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ABSTRACT

The problem of routing n two-terminal nets around two equal-width rectangles to
minimize the total area is discussed. We develop an O(nlogn) (O(n) if the set of termi-
nals is initially sorted) time approximation algorithm for this problem. Our algorithm
generates a layout with area at most 2 OPT, where OPT is the area of an optimal
area layout. We establish a lower bound for the area of an optimal layout from a lower
bound for the size of the components, and a lower bound for the area occupied by the
wires. The former lower bound is derived from the number of terminals on the sides
of the rectangles, and the latter lower bound is based on the nunber of corners crossed
by each wire. This suggests that nets should be connected by wires that “cross” the
least number of corners (called Inc-wires). Nets for which all their Inc-wires cross the
same rectangle corners are connected by Inc-wires, and a subset of the remaining nets
is connected by Inc-wires that blend with previously introduced wires. To guarantee
our approximation bound the remaining nets are connected in several ways, and a set of
layouts is generated. The layout generated by the algorithm is a minimum area layout
among these layouts. :

Keywords: Rectangle routing, approximation algorithms, Manhattan routing, Knock-
Knee routing, efficient algorithms. '

1. Introduction

Let T' (top) and B (bottom) be two rectangles with equal width (wp = wg)
and possibly different heights (hr and hp). Assume the rectangles are placed on
the same plane with the same orientation. The left side of T’ and B is placed along
the same vertical line and rectangle T" is above rectangle B. The distance between
these two rectangles is at least A > 0 units and the exact distance will be decided
by our routing algorithm. Let N be a set of terminals (or terminal points) that lie
on the sides of T and B. Set N is partitioned into n disjoint subsets N;, 1 < i < n,
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called nets. All the terminals in each net have to be made electrically common by
interconnecting them with wires. The wires consist of a finite number of horizontal
and vertical segments. All the horizontal segments are assigned to one layer and all
the vertical segments are assigned to the other layer. Wire segments on different
layers can be connected directly at any given point z by a wire perpendicular to
the layers if both wire segments cross point z in their respective layers (ie., the
connection is made through a contact cut or via). Every pair of (distinct) parallel
wire segments must be at least A units apart and every wire segment must be at
least A units from each side of rectangles T' and B, except in the region where the
wire connects a terminal in N. Also, no wire segment is allowed inside of T' and B
on any of the layers. We assume that the distance between any two vertical lines
each including a terminal located in the middle channel (the region between the
bottom side of rectangle T and the top side of rectangle B) is at least . We shall
refer to this assumption as the middle-channel assumplion. Later on we explain
why we make this assumption, and show how it can be eliminated at the expense
of an additional layer for routing.

Problem R2M (routing around two rectangles) consists placing T and B, ver-
tically aligned, and connecting the terminals in cach net by wires, that satisfy the
restrictions imposed above, in such a way that the smallest enclosing rectangle,
with the same orientation as T and B, has least area amongst all feasible layouts.
This problem has applications in the bottom-up layout of integrated circuits.!»?
The R2M problem is referred to as the 2— R2M problem when each net consists of
exactly two terminals. In this paper we focus on the 2 — R2M problem under the
wiring model just discussed which is referred to as the Manhattan wiring model. We
also consider the 2 — R2M problem without the middle-channel assumption under
the knock-knee wiring model. Under this wiring model,? vertical and horizontal
segments from different nets may be assigned to the same layer as long as they do
not touch, and two wires may bend at a grid point rather than just cross as in the
Manhattan wiring model. A Manhattan wiring is also a knock-knee wiring, but the
converse is not necessarily true. When we refer to a wiring we mean a wiring under
Manhattan model. When we wish to refer to knock-knee wirings we shall refer to
them explicitly.

The 2 — R2M problem without the middle channel assumption is an NP-hard
problem because the channel between the two rectangles corresponds to the Man-
hattan channel routing problem which is known to be NP-hard.? It is not known
whether the 2— R2M is NP-hard. With respect to the knock-knee model the R2M
problem without the middle channel assumption is an NP-hard problem because the
channel between the two rectangles corresponds to the knock-knee channel routing
problem which is known to be NP-hard,’ but it is not known whether or not the
9_ R2M with or without the middle-channel assumption or the R2M are NP-hard.
As we shall see later on, the reason for introducing the middle-channel assumption
is not the complexity of the optimization problem, but rather the complexity of gen-
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erating good area layouts for the channel routing problem (routing in the middle
channel).

The RIM problem is defined similarly, except that all terminals are located on
the sides of one rectangle. Hashimoto and Stevens® present an O(nlogn) algorithm
to solve the R1M problem for the case when all the points in N lie on one side of a
rectangle. An Q(nlogn) lower bound of time complexity for this problem has been
established.” There are several algorithms to solve the R1M problem when all nets
have exactly two terminals. 39192 Gonzalez and Lee’s algorithm!? is optimal with
respect to the time complexity bound. Approximation algorithms for the R1M
problem have been developed by Gonzalez and Lee.!®:!2 The time complexity for
these algorithms is O(m(n+log m)) and the best one!? generates a layout with area
at most 1.6 OPT, where OPT is the area of an optimal layout, m is the number
of terminals and n is the number of nets. If more than two layers are allowed and
wire overlap is permitted, the R1M problem becomes an NP-hard problem,!2 even
when the size of all nets is two.

Chandrasekhar and Breuer!* studied a restricted version of the 2 — R2M prob-
lem in which some type of nets have to be connected by a special type of wires. This
limitation on the set of feasible solutions simplifies the routing problem considerable
and makes it polynomially solvable. Unfortunately, an optimal area layout for this
problem with the additional restrictions is in general larger than that of an optimal
area layout for the unrestricted 2 — R2M problem. In our problem we allow all
possible type of connections and as a result of this we compare our layouts with the
area of a “true” optimal area layout. Baker!® presents an O(nlogn) algorithm for
the 2 — R2M problem in which optimality is measured with respect to the perime-
ter of the resulting enclosing rectangle. The algorithm generates a layout whose
perimeter is within 1.9 times the perimeter of an optimal layout. The perimeter
is simpler to approximate than the area mainly because the perimeter is a linear
objective function, but layout area is considered to be one of the most important
objective functions in VLSI optimization. Our approximation bound is two and
Baker’s'® is 1.9; however, Baker!® does not require the middle-channel assumption.
Without the middle-channel assumption we can still approximate within two the
layout area, but at the expense of an extra layer in the middle channel. Without the
extra layer the problem is difficult to approximate. To convince yourself of this fact
let us just consider the middle channel. The best known approximation algorithm
for this problem has an approximation bound which is bounded by a constant (the
constant is greater than two).'® Even if such algorithm is used directly, it does not
imply that we can generate a constant times optimal wiring because it may use a set
of additional columns to the right of the channel, i.e., the algorithm approximates
with respect to channel width, but not necessarily with respect to the channel area.
This is the main reason we have made the middle-channel assumption. We should
note that the middle-channel assumption is not too restrictive, since we show that
such assumption may be eliminated by simply adding an extra layer and wiring
under the knock-knee model.
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Sarrafzadeh and Preparata® developed an algorithm that generates optimal area
layouts for the case when the area of the layout is defined as the area of two nonover-
lapping rectangles that enclose all the wires, i.e., one rectangle encloses T and the
other encloses B. Under this objective function the problem can be solved effi-
ciently, but then the resulting building block is not rectangular. This makes the
wiring problem in the bottom-up approach difficult to solve. Our building block at
each level in the bottom-up approach is a rectangle, which is simpler to handle.

In this paper we present an O(nlogn) (O(n) if the set of terminals is initially
sorted) time approximation algorithm for the 2 — R2M problem that generates a
layout with area at most 2 OPT, where OPT is the area of an optimal layout. In
the final section we show that this result also holds when the middle-channel as-
sumption is removed provided knock-knees are allowed and three layers are available
for routing.

Hereafter we assume that the terminals points are initially sorted, i.e., the termi-
nal points are given by two lists each corresponding to the order in which terminals
appear while traversing each of the rectangles in the clockwise direction starting at
the bottom-left corner. We define some terms before outlining our algorithm. A
net is called local if its terminals are located on the same side of the same rectangle.
Otherwise, it is called globel If a corner s can be horizontally projected to a wire
without intersecting any side of the two rectangles, then the wire crosses horizon-
tally corner s. A net is said to be connected by an Inc-wire if the wire crosses
horizontally the least number of rectangle corners amongst all wires connecting the
net. A net is called simple if all Inc-wires connecting its terminals cross horizontally
the same corners of T and B. Otherwise, the net is called complez. Note that in
the definition for simple nets we use horizontal crossing rather than just crossing.
The only place where this makes a difference is in the type of nets shown in Fig. 5.
In our algorithm we always wire these nets as in Fig. 5(a).

The first few steps of our procedure correspond to the initial steps of previous
algorithms.®1 In this step all local nets are connected by Inc-wires. The reason
why this is a good decision is that any layout can be transformed to another layout
without increasing its area in such a way that all local nets are connected by Inc-
wires. The problem is then reduced to determining the type of wire connecting
each global net in the presence of some previously introduced wires. We establish
a lower bound for the area of an optimal layout from a lower bound for the size of
the components and a lower bound for the area occupied by the wires. The former
lower bound is derived from the number of terminals on the sides of the rectangles,
and the latter lower.bound is based on the aumber of corners crossed by each wire.
This suggests that the global nets should be connected by Inc-wires. Simple nets are
connected by Inc-wires and a subset of the complex nets is connected by Inc-wires
that blend with previously introduced wires. All remaining unrouted nets have all
their terminals on the top and bottom sides of the rectangles. Because the lower
bound for the width of the rectangles is the number of terminals divided by four
(rather than two for the total height of the rectangles), the lower bound is not large
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enough to establish an approximation bound of two when the remaining nets are
routed in the obvious way. To achieve this approximation bound, the remaining
nets are connected in several ways and a set of layouts is generated. Our algorithm
selects the best of these layouts as its output. To establish our approximation
bound we find the cost (in terms of area) of transforming an optimal solution to the
solution generated by the algorithm. This is done for each type of net separately.

Let 25 — R2M (2¢ — R2M) denote a 2 — ROM problem with the property that
each global net is simple (complex). In Sec. 2 we define our notation and present
some basic results. In order to simplify the exposition of our results, we begin by
presenting approximation algorithms for restricted versions of the 2— R2M problem.
In Sec. 3 we present an approximation algorithm for the 2¢ — R2M problem. An
approximation algorithm 2¢ — R2M problem is presented in Sec. 4 and in Sec. 5
we combine these results to obtain our approximation algorithm for the 2 — R2M
problem.

2. Notation and Basic Results

We begin by defining our notation and proving some lemmas that will simplify our
notation. Then we reduce our problem to only having to specify the type of path
for the wire connecting each global net. This simplifies our analysis.

The four corners of T and B are labeled as follows. Starting with the bottom-left
corner of T' (B), traverse the sides of rectangle T' (B) clockwise. The ith corner
visited is labeled Si_y (Ri—1). We use TL, TT, TR, and TB (BL, BT, BR,
and BB); T}, Ty, T and T} (B, B:, B, and By); to represent the left, top, right
~and bottom sides of T(B), respectively. Let X;Y; represent the set of nets with
one terminal located on side j of rectangle X and the other located on side & of
rectangle Y, where X,Y € {T,B} and j,k € {l,r,t,b} (see Fig. A.1 in Appendix
A). We use z;y; to represent the number of nets in set X;Y:. For 1 < j < n, the
pairing function C(3) is defined in such a way that T; and T¢(5) belong to the same
net. We establish the following lemma to simplify our remaining notation.

Lemma 1. Let W be any layout Jor an instance of the 2 — R2M problem. For
each net N; € T, B, (T, B;), where ¢ € {t,1,7,b}, if net N; is connected by a wire
that crosses the top (botiom) side of rectangle T(B), then there ezists another layout
M such that net N; is connected by a wire that does not cross the top (botiom) side
of rectangle T(B), and the area of M is not larger than the area of W.

Proof. The proof is based on a simple interchange argument. Let M be min-
imum area layout in which the wire for each net crosses the same corners of the
rectangles as the one in layout W, except for the wire for the net in Fig. 1(a) which
is replaced by the one in Fig. 1(b). It is simple to see that the area of layout M is
less than or equal to the area of layout W. O
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Fig. 1. (a) Layout W, and (b) layout M.

Hereafter, whenever we refer to an optimal area layout we assume, without loss
of generality, that it cannot be transformed by applying the interchange argument
given in Lemma 1, nor that it has wires with excessive segments (wires which can be
trivially replaced by other wires without increasing the layout area). Note that this
assumption does not make the problem easier; however, it allows us to use a simpler
notation. The layouts constructed by our algorithm also satisfy these properties.

Since we are only concerned with layouts that cannot be transformed by the
rule given by Lemma 1 and which do not have excessive segments, the type of wire
connecting net N; = {Ti, Tc(;)} in a layout can be characterized by a triple (i,2,y),
for z,y € {+,—} as follows.

1. ¥ T; and T¢() are located on the same rectangle X, then = # y and the
wire connecting net N; consists of the following sequence of wire segments:
the first wire segment is incident to T; and it is perpendicular to the side
where terminal T; is located; if z = ‘<’ (z = ¢ —’) this segment is followed
by a sequence of wire segments parallel to the boundary segments of X
encountered while traversing the boundary of rectangle X in the clockwise
(counter-clockwise) direction starting at T} and ending at Tg(;); the final
segment is perpendicular to the side where T¢(;) is located and it is incident
at TC(i)'

2. ¥ T; and Tg(yy are located on different rectangles, then the wire is more
complex. Let h be a horizontal line that partitions the plane so that each
rectangle is in a different half space. The wire connecting the net consists of
three wire segments: the top segment, the middle segment (possibly empty)
and the bottom segment. Assume without loss of generality that T; (Te())
is located on rectangle 7' (B). The top segment consists of the following
sequence of wire segments: the first wire segment is incident to T; and it
is perpendicular to the side where terminal T} is located; if T; is located
on the bottom side of T, then the wire terminates when it reaches line h,
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otherwise if 2 =+’ (z = “— ) the first segment is followed by a sequence
of wire segments parallel to the boundary segments of T' encountered while
traversing the boundary of rectangle T in the clockwise (counter-clockwise)
direction starting at T} and ending at the bottom-right (bottomn-left) corner
of rectangle 7'; and the final segment extends the last wire segment until it
reaches line h. The bottom segment is similar to the top segment. If the
top and bottom segment are both located on the left or the right side of the
rectangles, then the middle segment is empty because we add the constraint
that both the top and the bottom segment must end at the same point on
line h. Otherwise, the middle segment is a horizontal wire segment that
overlaps with % and joins the two points on line A where the top and bottom
wires segments end.

Set D = {(d,z1,y1),(d2, z2,32),. .. 1(dn, %, yn)}, where 1 < d; < 2n and
ri,¥% € {+,—} for 1 < i < n, is said to be an assignment if |{d,,C(d;), ds,
C(dz), ..., dn,C(d,)}] = 2n. Any subset of an assignment is said to be a parlial
assignment. Each tuple in an assignment or partial assignment specifies the type
of wire connecting a net. For any (i,zj,y;) € D, we say that the type of wire
connecting T; and Tec(iy specified by D crosses terminal z if the terminal » can
be horizontally or vertically projected to it without intersecting any side of the
rectangles. A wire crosses corner sif s can be horizontally and vertically projected
to it without intersecting any side of the rectangles. If corner s can be vertically
(horizontally) projected to a wire without intersecting any side of the two rectangles,
then this wire crosses vertically (horizontally) corner s.

For any assignment (or partial assignment) D we define the height function Hp
as follows:

Hp(X) = max{number of wires given by D that cross horizontally point z [
z is a terminal or a corner located on side X},
for X € {TL,TR,BL, BR};

Hp(X) = max{number of wires given by D that cross vertically point z |
2 is a terminal or a corner located on side X},
for X € {TT, BB},

Hp(TB) = max number of wires given by D that cross vertically point z |
z Is a terminal or a corner located on side TB U BT}, and
Hp(TB) = Hp(BT) .

We shall refer to Hp(X) as the height of assignment D on side X. For an assignment
D, we define Hp(LL), Hp(RR), and Hp(TM B) as follows:
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Hp(LL) = max{Hp(TL), Hp(BL)} ,
Hp(RR) = max{Hp(TR), Hp(BR)} , and
Hp(TMB) = Hp(TT) + Hp(BT) + Hp(BB) .

For any assignment D and corner U € {So, S1; S2,S3, Ro, R1, Ra, R3}, we define the
functions Cp and CHp as follows:

Cp(U) = max{number of wires given by D that a cross corner in set U}, and

CHp(U) = max{number of wires given by that cross horizontally a corner in
set U} .

It is simple to prove the following relationships between these values:

Hp(LL)+ Hp(RR) > S CHp(U), and

U is a corner
of T or

> Cp().

U is a corner
of T or B

1
4

Hp(TMB) >

(ST

For any assignment D we define

hD = hT+hB+)\HD(TMB) y and
wp = wr + )\(HD(LL) + HD(RR)) .

Assignment D is said to be an optimal assignment for problem instance I if D
is an assignment with minimum hp - wp amongst all assignments for I. Every
optimal area layout can be characterized by an optimal assignment, but not every
optimal assignment characterizes an optimal area layout. Figure 2 gives two optimal
assignments, but only one of them has an optimal area layout. Therefore, not
every optimal assignment D can be wired inside a rectangle with area hp - wp.
However, every assignment D can be wired inside a rectangle with area hp- (wp+A).
Furthermore, such layout can be constructed in O(n) time (remember that the we
assumed that set of terminals is sorted). This facts are established in the following
two lemmas.

Lemma 2. For every assignment D, there is ¢ rectangle Q of size at most h by
(w+X), where h = hr +hp + AHp(TMB), and w = wr +A(Hp(LL)+ Hp(RR)),
with the property that rectangle T and B together with the inlerconnecting wires
given by assignment D can be made to fit inside Q.

Proof. The proof is a direct generalization of the proof for the R1M problem,®
and the T-shape routing problem.!” Pinter’s procedure!” may require one additional
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— —
: |

B
L B _I
(a) Optimal assignment without (b) Optimal assignment with
an optimal area layout. an optimal area layout.

Fig. 2. Optimal assignments and optimal area layouts.

vertical track. For the case (see Fig. 2(a)) one additional vertical track is required
on either the left or right side of the rectangles. 0

Lemma 3. For any assignment D a layout with the area given by Lemma 2 can
be obtained in O(n) time. '

Proof. The proof of this lemma is a straight forward generalization of the proof
for the R1M problem.® The algorithm that constructs the final layout uses as a
subalgorithm the known algorithms.”617 O

For an assignment D we define the area function A(D) as

Hereafter, we assume that A(D) is the total area required for a layout of 7' and
B and all interconnections given by D. As we showed before this is not always
true, but since the difference is insignificant, we ignore it. Hereafter we corrupt our
notation and say that every optimal assignment has an optimal area layout.

Net N; is said to be a local net if its two terminals are located on the same side
of the same rectangle, or both are located in the middle channel (see all nets labeled
Lin Fig. A.1in Appendix A). Otherwise, net N; is said to be global, Therefore, the
set of nets L consists of the following set of nets.

L=1BUTY,UB,B,UT, T,UB,B, UT,T, U BBy UT/ T U BB, .

For the set of nets L we define M L as the partial assignment in which each local
net is connected by an Inc-wire. We show that every assignment can be transformed
to another assignment without increasing its area and in which all local nets are
connected by Inc-wires.
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Lemma 4. Every assignmeni D can be transformed o an assignment M such
that ML C M and A(M) < A(D).

Proof. The proof follows the same lines as the one for the R1M problem. %10
0

The 2 — R2M problem has been reduced to the problem of specifying the type
of wire connecting each global net in the presence of the partial assignment ML,
i.e., generate an assignment that includes M L. Remember that once we have an
assignment, the proof of Lemma 3 (a constructive proof) can be used to find an
optimal area layout for it. In the next two sections we present approximation
algorithms for the 25 — R2M problem and 2¢ — R2M problem. In Sec. 5 we show
how to combine these results to obtain our approximation algorithm that generates
alayout with area at most 2 OPT, where OPT'is the area of an optimal area layout.

3. Approximation Algorithm for the 25 — R2M Problem

In this section we present an approximation algorithm for the 25— R2M problem.
First we define the assignment from which our algorithm generates the final layout.
In the final layout all simple nets are connected by Inc-wires. Then in Lemmas 5-9
we find a bound for the cost of transforming any optimal solution to our solution,
and in Lemma 10 we establish a lower bound for the area of an optimal area layout.
In Theorem 1 we establish the approximation bound for simple nets based on the
previous lemmas.

Let S be the set of global nets for the 25 — R2M problem. By definition all
nets in S are simple, ie., all wires connecting a global net cross exactly the same
rectangle corners. It is simple to show that the set S consists of the following subset
of nets (see all nets labeled S in Fig. A.lin Appendix A):

S = U TT,UBsBg|U U TBUT:B;
f,g are two je{ltbr}
adjacent sides kef{l,r}

For the set of nets in LU S, we define assignment M .S as follows:
MS = ML U {each net in S is connected by an Inc-wire} .

In Fig. 3 we give two layouts for a net in T,T,. The one in Fig. 3(a) shows the
layout for the assignment constructed by our algorithm. Suppose that this net is
routed as in Fig. 3(b) in an optimal assignment D. Let M be D except for the wire
in Fig. 3(b) which is of the type given in Fig. 3(a). It is simple to show that:
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T :] T
B B
(@ ()

Fig. 3. A wire connecting a net in (a) T, T, — Y¥iYr, and (b) ViYs.

Hu(TMB) < Hp(TMB),
Hy(TL) = Hp(TL) - 1,
Hy(TR) < Hp(TR) +1,
Hp(BL) = Hp(BL) , and
Hy(BR) = Hp(BR) .
A straight forward generalization of the above observation is given by Lemmas

5-9.

Lemma 5. Let D be an optimal assignment such that ML C D. Let M be D
except that all nets in TyT, and By By, where f and g are two adjacent sides, are
assigned as in our algorithm. Then

Hy(TMB) < Hp(TMB)

Hu(TL) < Hp(TL) + 2: Yeyi — 2: YeYr

ke{t,b} ke {t,b}
Hu(TR) S Hp(TR)- 3" wew+ 3. wewe
ke{t,b} ke{t,b}
Hu(BL)< Hp(BL)+ ) zz— Y 2z, and
ke{t,b)} ke{t,b}
HM(BR)SHD(BR)— Z zrz1 + Z 22,
ke{1,0) ke{1,0)

where Y;Yy(ZZ,) is the sel of nels in TyTy(ByBy) that are connected differently
in assignmenis D and M. (1t 1s imporiant to keep in mind that the set of nels in
TyT, —Y;Y, are connected by the same type of wires in D and M)

Proof. For brevity the proof is not included. The wire connecting a net in set
TiT. - Y,Y, and VY, is illustrated in Fig. 3. O
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Lemma 6. Let D be an oplimal assignment such that ML C D. Let M be
D except that all nets in TjBj, where j € {l,r} are assigned as in our algorithm.
Then*

Hy(TMB) < Ho(TMB) ,

Huy(TL) < Hp(TL) + yibi + wiz1 — yebr — Yr2r

Huy(TR) < Hp(TR) — yibi — niz1 + Yrbr + ¥r2r

Huy(BL) < Hp(BL) + tizi + yiz1 — tr2r — Yr2r and

Huy(BR) < Hp(BR) —tiz1 — yizi + trzr + Yr2r
where T; Z; (Y;Bj) is the set of nels in T; B; that are connected differently only on
the bottom (top) rectangle in assignments D and M, and Y;Z; is the set of nels in

T; B; that are connecled differently on the top and bottom rectangle in assignments
D and M.

Proof. Since the proof is straight forward, it is omitted. The wire connecting
a net in set (a) T\B; — (T1Z1 u Y B; UY[Z(), (b) T 7, (C) Y;B;, and (d) Yi1Z;, are
illustrated in Fig. 4. O

T T T T

B B B B
=

(a) ) (@ GV

Fig. 4. A wire connecting a net in (a) TiBy — (T1Zy U Y,B, uY.Z)), (b) i Zi, (c) YiBy, and (d)
Y2

Lemma 7. Let D be an optimal assignment such that ML C D. Let M be D
ezcept that all nets in Ti By UT.B; are assigned as in our algorithm. Then
Hy(TMB) = Hp(TMB) — 2yi1zr — ezl
Hu(TL) < Hp(TL) + yibr + 2 — Yrb1 — yr21
Hu(TR) < Hp(TR) — uibr — yizr + yrbi + yra1
Huy(BL) < Hp(BL) — tizy — iz Y tri Y Ur21 5 and
Hu(BR) < Hp(BR) + tizr + yize —trzi— Yr 21

where T; Zg (Y; By) is the sel of nets in T; By that are connected differently only on
the bottom (top) rectangle in assignments D and M, and Y; Zy is the setl of nels in

* One can trivially establish a sharper bound; however, such bound is not needed to establish the
approximation bound of two.
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T; By that are connected differently on the top and bottom rectangle in assignments
D and M.

Proof. Since the proof is straight forward, it is omitted. The wire connecting
a net in set (a) 1T, — (112, UYiB, uYiZ,), (b) TiZ,, (c) YiB,, and (d) iz,, is
illustrated in Fig. 5. O

T T T T
B B B B

(a) (b) () GV

Fig. 5. A wire connecting a net in (a) T;B, — (ThZ, vY,B, UY,Z,), (b) T Z,, (c) i By, and (d)
Y. Z,.

Lemma 8. Let D be an optimal assignment such that ML CD. Let M be D
except that all nets in TyB; UT;B,, where j € {l,7}, which are assigned as in our
algorithm. Then

Hy(TMB) < Hp(TMB) ,
Hy(TLY < Hp(TL) + w1z — yr 2e ,
HM(TR) < HD(TR) —Yize+ Y2,
Hu(BL) < Hp(BL) + ysz1 — w2 , and
Hpy(BR) < Hp(BR) — yyz1 + g2,
where Y; Zy is the sel of nets in T; By that are connected differently in assignments
D and M.

Proof. The proof of this lemma is similar to Lemma 6. For brevity the proof
is not included. The wire connecting a net in set (a) T — (Y3 Z1), and (b) Y3 Z;, is
illustrated in Fig. 6. O

Lemma 9. Let D be an optimal assignment such that ML CD. Let M be D
ezcept that all nets in T,B; U T; By, where j € {I,r}, which are assigned as in our
algorithm. Then

Hy(TMB) < Hp(TMB) ,
Hu(TL) < Hp(TL) + ybi + yizi — yibr — yaze + yiby + iz — by — gz
Hu(TR) < Hp(TR) — yibr — 21 + yibe + ve20 — wiby — yizs + yoby + Y2,
Hm(BL) < Hp(BL)+ tezi + ozt — tize — yo2r + iz + wi2s — trzp — yp25 , and
Hy(BR) < Hp(BR) +tizi — yiz1 + teze + iz — b1z — w2y +tezy + yrzp
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: 1

() )

Fig. 6. A wire connecting a net in (a) ToBy — (YsZ1), and (b) Y3 2.

where T; Zi (Y; Bi) is the set of nets in Tj By, that are connected differently only on
the bottom (top) rectangle in assignments D and M, and Y;Zy is the set of nets in
T; By, that are connected differently on the top and bottom rectangle in assignments
D and M.

Proof. The proof of this lemma is similar to Lemma 6. For brevity the proof
is not included. The wire connecting a net in set (a) T,Ti — (1:Z, UY: B U Y; Zy),

(b) T3 2y, (c) Y2 By, and (d) Y2y, as illustrated in Fig. 7. O
——  — [ ——
T T T T

B B B B

(a) b} () (G

Fig. 7. A wire connecting a net in (a) T:B, — (thl uY:B U YQZI), (b) TeZ, (C) Y:B;, and (d)
YiZ:. :

Before proving our main result in this section we establish a lower bound for the
area of an optimal area layout for the nets in set S. Note that from Lemmas 59
we know that our algorithm generates an optimal layout with respect to the height
of the enclosing rectangle for the 2 — R2M problem. The lower bounds are given
in Table 1.

Lemma 10. Let D be an optimal assignment such that ML C D. Assignment
D, and rectangles T and B satisfy the lower bound given in Table 1.

Proof. We only prove the lower bounds in the first column of Table 1, since the
proof for the bounds in the second column is similar. The proof for these bounds
can be obtained by adding the lower bounds given in Table 2. Therefore, we only
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Table 1. Lower bounds for the 25 — R2M problem.

set Contribution to our lower bound for
¥ 4 Hp(LL) + Hp(RR) briha 4 Hy(TMB)

T3T, %(tjtg + Y5ug) trtg + ysyg f, g are adjacent
BjB, L(brbg + 2524) brbg + 2524 f, g are adjacent
TiBj | 3(tsbs + 525 + uibj) + wiz; | b5+ 2(ty2; + vsb; + ;2;) jed{lr}
T,B, F(tbr + tizr + wibe) + yi2e 2(t1br + vi2r) —

T, By F(tebt + trzg + yebl) + yoz 2(trby + yrai) —

Ty B; 3 (tobs + voz;) tobj + yp2; je{,r}
T;B: 5 (850 + ;) tibe +yjze je{lr}
T:.B; teby teby + tezy + yebs + yiz; je{l,r}
T;B, tiby tiby + t525 + yiby + yj2p Je{l,r}

need to establish the lower bounds given in Table 2. To derive these bounds, we
make the following observations.

(a) Each net in TyTy, (B;B,), where f and g are adjacent sides, has exactly one
terminal on the top or bottom side of T' (B).

(b) Each net in 7j By (T} B;), where j € {t,b} and k € {I,r}, has exactly one
terminal on the top or bottom side of T' (B).

By the above observations and the fact that every terminal is at least A units away
from each corner of 7" and B, we know that

wp 1
S 27 D (tstg +bsbg) + _ o (b + tedy)
f,g are Jje{t,b},
adjacent ke{l,r}
This lower bound is given by the first column of Table 2.
Let us now establish a lower bound for the number of wires crossing the corners
of T'and B. For an optimal assignment D, we know that:

1. For adjacent sides f and g, every wire connecting a net in Y;Y, (Z,2,)
crosses horizontally three corners of T' (B) and every wire connecting a net
in TyTy — Y; Y, (ByBy — Z; Z,) crosses horizontally one corner of T (B).

2. For j € {I,r}, every wire connecting a net in T;Z;UY; B;, crosses horizontally
four corners of T and B; every wire connecting a net in Y;Z; U Y, Z, crosses
horizontally six corners of T and B; and every wire connecting a net in
T;B; — (1;Z; UY; Bj UY; Z;) crosses horizontally two corners of T and B.
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Table 2. Lower bounds for the 2g — R2M problem.

set Contribution to our lower bound for
vz Hp(LL) + Hp(RR)

T;T, | Ltstg Listg + Lusug f,g are adjacent
B;By %bfbg %bfbg + %—zfzg f, g are adjacent
T;B; — | (tibs + iz +vby) + sz jedlr}
T,B, — L(tibr + tizr +yide) + w2y —

T, B — L(teby + trzm + yrbt) + yrat -

T,B; | Ltb; 1tyb; + Fyb2; jed{hr}
T;Be | %tjbe Lijbe + Syjze jed{lr}
TyB; | Lteb; 3teb; je{Lr}
T;By | Ltjbe Stiby ie{lr}

3. Every wire connecting a net in T} Z,UT, Z;UY, B, UY, By, crosses horizontally

four corners of T' and B; every wire connecting a net in Y1Z, UY,Z; crosses

horizontally six corners of T and B; and every wire connecting a net in

(T\B, — (TiZ, UYiB, UYiZ,)) U (T: By — (T, 1 U Y, Bi U Y. 20))

crosses horizontally two corners of T and B.

4. For j € {l,r}, every wire connecting a net in Y3 Z; UY; Z; crosses horizontally
three corners of T and B and every wire connecting a net in (TyB; — Y1 Z;)U

(T By — Yj Zy) crosses horizontally one corner of T and B.

5. For j € {I,r}, every wire connecting a net in T; B; UT} By, crosses horizontally

three corners of T and B.

From the above observations (the ith observation implies the ith line below) we

know that:

> (CHp(S:) + CHp(R:))

=0

2 Z (ttg +bsbg) + Z 2(ysyg + 2£29)

f.g are f,g are
adjacent adjacent

+ 30 atbi+ Y (2t +yib) + 4vi%)
je{lr} je{lr}

+2(tiby 4 tize + ibe) +4pze + 2000+ bz + yrb) + 4yr 2
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+ Z (tbbj + tjb:) + Z Q(ysz + yjzf)
je{tr} jeilr}

+ Z 3(ttbj +tjbb)
je{lr}

Since Hp(LL) (Hp(RR)) is at least as large as 1/4 times the sum of the horizontal
height of the four left (right) corners of T' and B, we know that

Hp(LL)+ Hp(RR) > %(CHD(RO) +CHp(Ry) + CHp(So) + CHo (1))

+ i(CHD(Rz) + CHp(Rs) + CHp(S5) + CHp (S5)) .

The lower bounds in the second column of Table 2 follows from the above in-
equalities. The proof for the lower bounds for the first column of Table 1 is obtained
by adding the bounds given by Table 2. This completes the proof for the lemma.

O

Theorem 1. For the 25 — R2M problem, let D be an optimal assignment such
that ML C D and let MS be the assignment generated by our algorithm. Then,
A(MS) < 2A(D).

Proof. There is a simpler proof for this theorem, but in order to facilitate its
incorporation in Sec. 5, we prove it in four cases.

Case 1: HMs(LL) = HMs(TL) and HMs(RR) = HMs(BR).

From Lemmas 5-10,' we know that %‘? <(A+2)-(1+4%), where
p= Z Yryn + Z Zk 2y
ke{t,b} ke{t,d}
Fubt ez + iz + b + 202 + 2 + Wiz + by + ize + wiby + £, 2

1 1
= FEts tyru) + Y 5(bsbg +272,)
f,9 are f.g are
adjacent adjacent

1 1
+ Y (S8 + 8525 + 4;b5) + y52) + o (tibr +tize + yibr) + iz
Jje{lr}

1 1
+ §(trb1 +t.z1 + y,b;) + v+ Z 5 . (tbbj + bej)
je{l,r}

LD NIRRT

je{lr} je{l,r} Jje{lr}

t

p and r are from Lemmas 5-9, and ¢q and s are from Lemma 10.
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r= =2z — 2y 2

5= Z (trtg +yryg) + Z (brbg + z24)

f,g are f,g are

adjacent adjacent

4+ 37 (b + 24525 + yibs + yi25)) + 2tibe + yize) + 2Atrbi+ Yr21)
je{lr}

+ Z (tobj + wzj) + E (t;be + yj21)
je{l,r} je{l,r}

+ 2 (tedj + tozj + wsb; + yezi) + Z (tibe +tj 2 + yibe + yiz)
je{l,r} je{l,r}

A straight forward manipulation of the above inequalities!?+1? gives the bound of

two.
Case 2: Hys(LL) = Hys(BL) and Hys(RR) = Hys(TR).
The proof for this case is similar to the proof for case 1.
Case 3: Hys(LL) = Hys(TL) and Huys(RR) = Hys(TR).
The proof for this case is trivial since assignment D is optimal, i.e.,

HMs(TMB) < HD(TMB) , and HMs(TL) + HMs(TR) < HD(TL) + HD(TR) .

Case 4: HMs(LL) = HMs(BL) and HMs(RR) = HMs(BR).

The proof for this case is similar to the proof for case 3. This completes the

0O

proof of the lemma.

4. Approximation Algorithm for the 2¢ — R2M Problem

In this section we present an approximation algorithm for the 2c —R2M problem.
Let C be the set of global nets. By definition all the nets in C are complex, le.,
each net can be connected by at least two Inc-wires that cross different rectangle
corners (see nets labeled C in Fig. A.lin Appendix A). Clearly,

C: ( U TnyUBfo) U ( U T‘tBkUTka) .
f,g are two ke{t}b}
opposite sides

In subsection 4.1 we outline our procedure to route the set of nets in V' =
T;T. U B;B, and establish our approximation bound for that case. We show in
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subsection 4.2 how to route the remaining nets, and establish our approximation
bound for the 2¢ — R2M problem.

4.1. Assignment for the Set of Nets V = T\T. U BB, and the
Analysis of its Approzimaiion Bound

We only explain how the assignment M V(TiT;) for all nets in 7T, is con-
structed, since the assignment M V(BiB,) is constructed by a similar procedure.
If the number of nets in 737, is odd then delete one of the nets to make the car-
dinality of the set even. When the layout for all nets (except for the ones deleted
which is at most two) has been constructed, the remaining nets is connected in all
possible ways (this number is bounded by a constant) and the best layout is the
one generated by the algorithm. The approximation bound will still hold because
the nets deleted at this step are connected as in the optimal area assignment in
one of the layouts. Figure 8a and 8b give a layout for the assignment MV (T7T;)
and MV (B;B,) constructed by our algorithm for sets T;7, and B;B, each with
four nets. For any permutation, 7, of the nets in set TiT, we define an assignment
ASG(TIT;, =) as follows: the wire connecting the kth net A<k<tt,)ina fork
is even (odd), begins on the right (left) side of 7', it crosses the bottom (top) side
of T' and ends on the left (right) side of T'. Note that by the bottom side of T we
mean the middle channel. We claim that there is a permutation, 7, of the nets in
set T; T, such that there is a layout for assignment ASG(TT;, w) with the property
that for each k (1 < k < #)¢,) the wires connecting the kth and (k = 1)st net in 7
can share the same track on' the side where the wire connecting the (k — 1)st net
ends. In this case we say that 7 is a good permutation for the set of nets in TT,.

Claim: There is a good permutation for the set of nets TiT,.

Proof. For brevity the proof is omitted. An interested reader can find the proof
Gonzalez and Lee’s paper.!2 O

A good permutation, 7, can be constructed by a simple recursive procedure.!?
Once 7 is obtained, the assignment MV (TiT;) can be easily constructed. Figure 8a
and 8b give a layout for the assignment MV (T;T}) and MV (B;B,) constructed by
our procedure for sets with four nets each.

Our approximation algorithm constructs the assignment MV = ML U MV
(LT )UM V(B B;). Before proving that our algorithm generates a layout with area
at most twice the area of an optimal layout, we need to establish upper bounds for
the area of the layouts obtained from assignment MV and prove lower bounds for
the area of an optimal area layout.

Lemma 11. Let D be an optimal assignment such that ML CD. Let M be D
except that all nets in V = TiT, U B;B,, which are assigned as in our algorithm.
Then
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1 4
2 - 3 -
3 2
A
1 4
B 2 B 20
3 1
A 2 —l
(a) (b)

Fig. 8. (a) Layout for set T;Ty, and (b) layout for set B;B;,.

Huy(TMB) = Hp(TMB)

1

1
HM(TR) < Hp(TR)+ §t1tr s
HM(BL) < HD(BL) + %bzb, +1, and

Hu(BR) < Hp(BR) + %b,br :

Proof. For brevity the proof is not included. 0

Before proving our main result in this subsection we establish a lower bound on
the area required by an optimal layout. The lower bound is given in Table 3.

Table 3. Lower bounds for the set of nets T,Tr U B{Br.

set Contribution to our lower bound for

¥T 4 Hp(LL)+ Hp(RR) | 32 + Hp(TMB)

T, Sty 2ty
BlBr %‘blbr 2blbr
— 1 2

Lemma 12. Let D be an optimal assignment such that ML C D. Assignment
D and reclangles T and B satisfy the lower bound given in Table 3.
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Proof. Since the proof for the bounds is similar to Lemma 10, it is omitted.
We should note that the constants are introduced because every terminal must be
located at least A units from each corner of the rectangles, horizontally there is only
one rectangle, and vertically there are two rectangles. O

Theorem 2. For the 2c — R2M problem, let D be an optimal asstgnment such
that ML C D and let MV be the assignment generated by our algorithm. Then
A(MV) < 24(D).

Proof. There are four cases that need to be considered:

Case 1: HMv(LL) = HMv(TL) and HMv(RR) = HMv(BR).

From Lemmas 11 (p and ¢) and 12 (r and s), we know that

502 (42)- ().

where p = J(tit, + bib,) + 1; g = §(tit, + bib,) + 1; r=0; and s = 2(tst, + bib,) + 2.
Since the remaining part of the proof for case 1 is simple, it is omitted.

Case 2: Hyy(LL) = Hyv(BL) and Hyv(RR) = Hyy (TR).
The proof for this case is symmetric to the one for case 1.
Case 3: HMv(LL) = HMv(TL) and HMv(RR) = HMv(TR). )

From Lemmas 11 (p and ¢) and 12 (r and s), we know that

80 (142) (4.

where p = 4, +1; ¢ = tit, +1; r = 0; and 5 = 2(t;t, +b;b,)+2. Since the remaining
part of the proof for case 3 is simple, it is be omitted.

Case 4: HMv(LL) = HMv(BL) and HMv(RR) = HMv(BR).

The proof for this case is symmetric to the one for case 3. This completes the
proof of the theorem. O

4.2. Assignment for the Remaining Nets, H = TyTy U By By UT, B, UT;B; U Ty By,
and Our Analysis for the Assignment Constructed for the 2c R2M Problem

Remember that L is the set of local nets and that the set of nets C is partitioned
into sets V = ;7. U B;B, and H = TyT, UB, B, UT, B, U TiB: U T, By. Remember
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that ML is the assignment constructed by our algorithm for the set of nets in L,
MYV represents the assignment constructed by our algorithm for the set of nets
LuV,and MLC MV.

All remaining unrouted nets have all their terminals on the top and bottom
sides of the rectangles. Because the lower bound for the width of the rectangles is
the number of terminals divided by four (rather than two for the total height of
the rectangles), the lower bound is not large enough to establish an approximation
bound of two when the remaining nets are routed as in the previous subsection.
To achieve the approximation bound of two, the remaining nets are connected in
several ways and a set of layouts is generated. Our algorithm selects the best of
these layouts as its output.

Let us now construct the assignment M H for LUV UH that includes the partial
assignment MV. Our algorithm constructs a set of assignments and then selects
one with least area, i.e., least A(-), as M H. Let a (b) be the number of nets in H
with a terminal located on the top (bottom) side of rectangle 7' (B). We only deal
with the case when

HMv(TL) +HMv(TR) +a > HMv(BL)+HMv(BR) +b,

since the other case can be treated similarly. We construct assignment I, for 0 <
I < a, as follows. Let tl = I and ¢r = a —tl. The nets in H with a terminal located
on the top side of rectangle T' are routed as follows on the top rectangle. The
leftmost ¢/ nets (those nets in H whose terminal located on the top side of rectangle
T is among the (t{)th closest to the top left corner of T' when considering only nets
in H) are connected by wires that cross the left side of T' and the remaining ¢r nets
are connected by wires that cross the right side of 7. The nets with a terminal
located on the bottom side of rectangle B, are routed on the bottom rectangle by
following a similar procedure. In this case we use bl and br, which are determined by
procedure FIND defined below. The idea behind the procedure is to find the values
for bl and br such that the assignment has minimum width and, as a secondary
objective bl and br have values as close to each other as possible. Note that a net
could be routed through the left side of rectangle T' and through the right side of
rectangle B. In this case one needs to add a horizontal wire on the middle channel
to join the previously introduced wires. For simplicity of presentation, in what
follows we assume that the value of b is even. When the value of b is odd, we need
to construct two assignments (since there are two assignments in which 4! and br
differ by one) whenever we have to deal with balanced cases (e.g., Fig. 9(a)), and
then we select the best of these two assignments. Let us now define procedure FIND
which determines the values for bl and br from tl and ¢r.
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PROCEDURE FIND (tl,tr,bl,br);
/* Given tl and tr, compute the values for bl and br. */
/* Remember that we are assuming that

HMv(TL) + HMv(TR) +a> HMv(BL) + HMv(BR) +b,

and that the value of b is even. As pointed out earlier, the other cases
can be treated similarly. */
ay — tl; ay — tr;
case 1: HMV (LL) = HMv(TL) and HMv(RR) = HMv(TR)
by 2min{a1 + HMv(TL) - HMv(BL), HMv(TR) + ag — HMv(BR)},
if b < b, then bl — br — b/2 /* Fig. 9(a) */
else by — b — by
then bl « b3/2; br — by + by /2 /* Fig.9(b) */
else bl — by +b3/2; br — by /2 /* Fig. 9(c) */

case 2: HMv(LL) = HMv(BL) and HMv(RR) = HMv(BR).
/* The code for cases 2-4 is omitted since it is similar to the one for case 1. */

case 3: HMv(LL) = HMv(BL) and HMv(RR) = HMv(TR).
case 4: HMv(LL) = HMv(TL) and HMv(RR) = HMv(BR).
END-OF-PROCEDURE FIND

Let D be an optimal assignment for LUV U H such that ML C D. Let D(H™)
be assignment D after eliminating the set of nets H. Let D(MV) be assignment
D after routing all nets in LUV as in MV. In what follows we use the notation
LB(f,s) to denote a lower bound for function f computed using only the set of
nets s. Let w represent the width of the rectangles and h represent the sum of the
height of each rectangle.

From Theorem 2, we know that

! / i ! / h/
1+9—‘f’ (14 AR (Wt Aw) (KA <2, where,
w B w Y

Aw' = (Hpv (LL) + Hyv (RR)) = (Hpgr-)(LL) + Hpu-y(RR)) ,
w' = LB(Hp(LL) + Hp(RR) + w,LUV)

Ah' = Hyy (TMB) — Hp-y(TMB) , and
h' = LB(Hp(TMB)+ h,LUYV) .
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ay HMv(TL) HMv(TR) ag
1< >t T -t Ppt——>
—— b————~ B 1 |
b/2 Hyv(BL) Huv(BR) b/2
(a)
a1 HMv(TL) HMV(TR) an
I >t > T -t Bt -
I an > B le— ] —t———>
 by/2 Huyv(BL) Huv(BR) by by/2
(b)
aq Huv(TL) Huv(TR) as
——>te > T “ e >
f————f—>{ et————— B 4 Bt ]
by/2 by Hyv(BL) Huyv(BR) by/2
()

Fig. 9. Examples for case 1.

For the assignment I that corresponds to D(MV), ie., Hpuv)(TL) = Hy(TL),
we know that

(l (HI(LL)+H1(RR))—(HD(LL)+HD(RR))) (1 HI(TMB)—HD(TMB) )
LB(Hp(LL)+ Ho(RR)+w, LUVUH) IB(Hp(TMB)+h, LUVUH)

Replacing the above bound, we know the above equation equals XY, where
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Aw' + (Hy(LL) + Hi(RR)) — (Hpavy(LL) + Hparvy(RR))

= 1
X=1+ w' + LB(Hp(LL) + Hp(RR) + w, H) L)
= Y TR LB(Hp (PMB) + 1, )

Therefore, it is equal to (1 + A‘”,iﬁ,',”" )(1+ Ak JAEE), where

Aw" = (H(LL) + H7(RR)) - (Hpav)(LL) + Hpuvy(RR)) ,
w" = LB(Hp(LL) + Hp(RR) + w, H) ,

AR = H{(TMB) — Hpsvy(TMB) , and
W' = LB(Hp(TMB)+ h, H) .

Let us now establish Lemma 13 where we prove conditions under which the
above approximation bound is two. Later on we show that these conditions hold.

Lemma 13. Letw' > ¢, Aw' <p, h' > s, A <r,w" >z, Aw' < —y, b" >z
and AR" < x+y. Assume thatz, q, 5> 0;y,p>0; r <0; ({(p+q)(r+s))/gs < 2;
P+q<s5;2p<sand0<y<z. Then

Avw' + Aw" AR’ + AR"
<1+ wl+w/1 ><1+ h’+h” )SQ

Proof. Substituting the bounds for w’, Aw’, b, AR, w", Aw”, h" and A",
we know that

Avw' + Aw” Ah' + AR y r+z+y
(”W)'(”W) (”qﬂ e

which is equal to

(p+a)(r+s)+(p+ D22 +y) +(r+s)z-y)+(E-y)2+y)
gs + qz + sz + z?

Substituting (p + ¢)(r + 5) < 2¢s and expanding terms, we know the expression is

2qs+2pz+2qz+(p+q)y+r(m-—-y)+sm—sy+2:c —zy—y?
g5 +qz + sz + 22

Substituting p+ ¢ < s and 2p < s, and rearranging terms,

2qs+2sz+2qz+r(z— y) + 222 — gy — ¢?
gs+qz + sz + 22
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Eliminating all the non-positive terms (remember that » < 0 and z > y),

< 2qs-}—2s:¢:+2(1:z:+2:v:Z _
gs + qz + sz + 22 -

This completes the proof of the lemma. a

By definition p, ¢, s > 0 and 7 < 0 and in what follows we define z >y > 0. If
g or § is zero, then it must be that p=g=r=s=0 and the layout constructed in
the first stage is optimal. If ¢ = 0, then since z > y > 0 we know that the layout
constructed in the second stage is optimal. If both of these layouts are optimal,
then the approximation bound holds. If only one of the layouts is optimal, then a
proof similar to the one in Lemma 13 can be used to show that the approximation
bound is at most two. The remaining case is when «, p, ¢, s > 0 and r < 0.
From Theorem 2 we know that ((p + ¢) - (r + s))/gs < 2. The assumptions that
p+q < sand 2p < s can be easily verified in each of the four cases in the proof
of Theorem 2.} In the proof of Theorem 3 we define z and y in such a way that
z > y > 0. Therefore, all the assumptions in the statement of Lemma 13 hold.

Let D be an optimal assignment for LUV U H and let D(MV') be as defined
before. Let assignment I be one of the preliminary assignments constructed by our
algorithm that corresponds to D(MV) (i.e., Hpavy(TL) = H[(TL)). Let s be
the number of wires (from the nets in H) crossing the left side of T' and let ¢ be
the number of wires (from the nets in H) crossing the right side of T' in assignment
I. Clearly, in assignment D(MV) there are s wires (from the nets in H) crossing
the left side of T" and. t wires (from the nets in H) crossing the right side of T'. We
use the function sp(s,t) to denote the maximum increase of HD(MV)(TMB) when
we transform assignment MV so that the s + ¢ wires identified above are routed
as in assignment I. Clearly, the maximum number of pair of wires that need to
be interchanged is ¢ < min{s,t}. By construction, each of these g pair of wires
do not cross on the top side of T' in assignment I, but they cross on assignment
D(MYV). Therefore, each time that we interchange a pair of these wires we increase
the vertical height of the assignment by at most two. Hence, the maximum increase
of Hp(mv)(TM B) is at most s +1. We say that when we transform an assignment,
D(MYV), with s wires that cross the left side of rectangle B (from the nets in H) and
t wires that cross the right side of rectangle B (from the nets in H), to assignment
I with u wires crossing the left side of rectangle B (from the nets in H) and v wires
crossing the right side of rectangle B (from the nets in H ), the maximum increase
of Hp(mv)(TMB) is given by the function

Note that p < g in all cases in the proof of Theorem 2. This together with the fact that p+¢ < s
is enough to prove that 2p < s. We did not used this approach because when we reapply these
arguments in Theorem 6, the bound p < ¢ does not hold.
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2max{min{t, u},min{v,s}} .

The justification for this formula is a straight forward generalization of the previous
case.

Theorem 3. For the 2c — R2M problem, let D be an optimal assignment such
that ML C D and let MH be the assignment generated by our algorithm. Then,
A(MH) < 2A(D).

Proof. Let I be the assignment with H;(TL) = Hpavy(TL). In what follows
we show that A(I) < 2A4(D). Since A(MH) < A(I), we know that AMH) <
2A(D). Assume without loss of generality that Hyy(TL) + Hyy(TR) + a >
Hpyy(BL)+ Hpy (BR) + b, and b is even. The proof for the other cases is similar.
Clearly, each net in H is routed in D by a wire that crosses at least two corners.
Therefore, A" > a+b. This bound together with the fact that each net in H has at
least two pins on a horizontal size of T and/or B, we know that w" >a+b. Also,
since

Hi(LL)+ Hi(RR) = Hi(TL) + H((TR) = Hpwv)(TL) + Hpomvy(TR)
< Hpuvy(LL) + Hpuvy(RR) ,

we know that Aw” < 0. In what follows we establish a bound on AR” and, when
needed, a sharper bound for Aw”. There are four cases depending on the values of
HMv(TL), HMv(TR), HMv(BL), and HMv(BR).

Case 1: HMv(LL) = HMv(TL) and HMv(RR) = HMv(TR).

There are three subcases depending on the values of a, b, Hyv(TL), Hyv(TR),
Huv(BL), and Hprv (BR) (see Fig. 9).

Subcase 1.1: Assignment [ is of the form given by Fig. 9(a).

The optimal assignment D after transforming it to D(MYV) is given by Fig. 10.
From the above discussion we know that transforming assignment D(MV) to as-
signment I increases Hpmvy(TMB) by at most

AR" < sp(ar,az) 4+ 2max{min{b — t',b/2}, min{b/2,¥}} <a+b .

From above, we know that Aw” <0, w” > a+band A’ > a+b. Setting ¢ = a+ b,
and y = 0, and applying Lemma 13, we know that A(I) < 2A(D) for this subcase.

Subcase 1.2: Assignment [ is of the form given by Fig. 9(b).
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a Hpmv)(TL) Hpvy(TR) as
e Pt - T < Pt -
——— ——> B 1 e
v Hp(uv)(BL) Hpv)(BR) b—b

Fig. 10. Assignment D(MV) for subcase 1.1.

ai HD(Mv)(TL) HD(Mv)(TR) as
et > T < |
[ Pt > B % —p  pte———>]
b Hpuv)(BL) Hpavy(BR)  bi+by— b

Fig. 11. Assignment D(MYV) for subcase 1.2.

The optimal assignment D after transforming it to D(M V) is given by Fig. 11.
From the above discussion we know that transforming assignment D(MV) to
assignment I increases Hparv)(TM B) by at most

AR < sp(ay, az) + 2max{min{b’, b, + by/2}, min{by + by — ', b2/2}} .
There are three subcases depending on the value for b'.
Subcase 1.2.1: b < by/2.

Clearly, Ah" < a+ by and Aw” < 0. The proof now proceeds as the one for
subcase 1.1.

Subcase 1.2.2: by /2 <V < by + ba/2.
Let z = b — by /2. Clearly, z < by, AW' < a+ by + 22z and since
b+ HD(Mv)(BL) —ay — HD(Mv)(TL) =z

(remember that by/2 + Hi(BL) = a1 + Hi(TL)), we know that Aw" < —z. From
above we know that w” > a+b > e+ by + 2, and B" > a+4b>a+by+ 2. Setting
£ = a+ by + 2z, and y = z, and applying Lemma 13, we know that A(I) < 2A(D)
for this subcase.
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Subcase 1.2.3: &' > by + b,/2.

Clearly AR < a-+by+2b; and since ¥+ Hpmvy(BL)—a; —Hpmv)(TL) > by,
we know that Aw” < —b;. From above we know that w” > a + b > a+ by + by,
and B > a+b > a+ by +b;. Setting z = a + by + by, and y = by, and applying
Lemma 13, we know that A(I) < 24(D) for this subcase.

Subcase 1.3: Assignment I is of the form given by Fig. 9(c).

The proof for this case is omitted since it is similar to the one for subcase 1.2.

The proof for remaining cases is omitted since it is similar to the one for case 1,
This completes the proof of the lemma. ]

The main problem with the above algorithm is that it is unlikely that it can be
implemented to take O(n) time. The reason is that one could generate (n) layouts
each requiring Q(n) time. However, an O(n) algorithm that generates ‘solutions
within a factor of two of the optimal solution exists. The problem with this new
algorithm is that the proof that it generates solutions within two of optimal involves
many cases. For brevity we do not include the algorithm nor its proof, however, we
discuss the basic idea behind it. An interested reader can derive the algorithm and
the proof for the approximation bound from our description. Let us assume that
HMv(TL) + HMv(TR) +a> HMv(BL) + HMv(BR) + b and that b is even. We
also assume that “a” is even (note that when this is not the case, more layouts need
to be constructed). Instead of generating “a” layouts, we only generate a constant
number of layouts and then select the best of these layouts as our solution. First
we set t{ = tr = a/2. Let us suppose case 1 in procedure FIND holds. We use case
1 of procedure FIND to generate one of the three layouts (see Figs. 9(a)—(c)). If we
generate the layout in Fig. 8(a), no other layout needs to be constructed. Let us
now consider the case in Fig. 9(b) (the case in Fig. 9(c) is treated similarly to the
case in Fig. 9(b)). In this case we generate another layout (see Fig. 12).

The proof for the approximation bound of two is similar to the one in Theorem 3.
The main difference is that we need to compare the optimal area layout against one
of the two layouts generated. In the proof of Theorem 3 when ¥’ is small, we compare
it against the assignment given in Fig. 12(a), but when ¥’ is large it gets compared
against the assignments given in Figs. 12(b) or (c). We state the following theorem
without proving it.

Theorem 4. For the 2¢ — R2M problem, let D be an oplimal assignment
such that ML C D and let MH be the assignment generated by our algorithm that
generates only a constant number of intermediate rectangles. Then, A(MH) <
2A(D).
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a/2 a/2
e -}t T < an >
— e B b o >

ba/2 by by/2
(a)
(a+b1)/2 (a—b1)/2
fe——>t< T < >tt—|
b— et B fe—— —
(by +b2)/2 (by + b3)/2
(b)
a
e et T -« —>
[ -4t »> B < >t —
(bg—}-d)/? b1+(b2——(1)/2

()

Fig. 12. (a) Assignment Fig. 9(b), (b) assignment constructed when a > b1, and (c) assignment
constructed when a < b1. ’

5. Approximation Algorithm for the 2 — R2M Problem

In this section we show that our algorithm takes O(n) time and generates a
layout with area at most 2 OPT, where OPT is the area of an optimal layout.
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algorithm for the 2 — R2M problem
Construct assignments ML, M S, and MH
(the one just before the proof of Theorermn 4);
Construct and output a layout with area A(MH) for MH.
end of algorithm

Theorem 5. The time complezily of our algorithm is O(n).

Proof. The assignment constructed in Sec. 4.1 can be obtained in O(n) time by
a simple recursive procedure that manipulates two priority queues and uses a simple
marking scheme.1? It is simple to verify that the remaining part of the assignment
and the final layout can be constructed in O(n) time. O

Theorem 6. Let D be an optimal assignment such that ML C D andlet Q be
the layout generated by our algorithm. Then, A(Q) < 2A(D).

Proof. Arguments similar to those used in Theorems 1 and 4 can be used to
prove this theorem. The main difference is that one needs to Justify the assumptions
in Lemma 13 for this more general case (i.e., arguments similar to those that follow
Lemma 13). O

6. Discussion

We have presented an efficient approximation algorithm that generates a layout
with area within a factor of two of the area in an optimal layout for the 2 — R2M
problem. The algorithm takes O(nlogn) (O(n) if the set of terminals is initially
sorted) time and the constant associated with this bound is small. It is possible to
obtain a better solution (not a necessarily a better approximation bound) by using
the optimal algorithms for R1M problem to route the set of nets in C. Our results
also hold when the rectangles are placed side by side, and both rectangles have
equal height. For brevity this other problem is not discussed in detail. The worst
case scenario for our approximation algorithm does not arise all of the time. We
suspect that most of the time our solutions are near optimal. When implementing
the algorithm it is simple to compute our lower bound for the area of an optimal
area layout. This gives a good estimate of how close from optimal is the assignment
generated by the algorithm.

In Sec. I we made the middle-channel assumption. We can remove this as-
sumption at the expense of an additional layer when under the knock-knee wiring
model. In this case the routing in the middle channel is performed by a well known
algorithm.® Before one can approximate efficiently the two-layer Manhattan mode
2 — R2M problem, we need an efficient approximation algorithm for approximating
the area of the channel routing problem under the Manhattan model. It is not clear
whether or not such algorithm exits.

With respect to the multiterminal net case (R2M problem) we do not have an
efficient approximation algorithm for it. The main problem is finding an approxi-
mation algorithm to approximate the area of the channel routing problem. A good
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heuristic for this case can be based on Gonzalez and Lee’s algorithm.!? Another
intersting open problem is when the rectangles have different widths and can slide
horizontally.
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Appendix A

= ools

T,B.(C) T.B:(S) ﬂBb(c) TyBi(S)

==

T, B(S) T, B-(S) T-By(S) T, Bi(S)

5 o5&

TyB.(L) Ty B.(S) T,,Bb(C) TyBi(S

=R===

TBi(S) TiBr(S) TiBy(S) TiBi(S)

O oo o o O
Y s Y e Y e O i O L s [

TT(L) TT.(S) TIH(C) T.Ti(S) B:iBu(L) BiB.(S) B.By(C) B:Bi(S)

[ I_[—_]-_] 1+ N R I B
o 1 [Pk E&' 4+
T.T.(L) T.Ty(S) .0 (C) B, B,(L) B, By(S) B, Bi(C)
= = N
0 i
Ty T3 (L) Ty 1(S) BbBb(L) By Bi(S)
S ]
(I o ]
TT(L) ByBi(L)

Fig. A.1. Types of nets.






