this problem can be easily transformed into a solution to
the original problem after deleting the added terminal points as well as some superfluous connections. This
algorithm generates a layout whose total area is at most 4 times the area of an optimal layout. Furthermore,
the layout can be constructed in O(n) time. With respect to the approximation ratio Gonzalez and Lee’s
algorithms [22,23] are better, but these algorithms take O(nm) time, whereas the simple algorithm in this
section takes linear time.

3.7.1 Embedding Hyperedges in a Cycle

In this subsection we present an approximation algorithm for Embedding Hyperedges in a Cycle so as
to Minimize the Congestion (EHCMC). As pointed out in Chapter 70, this problem has applications in
the area of design automation and parallel computing. As input we are given a hypergraph G = (V, H),
where V = {v1, v2, . . . , vn} is the set vertices and H = {h1, h2, . . . , hm} the set of hyperedges (or subsets
with at least two elements of the set V). Traversing the vertices v1, v2, . . . , vn in the clockwise direction

a a

a

a

a
a

a

a
1

1
2

2 3 3 4
4
5

5
6
6
7

78
8

(a) (b)

FIGURE 3.3 (a) Net with k-terminal points. (b) Resulting k 2-terminal nets.
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forms a cycle, which we call C . Let vt and vs be two vertices in hi such that vs is the next vertex in hi in
clockwise direction from vt . Then the pair (vs , vt ) for hyperedge hi defines the connecting path for hi that
begins at vertex vs then proceeds in the clockwise direction along the cycle until reaching vertex vt . Every
edge e in the cycle that is visited by the connecting path formed by pair (vs , vt ) is said to be covered by the
connecting path. The EHCMC problem consists of finding a connecting path ci for every hyperedge hi

such that the maximum congestion of an edge in C is least possible, where the congestion of an edge e in
cycle C is the number of connecting paths that include edge e .

Ganley and Cohoon [24] showed that when the maximum congestion is bounded by a fixed constant
k, the EHCMC problem is solvable in polynomial time. But, the problem is NP-hard when there is no
constant bound for k. Frank et al. [25] showed that when the hypergraph is a graph the EHCMC problem
can be solved in polynomial time. We call this problem the Embedding Edges in a Cycle to Minimize
Congestion (EECMC). In this section we present the simple linear-time algorithm with an approximation
ratio of 2 for the EHCMC problem developed by Gonzalez [26].

The algorithm based on transformation-restriction for this problem is simple and uses the same approach
as in the previous subsection. This general approach also works for other routing problems. A hyperedge
with k vertices x1, x2, . . . , xk , appearing in that order around the cycle C is decomposed into the following
k edges {x1, x2}, {x2, x3}, . . . , {xk−1, xk}, {xk , x1}. Note that in this case we do not need to introduce
additional vertices as in the previous subsection because a vertex may be part of several hyperedges. The
decomposition transforms the problem into an instance of the EECMC problem, which can be solved by
the algorithm given in Ref. [25]. From this embedding we can construct an embedding for the original
problem instance after deleting some superfluous edges in the embedding. The resulting embedding can
be easily shown to have congestion of at most twice the one in an optimal solution X . This is because there
is a solution S to the EECMC problem instance in which every connecting path Y in X can be mapped
to a set of connecting paths in S with the property that if the connecting path Y contributes one unit to
the congestion of an edge e , then the set of connecting paths in S contributes 2 units to the congestion
of edge e . Furthermore, each connecting path in S appears in one mapping. The time complexity of the
algorithm is O(n).

3.8 Concluding Remarks

We have seen several approximation algorithms based on restriction. As we have seen the restricted
problem may be solved optimally or suboptimally as in Section 3.5. One generates solutions closer to
optimal, whereas the other generates the solutions faster. These are many more algorithms based on
this technique. For example, some computational geometry problems where the objective function is in
terms of distance have been approximated via restriction [27–30]. These type of problems allow feasible
solutions to be any set of points along a given set of line segments. A restricted problem allows only a set
of points (called artificial points) to be part of a feasible solution. The more artificial points, the smaller
the approximation ratio of the solution; however, it will take longer to solve the restricted problem.

There are problems for which it is not known whether or not there is a constant-ratio approximation
algorithm. However, heuristics based on restriction are used to generate good solutions in practice. One
such problems is discussed in Chapter 73.

A closely related approach to restriction is transformation-restriction. The idea is to transform the
problem instance to a restricted instance of the same problem. The difference is that the restricted problem
instance is not a subproblem of original problem instance as in the case of restriction. In this chapter we
applied this approach to a couple of problems.

Approximations algorithms that are based on restriction and relaxation exist. These algorithms first
restrict the solution space and then relaxes it resulting in a solution space that is different from the original
one. Gonzalez and Gonzalez [31] have applied this approach successfully to the minimum edge length
corridor problem.
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