
C5505 C5505˙C054 March 20, 2007 17:24

54
Minimum-Edge Length
Rectangular Partitions

Teofilo F. Gonzalez
University of California, Santa Barbara

Si Qing Zheng
University of Texas at Dallas

54.1 Introduction. 54-1
54.2 A Divide-and-Conquer Algorithm . 54-2
54.3 Dynamic Programming Approach . 54-8

Algorithm • Approximation Bound • Improved
Approximation Bound

54.4 Concluding Remarks . 54-13

54.1 Introduction

In this chapter we discuss approximation algorithms for partitioning a rectangle with interior points. This
problem is denoted by RG-P, where RG stands for Rectangle and P stands for Points. An instance of the
RG-P problem is a set P of n points inside a rectangle R in the plane. A feasible solution is a rectangular
partition, which consists of a set of (orthogonal) line segments that partition R into rectangles such that
each of the n points in P is on a partitioning line segment. The objective of the RG-P problem is to find
a rectangular partition whose line segments have least total length. The RG-P problem is an NP-hard
problem [1].

A more general version of the problem is when R has interior rectilinear holes instead of points. This
problem arises in VLSI design where it models the problem of partitioning a routing region into channels
[2]. Approximation algorithms for this more general problem exist [3–6]. Levcopoulos’ algorithms [4,5]
are the ones with the smallest approximation ratio. His fastest algorithm [5] invokes as a subprocedure
the divide-and-conquer algorithm for the RG-P problem developed by Gonzalez and Zheng [7], which is
a preliminary version of the one discussed in this chapter.

The structure of an optimal rectangular partition can be very complex (Figure 54.1 [a]). A restricted
version of the RG-P problem limits the set of feasible solutions to recursively defined partitions that at each
level partition the instance into two subinstances of the RG-P problem by introducing a single line segment.
A recursive partition with this property is given in Figure 54.1(b). For a given rectangle, such a line segment
is called a cut of the rectangle in Ref. [7], and a guillotine cut in Ref. [8]. A rectangular partition such that at
every level there is a guillotine cut is called a guillotine partition. By definition every guillotine partition is
a rectangular partition, but the converse is not true. For example, the rectangular partition given in Figure
54.1(a) is not a guillotine partition. For the same instance, the structure of an optimal guillotine partition
can be much simpler than the structure of an optimal rectangular partition. Furthermore, the concept of
guillotine cut is useful for developing approximation algorithms for the RG-P problem using divide-and-
conquer and dynamic programming techniques. The algorithm given in Ref. [7] finds an approximation
to the RG-P problem by generating a suboptimal guillotine partition via a divide-and-conquer algorithm,
whereas the algorithm given by Du et al. [8] finds an approximation to the RG-P problem by generating
an optimal guillotine partition via dynamic programming. Gonzalez and Zheng’s [7] algorithm takes
O(n log n) time. Du et al.’s [8] algorithm takes O(n5) time to construct an optimal guillotine partition.

54-1

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

54-2 Handbook of Approximation Algorithms and Metaheuristics

(a) (b)

FIGURE 54.1 (a) Optimal rectangular partition. (b) Optimal guillotine partition.

On the other hand, Du et al. [8] showed that the length of an optimal guillotine partition is at most
twice the length of an optimal rectangular partition for the RG-P problem, but the approximation ratio
for the divide-and-conquer algorithm given in Ref. [7] is 3

√
3. This ratio was reduced to 4 by using a

slightly different divide-and-conquer procedure. A complex proof showing that the length of an optimal
guillotine partition is within 1.75 times the length of an optimal rectangular partition is given by Gonzalez
and Zheng [9]. Clearly, neither algorithm dominates the other when one takes into account both the time
complexity and the approximation ratio.

It is important to note that optimal and near-optimal guillotine partitions are not the only way one can
generate solutions with a constant approximation ratio for the RG-P problem. Gonzalez and Zheng [10]
developed an algorithm with approximation ratio of 3 for the RG-P problem that generates a rectangular
partition that is not necessarily a guillotine partition. Both the time and approximation ratio for this
algorithm are between the ones of the two algorithms mentioned above.

The RG-P problem was generalized to d-dimensional Euclidean space. In this generalized problem, R
is a d-box and P is a set of points in d-dimensional space, and the objective is to find a set of orthogonal
hyperplane segments of least total (d − 1)-volume that includes all points of P . This is the d-dimensional
RG-P problem. Approximating an optimal d-box partition by suboptimal and optimal guillotine partitions
based on divide-and-conquer and dynamic programming techniques has been established in Refs. [11,12],
respectively.

In this chapter, we present two approximation algorithms for the RG-P problems. For an RG-P instance
I , we use E (I) to represent the set of line segments in the solution generated by our algorithm, and E opt(I)
the set of line segments in an optimal rectangular partition. We use L (S) to represent the length of the
line segments in set S. We first present an O(n log n)-time divide-and-conquer approximation algorithm
that generates suboptimal guillotine partitions with total edge length within four times the one in an
optimal rectangular partition, that is, for every I , L (E (I)) ≤ 4L (E opt(I)). We then present a simple
proof that shows that an optimal guillotine partition has total edge length that is within two times the
one in an optimal rectangular partition, that is, for every I , L (E (I)) ≤ 2L (E opt(I)). This proof is much
simpler than the proof of Ref. [8] for the same bound. We also outline the main ideas of the complex proof
in Ref. [9] that establishes that an optimal guillotine partition has edge length that is within 1.75 times
the optimal rectangular partition value. One may improve Levcopoulos’ [5] algorithm by replacing the
algorithm in Ref. [7] by any of the above algorithms.

54.2 A Divide-and-Conquer Algorithm

An RG-P problem instance is given by I = ((X, Y), P), where (X, Y) defines the rectangle R (with height
Y and width X), and P = {p1, p2, . . . , pn} is a nonempty set of points located inside R. Before we
present our algorithm we define some terms and define a way to establish lower bounds for the length of
rectangular partitions.

A partial rectangular partition is a partition of R into rectangles where not all the points in P are located
along the partitioning line segments. Let Q be any partial rectangular partition for problem instance I . A

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

Minimum-Edge Length Rectangular Partitions 54-3

subset of the points in P is said to be assigned to Q if the following three conditions are satisfied:

1. Every rectangle r in Q with at least one point inside it has one such point assigned to it.
2. A rectangle r in Q without points inside it may be assigned at most one point on one of its sides.
3. Two rectangles with a common boundary cannot have both their assigned points on their common

boundary.

An assignment of the points in P to Q is denoted by A(Q).
Every rectangle r with a point assigned to it is said to have value, v(r), equal to the minimum of the

height of r and the width of r . The assignment A(Q) of the partial rectangular partition Q has value equal
to the sum of the values of the rectangles that have an assigned point. This value is denoted by v(A(Q)).

We now establish that the edge length of a rectangular partition is at least equal to the value of any
assignment for any partial rectangular partition of R.

Lemma 54.1

For every problem instance I , partial rectangular partition Q, and assignment A(Q), a lower bound for
L (E (I)) is given by v(A(Q)), that is, v(A(Q)) ≤ L (E (I)). In particular, v(A(Q)) ≤ L (E OPT(I)).

Proof
Consider any rectangle r with one or more points in it. By definition one of these points is assigned to the
rectangle. Clearly, any partition into rectangles must include line segments inside r with length greater or
equal to the minimum of the height of r or the width of r . This is equal to the value v(r).

Consider now any rectangle r without points inside, but with an assigned point. The point assigned to
r must be located on one of its sides. Let us say it is on side s . By definition any rectangle with a common
boundary to side s of rectangle r does not have its assigned point on this common boundary. Therefore,
any rectangular partition that covers the assigned point of r must include line segments in r with length
at least equal to the minimum of the height of r or the width of r . This is equal to the value v(r).

Since v(A(Q)) is equal to the sum of the values of the rectangles that have been assigned a point, the
above arguments establish that v(A(Q)) ≤ L (E (I)), that is, v(A(Q)) is a lower bound for L (E (I)).

We now define our divide-and-conquer procedure to generate a rectangular partition. From this rect-
angular partition we identify a partial rectangular partition and an assignment of a subset of the points
P . Applying Lemma 54.1 we have a lower bound for an optimal rectangular partition. Then we show that
the length of the edges in the solution generated is within four times the lower bound provided by the
assignment.

Assume without loss of generality that we start with a nonempty problem instance such that Y ≤ X .
Procedure DC introduces a mid-cut or an end-cut, depending on whether or not the rectangle has points
to the left and also to the right of the center of R. The cut is along a vertical line that partitions R into
Rl and Rr . The set of points in P that are not part of the cut are partitioned into Pl and Pr depending
on whether they are inside of Rl or Rr . A mid-cut is a vertical line segment that partitions R and includes
the center of the rectangle. An end-cut is a vertical line segment that partitions R and includes either the
“rightmost” or the “leftmost” points in P , depending whether all the points are located to the left or right
of the center of R. Procedure DC is then applied recursively to the nonempty resulting subproblems, that
is, Il = ((Xl , Y), Rl) and Ir = ((Xr , Y), Rr), where Xl and Xr represent the length along the x-axis of
the two resulting subinstances (Il and Ir), respectively. Note that when a mid-cut is introduced it must be
that both Pl and Pr end up being nonempty. For an end-cut at least one of these sets will be empty. When
both sets of points are empty the cut is called terminal end-cut.

It is easy to verify that Figure 54.2 represents all the possible outcomes of one step in the recursive
process of our procedure. A subinstance without interior points is represented by a rectangle filled with
diagonal line segments.

Our lower bound function, LB(I), is defined from a partial rectangular partition of the rectangular par-
tition generated by Procedure DC. The partial rectangular partition is the rectangular partition generated

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

54-4 Handbook of Approximation Algorithms and Metaheuristics

(a) (b) (c) (d)

FIGURE 54.2 Subinstances generated by Procedure DC.

by Procedure DC, except that all the terminal end-cuts are not included. The association for the partial
rectangular partition is defined as follows. Every rectangle with points inside it is assigned one of the
points inside it. Rectangles without points inside them resulting from a nonterminal end-cut have one of
the points along the end-cut assigned to them. By Lemma 54.1, the value of this assignment is a lower
bound for the length of an optimal rectangular partition. A recursive definition for the value of the above
assignment is given by the following recurrence relation:

LB(I) =

Y (a) A terminal end-cut is introduced, Pl = ∅ and Pr = ∅.

LB(Il) + LB(Ir) (b) A mid-cut is introduced, Pl �= ∅ and Pr �= ∅.

min{Y, Xl } + LB(Ir) (c) A nonterminal end-cut is introduced, Pl = ∅ and Pr �= ∅
LB(Il) + min{Y, Xr } (d) A nonterminal end-cut is introduced, Pl �= ∅ and Pr = ∅.

Let L (E DC (I)) denote the total length of the set E DC (I) of line segments introduced by Procedure
DC. We define USE(I) to be the length of the line segments introduced directly by Procedure DC(I),
but not by the recursive invocations, that is, when P = ∅ then USE(I) = 0; otherwise, USE(I) =
L (E DC (I)) − L (E DC (Il)) − L (E DC (Ir)).

Assume X ≥ Y . A problem instance I = ((X, Y), P) is said to be regular if X ≤ 2Y , and irregular
otherwise (i.e., X > 2Y). We define the carry function C for a problem instance I as

C (I) =
{

3Y if I is irregular
X + Y if I is regular

One may visualize the analysis of our approximation algorithm as follows. Whenever a line segment
(mid-cut or end-cut) is introduced by Procedure DC it is colored red, and when a lower bound from LB(I)
is “identified” we draw an “invisible” blue line segment with such length. Our budget is four times the
length of the blue line segments, which we must use to pay for all the red line segments. In other words, the
idea is to bound the sum of the length of all the red segments by four times the one of the blue segments.
The length of the red line segments introduced at previous recursive invocations of Procedure DC which
have not yet been accounted by previously identified blue segments is bounded above by the carry function
C , defined above. In other words, the carry value is the maximum edge length (length of red segments)
we could possibly owe at this point. Before proving our result, we establish some preliminary bounds.

Lemma 54.2

For any problem instance I such that X ≥ Y , 2Y ≤ C (I) ≤ 3Y .

Proof
The proof follow from the definition of the carry function.

Lemma 54.3

For every problem instance I , L (E DC (I)) + C (I) ≤ 4LB(I).

Proof
The proof is by contradiction. Let I be a problem instance with the least number of points P that does
not satisfy the lemma, that is,

L (E DC (I)) + C (I) > 4LB(I) (54.1)

Assume without loss of generality that Y ≤ X . There are three cases depending on the cut introduced
by Procedure DC when it is initially invoked with I .

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

Minimum-Edge Length Rectangular Partitions 54-5

Case 1. The procedure introduces a terminal end-cut.
Since Y ≤ X , and Pl = Pr = ∅, we know that LB(I) = Y . From the way the procedure operates we
know L (E DC (I)) = USE(I) = Y . Substituting into Eq. (54.1), we know that C(I) > 3Y . But this
contradicts Lemma 54.2. So it cannot be that the algorithm introduces a terminal end-cut when presented
with instance I .

Case 2. The procedure introduces a mid-cut.
Since a mid-cut is introduced, both Pl and Pr must be nonempty and since both Il and Ir have fewer
points than P , we know they satisfy the conditions of the lemma. Combining the conditions of the lemma
for Il and Ir we know that

L (E DC (Il)) + L (E DC (Ir)) + C (Il) + C(Ir) ≤ 4LB(Il) + 4LB(Ir)

By definition, L (E DC (I)) = L (E DC (Il)) + L (E DC (Ir)) + USE(I) and LB(I) = LB(Il) + LB(Ir). Since
Y ≤ X we know USE(I) = Y . Substituting these equations into Eq. (54.1) we have

Y + C (I) > C (Il) + C(Ir) (54.2)

There are two cases depending on whether I is regular or irregular.

Subcase 2.1. I is regular.
By definition C(I) = X + Y . Substituting into Eq. (54.2),

Y + C(I) = X + 2Y > C(Il) + C(Ir)

Since I is regular and the procedure introduces a mid-cut, both I1 and I2 must also be regular. Therefore,
X + 2Y = C(Il) + C(Ir). A contradiction. So it cannot be that I is regular.

Subcase 1.2. I is irregular.
Since Y ≤ X and I is irregular, we know that Y + C (I) = 4Y . Substituting into Eq. (54.2) we have 4Y >

C(Il) + C (Ir). Since I is irregular and the algorithm introduces a mid-cut, it must be that Xl = Xr ≥ Y .
But by Lemma 54.2, C(Il) ≥ 2Y or C (Ir) ≥ 2Y . A contradiction. So it cannot be that the procedure
introduces a min-cut.

Case 3. The procedure introduces a nonterminal end-cut.
When a nonterminal end-cut is introduced, exactly one of the two resulting subproblems has no interior
points (Figure 54.2 [c] and [d]). Assume without loss of generality that Ir has no interior points. From
the lower bound function and the procedure we know that

LB(I) = LB(Il) + min{Y, Xr } and L (E DC (I)) = L (E DC (Il)) + USE(I)

Since instance Il has fewer points than I , it then follows that L (E DC (Il)) + C(Il) ≤ 4LB(Il). Clearly,
USE(I) = Y . Substituting these inequalities into Eq. (54.1) we know that

Y + C(I) > C (Il) + 4 min{Y, Xr } (54.3)

By Lemma 54.2 we know C(I) ≤ 3Y and C (Il) > 0. So Eq. (54.3) is 4Y > 4min{Y, Xr }. Therefore, it
cannot be that Y ≤ Xr as otherwise there is a contradiction. It must then be that Xr < Y . Substituting
into Eq. (54.3)

Y + C (I) > C (Il) + 4Xr (54.4)

Instance I is regular because Xr < Y and Xr ≥ X
2 implies X < 2Y . Substituting C(I) = X + Y into

Eq. (54.4) we know

X + 2Y > C (Il) + 4Xr (54.5)

If Il is regular, then substituting C (Il) into Eq. (54.5) we know that X + 2Y > Xl + Y + 4Xr . Since
Xl + Xr = X , Eq. (54.5) becomes Y > 3Xr . But we know that Xr ≥ X/2 and X ≥ Y . So Xr ≥ Y/2. A
contradiction. So it must be that Il is irregular.

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

54-6 Handbook of Approximation Algorithms and Metaheuristics

In contrast, if Il is irregular, then since Xl ≤ Y substituting C(Il) into Eq. (54.5) we know that
X + 2Y > 3Xl + 4Xr . Since Xl + Xr = X , we know that 2Y > 2X + Xr . But we know that X ≥ Y and
Xr > 0. A contradiction.

This completes the proof of this case and the lemma.

We establish the main result (Theorem 54.1), which shows that the approximation bound is tight
(Theorem 54.2), and explain implementation details needed to establish the time complexity bound for
procedure DC (Theorem 54.3).

Theorem 54.1

For any instance of the RG-P problem, algorithm DC generates a solution such that L (E DC (I)) ≤
4 L (E opt(I)).

Proof
The proof follows from Lemmas 54.2 and 54.3.

We now show that the approximation bound is asymptotically tight, that is, L (E DC (I)) is about
4L (E opt(I)). The problem instance we use to establish this result has the property that LB(I) = L (E opt(I)).
Our approach is a standard one that begins with small problem instances and then combines them to build
larger ones. As the problem instances become larger, the approximation ratio for the solution generated
by Procedure DC increases. The analysis just needs to take into consideration a few steps performed by
the procedure and the previous analysis for the smaller problem instances.

We define problem instances Pi , for i ≥ 0 as follows: Problem instance Pi consists of a rectangle of
size 2i by 2i . The instance P1 contains two points. Figure 54.3(a) and Figure 54.3(b) depicts E DC (P1)
and E opt(P1), respectively. Clearly, L (E DC (P1)) = 4 and L (E opt(P1)) = 2. In this case the approxima-
tion ratio is 2. Instance P2 is a combination of four instances of P1. Figure 54.3(c) and Figure 54.3(d)
depicts E DC (P2) and E opt(P2), respectively. Clearly, L (E DC (P2)) = 23 + 4L (E DC (P1)) = 24 and
L (E opt(P2)) = 4L (E opt(P1)) = 8. The ratio is 3. Problem instance P3 combines four instances of P2

as shown in Figure 54.3(c). Figure 54.3(e) and Figure 54.3(f) depicts E DC (P3) and E opt(P3), respec-
tively. Clearly, L (E DC (P3)) = 24 + 4L (E DC (P2)) = 112 and L (E opt(P3)) = 4L (E opt(P2)) = 32.
The ratio is 112/32 = 3.5. To construct Pi we apply the same combination using Pi−1. Note that
when applying our procedure to Pi it always introduces mid-cuts, except when presented P0 in which
case it introduced a terminal end-cut. It is simple to see that our approximation algorithm introduces

(a) (b) (c) (d)

(f)(e)

FIGURE 54.3 (a) E DC (P1), (b) E OPT (P1), (c) E DC (P2), (d) E OPT (P2), (e) E DC (P3), and (f) E OPT (P3).

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

Minimum-Edge Length Rectangular Partitions 54-7

cuts with length L (E DC (Pi)) = 2i+1 + 4L (E DC (Pi−1)), for i > 1 and L (E DC (P1)) = 4. An optimal
solution, in this case, is identical to the lower bound function which is L (E opt(Pi)) = 4L (E opt(Pi−1)),
for i > 1 and L (E opt(P1)) = 2.

Solving the above recurrence relations we know that

L (E DC (Pi)) =
i−2∑
j=0

22i− j−1 + 22i−2 L (E DC (P1)) = 22i+1 − 2i+1

and

L (E OPT(Pi)) = 22(i−1) L (E OPT(P1)) = 22i−1

Therefore the approximation ratio is L (E DC (Pi))/L (E opt(P i)) = 4 − 1/2i−2.

Theorem 54.2

There are problem instances for which procedure DC generates a solution such that L (E DC (I)) tends to
4L (E opt(I)).

Proof
By the above discussion.

Procedure DC can be easily modified so that for problem instances with “many” points along the same
line it will introduce a line to cover all the points provided that the line segment has length close to Y .
For the problem instance given above the modified algorithm will generate a better solution decreasing
substantially the approximation ratio. However, as pointed out in Ref. [11], there are problem instances
for which the modified procedure will generate solutions with edge length of about 4LB(I). The idea is to
perturb the points slightly. This way no two points will belong to the same vertical or horizontal line.

The time complexity T(n) for Procedure DC when operating on an instance with n = |P | points is
given by the recurrence relation T(n) ≤ T(n − i − 1) + T(i) + cn, for 1 ≤ i < n and some constant c .
However, it is possible to implement the procedure so that it takes O(n log n) time [5]. In what follows, we
briefly describe one of the two implementations given in Ref. [5] with the O(n log n) bound. To simplify
the presentation assume that no two points can be covered by the same vertical or horizontal line. The
idea is to change the procedure so that the time complexity term cn becomes c f (min{i, n − i − 1}), for
some function f () that we specify below. Note that this requires a preprocessing step that takes O(n log n)
time. For certain functions f () this reduces the overall time complexity bound to O(n log n).

In the preprocessing step we create a multilinked structure in which there is a record (data node) for
each point. The record contains the x- and y-coordinate values of the point. We also include the rank of
each point with respect to their x and y values. For example, if the rank of a point is (i, j) then it is the
i th smallest point with respect to its x value, and the j th smallest point with respect to its y value. Note
that this ranking is with respect to the initial set of points. We also have all of these records in two circular
lists, one sorted with respect to the x values and the other sorted with respect to the y values. It is simple
to see that this multilinked structure can be constructed in O(n log n) time.

In each recursive invocation of procedure DC we need to construct Pl and Pr from P , and assume that
X ≥ Y . This construction can be implemented to take O(min{|Pl |, |Pr |}) by scanning the doubly linked
lists for the x values from both ends (alternating one step from each end) until all the points at one end
are Pl and the other ones are on Pr . Assume that n ≥ |P | = m > |Pl | = m − q ≥ |Pr | = q , and
1 < q ≤ m/2. Clearly, the above procedure can be used to identify the points in Pr and then remove
the points in Pr from P in O(q) time. The remaining points are Pl and are represented according to our
structure. But now the problem is that we need to construct a multilinked data structure for the points
in Pl . These points are already sorted by their x values, but not by their y values. The algorithm given in
Ref. [13] can sort any q integers in the range [1, n] in O(q log logq n) time. Once we have sorted them
we can construct the multilinked data structure for Pl . This takes O(q log logq n) time. Let Tn(m) be the
total time required by procedure DC when the initial invocation involved a problem with n points and

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

54-8 Handbook of Approximation Algorithms and Metaheuristics

we now have a problem with m points. Clearly, Tn(1) = O(1) and Tn(m) = max{O(q log logq n) +
Tn(q) + Tn(m − q)|1 ≤ q ≤ m/2} for m > 1. By the analysis of Ref. [5], Tn(n) = O(n log n). This result
is summarized in the following theorem:

Theorem 54.3

Procedure DC and its preprocessing step can be implemented to take O(n log n) time.

Proof
By the above discussion.

54.3 Dynamic Programming Approach

The divide-and-conquer algorithm DC presented in the previous section introduces guillotine cuts by
following a set of simple rules, which makes the algorithm run very efficiently. But such guillotine cuts do
not form an optimal guillotine partition. It seems natural that using an optimal guillotine partition would
generate a better solution. But how fast can one generate an optimal guillotine partition? By the recursive
nature of guillotine partitions, it is possible to construct an optimal guillotine partition in polynomial
time. In this section we analyze an approximation algorithm based on this approach. As we shall see the
algorithm has a smaller approximation ratio, but it takes longer to generate its solution.

54.3.1 Algorithm

Let I = (R = (X, Y), P) be any problem instance and let the x-interval and y-interval define the rectangle
Rx , y , which is part of rectangle R. We use g (Rx , y) to represent the length of an optimal guillotine partition
for Rx , y .

First it is important to establish that there is always an optimal guillotine partition such that all its line
segments include at least one point from P inside them (excluding those at its endpoints). This is based
on the observation that given any optimal partition that does not satisfy this property it can either be
transformed to one that does satisfy the property or one can establish that it is not an optimal guillotine
partition. The idea is to move each horizontal (vertical) guillotine cut without points from P inside them
either to the left or right (up or down) without increasing the total edge length. Note that when the above
operation is perfomed some vertical (horizontal) segments need to be extended and some need to be
retracted to preserve a guillotine partition. If the total edge length decreases then we know that it is not
an optimal guillotine partition and when it remains unchanged after making all the transformations it
becomes an optimal guillotine partition in which all its guillotine cuts include at least one point from P .

By applying the above argument we know that for any rectangle Rx , y one can easily compute g (Rx , y) re-
cursively by selecting the best solution obtained by trying all 2n guillotine cuts (that include a point from P)
and then solving recursively the two resulting problem instances. It is simple to show that there are O(n4)
different g values that need to be computed. By using dynamic programming and the above recurrence
relation the length of an optimal guillotine partition can be constructed in O(n5) time. By recording at each
step a guillotine cut forming an optimal solution and using the g values, an optimal guillotine partition
can be easily constructed within the same time complexity bound. The following theorem follows from
the above discussion:

Theorem 54.4

An optimal guillotine partition for the RG-P problem can be constructed in O(n5) time.

54.3.2 Approximation Bound

The set of line segments in a feasible rectangular partition of I is denoted by E (I), and a set of line segments
in a minimum-length guillotine partition is denoted by E G (I)). We use L (E) to represent the length of the
edges in a rectangular partition E . In what follows we show that L (E G (I)) ≤ 2L (E (I)) by introducing a set

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

Minimum-Edge Length Rectangular Partitions 54-9

of vertical and horizontal line segments A(I) such that E (I) ∪ A(I) is a guillotine partition and L (E (I)∪
A(I)) ≤ 2L (E (I)). The bound follows from the fact that L (E G (I)) ≤ L (E (I) ∪ A(I)). Our main result
follows from the application of this result to E (I) = E opt(I). The set A(I) of additional segments are
introduced by Procedure TR1. Before we present this procedure and in its analysis we define some terms.

A horizontal (vertical) line segment that partitions rectangle R into two rectangles is called a horizontal
(vertical) cut. We say that E (I) has a horizontal guillotine cut, if there is a horizontal cut, l , such that
L (E (I) ∩ l) = X . A rectangular partition E (I) has a half horizontal overlapping cut if there is a horizontal
cut l such that L (E (I) ∩ l) ≥ 0.5X . Vertical guillotine cuts are defined similarly.

Suppose R is partitioned by a vertical or horizontal cut into two rectangles, Rl and Rr . With respect to
this partition we define E (Il) and E (Ir) as the set of line segments of E (I) inside Rl and Rr , respectively.
We use E h(I) (Ev(I)) to denote all the horizontal (vertical) line segments in E (I). With respect to A(I)
we define similarly Ah(I) and Av(I).

Assume that E (I) is nonempty. The idea behind Procedure TR1 is to either introduce horizontal or
vertical line segments at each step and then apply recursively the procedure to the nonempty problem
instances. When a horizontal line segment is introduced, it is added along a half horizontal overlapping
cut. The two resulting problems will not have any of these segments inside them. So at this step the added
horizontal segments have length at most equal to the ones of the half horizontal overlapping cut.

Since there are problem instances without half horizontal overlapping cuts, Procedure TR1 checks to
see if there is a vertical guillotine cut. In this case we just partition the rectangle along this cut. Clearly,
there are no additional line segments introduced in this case.

There are rectangular partitions without a half horizontal overlapping cut or a vertical guillotine cut.
In this case, Procedure TR1 introduces a mid-cut, which is just a vertical line that partitions the rectangle
along its center. The problem now is that this mid-cut does not necessarily overlap with any of the segments
in Ev(I). Our approach is to remember this fact and later on identify a set of line segments in Ev(I) that
will account for the length of this mid-cut. To remember this fact we will color the right side of rectangle
Rl . As we proceed in the recursive process different parts of this colored side will be inherited by smaller
rectangles that will get their right side colored. At some point later on when we pay for the segment
represented by a colored right side of a rectangle, it will no longer appear in recursive calls resulting from
the one for this rectangle. The budget in this case is two times the total length of the vertical line segments
in Ev(I). This budget should be enough to pay for the total length of the vertical line segments introduced
during the transformation.

To be able to show that Av(I) ≤ Ev(I) it must be that the rectangles in the terminal recursive calls will
not have their right side colored. Before we establish this result, we formally present Procedure TR1 that
defines the way colors are inherited in the recursive calls.

Procedure TR1(I = (R = (X, Y), E (I)));
case

:E (I) is empty: return;
:There is a half horizontal overlapping cut in E (I):

Partition the rectangle R along one such cut;
If the right side of R is colored, the right sides of rectangles Rl and Rr remain colored;

:There is a vertical guillotine cut in E (I):
Partition R along one such cut;
Remove the color, if any, of the right side of rectangle Rr ;

:else:
Partition R by a vertical cut intersecting the center of R;// introduce a mid-cut
If the right side of R is colored, the right side of Rr remains colored;
Color the right side of Rl ;

endcase
Apply TR1 recursively to (Il = (Rl , E (Il)));
Apply TR1 recursively to (Ir = (Rr , E (Ir)));

end of Procedure TR1

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

54-10 Handbook of Approximation Algorithms and Metaheuristics

It is important to remember that Procedure TR1 is only used to establish our approximation bound.
The right side of rectangle R is not colored in the initial invocation to Procedure TR1. Before establishing
the approximation ratio of 2 in Theorem 54.5, we prove the following lemmas:

Lemma 54.4

Every invocation of Procedure TR1 (I , E (I)) satisfies the following conditions:

(a) if E (I) is empty, then the right side of R is not colored, and
(b) if the right side of R is colored, then E (I) does not have a horizontal guillotine cut.

Proof
Initially the right side of R is not colored so the the first invocation (I , E (I)) satisfies conditions (a) and
(b). We now show that if upon entrance to the procedure the conditions (a) and (b) are satisfied, then the
invocations made directly from it will also satisfy (a) and (b). There are three cases depending on the type
of cut introduced by procedure TR1.

Case 1. Procedure TR1 partitions R along a half horizontal overlapping cut.
First consider the subcase when E (I) has a horizontal guillotine cut. From (b) we know that the right
side of R is not colored, and the algorithm does not color the right side of Rl or Rr . Therefore the two
invocations made directly from this call satisfy properties (a) and (b). In contrast, when E (I) does not
have a horizontal guillotine cut, then the right side of R may be colored. Since E (I) does not have a
horizontal guillotine cut, we know that there is at least one vertical line segment on each side of the half
horizontal overlapping cut, so E (Il) and E (Ir) must be nonempty. Since neither of these two partitions
has a horizontal guillotine cut, each invocation made directly by our procedure satisfies properties (a) and
(b). This completes the proof for this case.

Case 2. Procedure TR1 partitions R along a vertical guillotine cut.
Since the right side of Rl and Rr end up uncolored; then the invocations made directly by the procedure
satisfy (a) and (b). This completes the proof of this case.

Case 3. Procedure TR1 introduces a mid-cut.
Since E (I) does not have a half horizontal overlapping cut and there is no vertical guillotine cut, then each
of the resulting rectangular partitions has at least one vertical line segment and there are no horizontal
guillotine cuts in the two resulting problems. Therefore, both of the resulting problem instances are not
empty and do not have a horizontal guillotine cut. This implies that both problem instances satisfy (a)
and (b). This completes the proof for this case and the lemma.

Lemma 54.5

For any nonempty rectangular partition E (I) of any instance I of the RG-P problem, procedure TR1 generates
a set A(I) of line segments such that L (Ah(I)) ≤ L (E h(I)), and L (Av(I)) ≤ L (Ev(I)).

Proof
First we show that L (Ah(I)) ≤ L (E h(I)). This is simple to prove because horizontal cuts are only
introduced over half horizontal overlapping cuts. Each time a horizontal cut is introduced the segments
added to Ah(I) have length that is at most equal to the length of the segments in the half horizontal cut
in E h(I). Since these line segments are located on the boundary of the two resulting instances, these line
segments will not account for other segments in Ah(I) and thus L (Ah(I)) ≤ L (E h(I)).

Let us now establish that L (Av(I)) ≤ L (Ev(I)). It is simple to verify that Procedure TR1 does not
color a side more than once, and all empty rectangular partitions do not have their sides colored (Lemma
54.4). Every invocation of Procedure TR1 with a nonempty rectangular partition R generates two problem
instances whose total length of their colored right sides is at most the length of the right side of R, if it is
colored, plus the length of the vertical line segment introduced. The only exception is when the procedure
introduces a cut along an existing vertical guillotine cut. In this case if the right side of R is colored, the right
sides of two resulting partitions will not be colored. So the length of a line segment previously introduced

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

Minimum-Edge Length Rectangular Partitions 54-11

(b)(a)

FIGURE 54.4 (a) Optimal rectangular partition. (b) Optimal guillotine partition.

in A(I), which is recorded by the fact that the right side of R is colored, is charged to the existing guillotine
cut and such cut will not be charged another segment again. Therefore, L (Av(I)) ≤ L (Ev(I)). This
concludes the proof of the lemma.

Theorem 54.5

The length of an optimal guillotine partition is at most twice the length of an optimal rectangular partition,
that is, L (E G (I)) ≤ 2L (E opt(I)).

Proof
Apply procedure TR1 to any optimal rectangular partition E (I) = E opt . By Lemma 54.5 we know that
L (E (I) ∪ A(I)) ≤ 2L (E h(I)) + 2L (Ev(I)) = 2L (E (I)). Since E (I) ∪ A(I) is a guillotine partition,
L (E G (I)) ≤ L (E (I) ∪ A(I)). Hence, L (E G (I)) ≤ 2L (E (I)) = 2L (E opt (I)).

It is simple to find a problem instance I such that L (E G (I)) is about 1.5L (E opt(I)) [8]. One of such
problem instances has the distribution of points shown in Figure 54.4. As the number of points increases,
the ratio L (E G (I))

L (E opt (I)) approaches 1.5.

54.3.3 Improved Approximation Bound

In this section, we describe the idea behind the complex proof given in Ref. [9] that establishes the fact
that L (E G (I)) ≤ 1.75L (E opt(I)). The proof is based on a recursive transformation procedure TR2
that, when performed on any rectangular partition E (I), generates a set A(I) of line segments such that
E (I) ∪ A(I) forms a guillotine partition (of course A(I) ∩ E (I) = ∅). Without loss of generality, assume
that L (Ev(I)) ≤ L (E h(I)). The transformation is performed in such a way that

L (Av(I)) ≤ L (Ev(I)) (54.6)

and

L (Ah(I)) ≤ 0.5L (E h(I)) (54.7)

Then, we have

L (E G (I)) ≤ L (A(I) ∪ E (I))

= L (Ah(I)) + L (Av(I)) + L (E (I))

≤ 0.5L (E h(I)) + L (Ev(I)) + L (E (I))

= 0.5L (Ev(I)) + 1.5L (E (I))

≤ 1.75L (E (I))

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

54-12 Handbook of Approximation Algorithms and Metaheuristics

FIGURE 54.5 A vertically separable E (I). E (I) has no guillotine cut. The broken line segment is a vertical through
cut of E (I). In fact, any vertical cut in the region marked by the vertical segments outside of rectangular boundary is
a vertical through cut for E (I).

To satisfy Eq. (54.6), the notion of vertical separability is introduced. Denote the x-coordinate of a
vertical segment l by x(l). A vertical cut l is left (right) covered by Ev(I) if for every point p on l there
exists a line segment l ′ in Ev(I) such that x(l ′) ≤ x(l) (x(l ′) ≥ x(l)), and there is a point p′ on l ′ with
x(p′) = x(p). A vertical cut is called a vertical through cut if it is both left and right covered by Ev(I). The
set of segments E (I) is said vertically separable if there exists at least one vertical through cut. Note that
a vertical guillotine cut is also a vertical through cut, but the converse is not necessarily true. Figure 54.5
shows a vertically separable E (I) and a vertical through cut. When a new vertical line segment is introduced
by TR2, it is ensured to be a portion of a vertical through cut.

To satisfy Eq. (54.7), horizontal segments are carefully introduced by TR2 according to the structure of
E (I). When there is neither guillotine cut and nor vertical through cut in E (I), a three-step subprocedure
HVH-CUT is invoked to introduce new segments. Procedure TR2 is given below

Procedure TR2(E (I));
case

:E (I) is empty:
return;

:E (I) has a guillotine cut l :
Partition E (I) along l into E (I1) and E (I2);
Recursively apply TR2 to E (I1) and E (I2);

:E (I) is vertically separable:
Let l be any vertical through cut;
Partition E (I) along l into E (I1) and E (I2);
Recursively apply TR2 to E (I1) and E (I2);

:else:
Use Procedure HVH-CUT to partition E (I) into E (I1), E (I2), · · · , E (Iq+1);
Recursively apply TR2 to each E (Ii);

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

Minimum-Edge Length Rectangular Partitions 54-13

endcase
end of Procedure TR2

Procedure HVH-CUT is outlined below:

Procedure HVH-CUT(E (I));

1. Introduce a carefully selected set of q horizontal cuts that partition E (I) into q + 1 vertically
separable rectangular subpartitions;

2. In each resulting partition of Step 1, introduce either the leftmost or the rightmost vertical through
cut;

3. Divide each resulting partition of Step 2 into two rectangular subpartitions by a horizontal guillotine
cut if such a cut exists;

end of Procedure HVH-CUT

Let H(I) be the set of horizontal cuts introduced in Step 1, V(I) the set of vertical through cuts chosen
in Step 2, and H3(I) the horizontal guillotine cuts found in Step 3. Define H1(I) = H(I) ∩ E h(I) and
H ′

1(I) = H(I) − E h(I). Note that H3(I) ⊂ E h(I). The sets H(I) and V(I) are selected in such a way
that

L (H ′
1(I)) ≤ 0.5q X (54.8)

and

L (H1(I) ∪ H3(I)) ≥ q X (54.9)

It is quite complex to establish that such H(I) and V(I) always exist [9]. We omit additional de-
tails of the procedure HVH-CUT and the related proofs. Vertical though cuts introduced by TR2 are
carefully selected to satisfy Eq. (54.6) and ensure Eq. (54.9). Since all horizontal cuts introduced by
HVH-CUT satisfy Eq. (54.8) and Eq. (54.9), and all horizontal cuts that are not introduced by invocations
to HVH-CUT are horizontal guillotine cuts in their respective subrectangular boundaries, Eq. (54.7) is
satisfied. Consequently, L (E G (I)) ≤ 1.75L (E (I)). Since E (I) is any arbitrary rectangular partition, we
have L (E G (I)) ≤ 1.75L (E opt(I)). The next theorem sums up the discussion.

Theorem 54.6

The length of an optimal guillotine partition is at most 1.75 times the length of an optimal rectangular partition,
that is, L (E G (I)) ≤ 1.75L (E opt(I)).

Proof
The full details of the proof, whose outline is given above, appears in Ref. [9].

54.4 Concluding Remarks

In this chapter, we considered the RG-P problem. We presented a fast divide-and-conquer approximation
algorithm with approximation ratio 4. This ratio is smaller than the 3 + √

3 ratio of a similar divide-and-
conquer approximation algorithm given [7]. We also examined in detail the approach of approximating
optimal rectangular partitions via optimal guillotine partitions. Optimal guillotine partitions can be
constructed in polynomial time using dynamic programming [3]. For this approach we presented a proof
that the approximation ratio is at most 2. Our proof is simpler than the proof for the same bound
given in Ref. [3]. We presented the idea behind a complex proof given in Ref. [9], which establishes that
the approximation ratio is at most 1.75 when approximating optimal rectangular partitions via optimal
guillotine partitions. Both proofs are based on the technique of recursively transforming a rectangular

© 2007 by Taylor & Francis Group, LLC

C5505 C5505˙C054 March 20, 2007 17:24

54-14 Handbook of Approximation Algorithms and Metaheuristics

partition into a guillotine partition by introducing additional line segments. The difference is that the
additional segments in the transformation for the approximation ratio of 1.75 are selected more carefully
than those introduced by the transformation for the bound of 2. Whether or not one can further reduce
this bound remains a challenging open problem.

For the RG-P problem, the partitions obtained by the divide-and-conquer algorithms (the one of
Ref. [7] and the one presented in this chapter) and the dynamic programming algorithm are guillotine
partitions formed by recursive guillotine cuts. The approach examined in this chapter can be referred to
as approximating optimal rectangular partitions via optimal and suboptimal guillotine partitions. The
first approximation algorithm for this problem based on suboptimal guillotine partitions appeared in
Ref. [7]. Subsequently, optimal guillotine partitions were used in Ref. [8]. Both of these approaches were
generalized to multidimensional space in Refs. [11,12].

The term “guillotine cut” was introduced in the 1960s in the context of cutting stock problems. In the
context of rectangular partitions it was first used in Ref. [8]. As pointed out in Ref. [14], the concept
of guillotine partition has been generalized into a powerful general approximation paradigm for solving
optimization problems in different settings. The guillotine partition algorithms for the RG-P problem
were among the first that manifested the power of this paradigm.

References

[1] Lingas, A., Pinter, R. Y., Rivest, R. L., and Shamir, A., Minimum edge length partitioning of rectilinear
polygons, in Proc. 20th Allerton Conf. on Comm., Cont., and Comput., Monticello, Illinois, 1982.

[2] Rivest, R. L., The “PI” (placement and interconnect) system, in Proc. Design Automation Conf., 1982.
[3] Du, D. Z. and Chen Y. M., On Fast Heuristics for Minimum Edge Length Rectangular Partition,

Technical report, MSRI 03618–86, 1986.
[4] Levcopoulos, C., Minimum length and thickest–first rectangular partitions of polygons, Proc. 23rd

Allerton Conf. on Communication, Control and Computing, Monticello, Illinois, 1985.
[5] Levcopoulos, C., Fast heuristics for minimum length rectangular partitions of polygons, Proc. 2nd

ACM Symp. on Computational Geometry, 1986.
[6] Lingas, A., Heuristics for minimum edge length rectangular partitions of rectilinear figures, Proc. 6th

GI–Conf., Lecture Notes in Computer Science, Springer, Dortmund, p. 195, 1983.
[7] Gonzalez, T. F., and Zheng, S. Q., Bounds for partitioning rectilinear polygons, Proc. ACM Symp.

Computational Geometry, 1985, p. 281.
[8] Du, D. Z., Pan, L. Q., and Shing, M. T., Minimum Edge Length Guillotine Rectangular Partition,

Technical report, MSRI 02418–86, 1986.
[9] Gonzalez, T. F., and Zheng, S. Q., Improved bounds for rectangular and guillotine partitions, J.

Symbolic Comput., 7, 591, 1989.
[10] Gonzalez, T. F., and Zheng, S. Q., Approximation algorithms for partitioning rectilinear polygons

with interior points, Algorithmica, 5, 11, 1990.
[11] Gonzalez, T. F., Razzazi, M., and Zheng, S. Q., An efficient divide-and-conquer algorithm for parti-

tioning into d-boxes”, Int. J. Comput. Geometry Appl., 3(4), 1993, 417 (condensed version appeared
in Proc. 2nd Canadian Conf. on Computational Geometry, 1990, p. 214).

[12] Gonzalez, T. F., Razzazi, M., Shing, M., and Zheng, S. Q., On optimal d-guillotine partitions approx-
imating hyperrectangular partitions, Comput. Geometry: Theor. Appl., 4(1), 1, 1994.

[13] Kirkpatrick, D. G., An upper bound for sorting integers in restricted ranges, in Proc. 18th Allerton
Conf. on Communication, Control and Computing, Monticello, Illinois, 1980.

[14] Cardei, M., Cheng, X., Cheng, X., and Du, D. Z., A tale on guillotine cut, in Proc. Novel Approaches
to Hard Discrete Optimization, Ontario, Canada, 2001.

© 2007 by Taylor & Francis Group, LLC

	Chapter 54: Minimum-Edge Length Rectangular Partitions
	54.1 Introduction
	54.2 A Divide-and-Conquer Algorithm
	54.3 Dynamic Programming Approach
	54.3.1 Algorithm
	54.3.2 Approximation Bound
	54.3.3 Improved Approximation Bound

	54.4 Concluding Remarks
	References

