COVERING A SET OF POINTS WITH FIXED SIZE HYPERSQUARES AND RELATED
PROBLEMS

TEOFILO F. GONZALEZ
Department of Computer Science
Utrecht University

the Netheriands

ABSTRACT

LetP = {py, P2 ... Px } be a set of points in d-space. We study the problem of covering with
the minimum number of fixed size orthogonal hypersquares (CS; for short) all points in P. We
present an improved polynomial time approximation scheme and fast approximation algorithms that
generate provably good solutions to these problems quickly. A variation of the CS; problem is the
CR4, covering by fixed size orthogonal hyperrectangles, where the covering of the points is by hyper-
rectangles with dimensions D, D3, ..., D4 instead of hypersquares of size D. Another variation is the
CD4 problem in which we cover the set of points with hyperdiscs of diameter D. Our algorithms can
also be generalized to handle these two problems.

KEYWORDS: d-space, covering by hypersquares, hyperdiscs and hyperrectangles, efficient approxi-
mation algorithms, polynomial time approximation scheme.

L INTRODUCTION

Let P = {p1. P2, ... Px } be a set of points in the plane (E2). Point p; is located at (x1(p), x2(p ),
and we assume that x;(p;) 2 0, for all i and j. The problem of covering with fixed size orthogonal
squares, CS2, consists of finding a minimum cardinality set of D by D squares covering all points in
P, i.e., each point in P must be inside or on the boundary of one of the squares in the cover. A gen-
eralization to d dimensions (the set of points belongs to d -dimensional space and instead of covering
the points with squares one uses orthogonal hypersquares of dimension D) of the CS; problem is
called the CS; problem. We define / as the smallest hyperrectangle orthogonal to the axes that
includes all points in P and assume the hyperrectangle includes the origin, otherwise the points can be
translated. We use [y, [y, ..., Iy to represent its dimensions. A variation of the CS; problem is the
CR4, covering by fixed size hyperrectangles, where the covering of the points is by orthogonal hyper-
rectangles with dimension Dy, D, ..., D4 instead of hypersquares of size D. Another variation is the
CDy problem in which we cover the points with hyperdiscs of diameter D. A related problem is that
of packing squares is discussed in section V. In what follows when we refer to a square (rectangle) or
hypersquare (hyperrectangle) we assume it is orthogonal to the coordinate axes.

These problems have many interesting applications ((FPT], [HM]). The most popular applica-
tion is the problem of locating the least number of emergency facilities such that all potential users are
located within a reasonable small distance from one of the facilities. This corresponds to the CD»
problem. The CD,4, CR; and CS; problems for d 2 2 are known to be NP-hard ({FPT], (MIH] and
[S1). Johnson [J] discusses several variations of these problems. Heuristics to solve the CS; problem

$ On Sabbarical leave from the Dep of C Sci University of California, Senta Barbara.

838



e e e v

have been presented in {T] and [TF]. A polynomial time approximation scheme is given in ([HM]}, i.e.,
for every constant € > 0 they give an algorithm that generates solutions such that F, /Fopg S1+e
with time complexity O( n0(2)),

For any integer ! 2 1, the algorithm for the CS; problem given in [HM] has time complexity
bound O(l¢ n4*+!) and the approximation bound is Fapx | Fopr S (1 + /1Y, 1t is important to note
that the above bound disagrees with the one in [HM] because there is a typo in that paper. To achieve
an approximation bound of 2¢ it takes O(n4*) time. To achieve an approximation bound of 2.25, for
d =2, it takes O(n?) time. The only approximation bound that can be guaranteed in practical situa-
tions is the bound of 2% when d is small, since to guarantee a solution within 24~! the time complexity
bound is O(n%) when d =2.

For the CD, problem and any integer [ 2 1 the algorithm in [HM] has worst case time compiex-
ity 04 (¢ Yd ¥ (2n )dfl‘g] “+1y and the approximation bound is Fopx | Fopr S(1+ 1/1)4. Ford =2,
to guarantee solutions within 4 of optimal, the worst case time complexity bound is O(2%) and a bound
of 2.25 the time complexity is O(n!%), These large time complexity bounds make the algorithms
unusable even when a is small.

In this paper we present fast algorithms for the CS; problem with worst case approximation
bound of 24 and 24-!. We also discuss several implementations of these algorithms. The best of the
implementations that requires only O(n) space, takes O(dn + n log s) time, where s is a lower bound
on the number of hypersquares in an optimal solution. The constant associated with the time and
space complexity bounds are very small, thus usable in practical situations. We also present an
efficient algorithm for the /4-slab problem (which we define in section III). This algorithm can be
easily combined with the polynomial time approximation scheme given in [MH] and show that a solu-
tion to the CS; problem with approximation bound (1 + 1/[)¥! can be generated in
O(l4-1 d(244-1-1)n¢@*~11*1y time. Our new algorithms can also be adapted to the CDy and the CRy
problems as well as the packing problem discussed in [MH]. The approximation and time complexity .
bounds for the CD4 problem are not identical to the ones for the CS; problem: however, they are
improvements over the ones for previous algorithms. We discuss these extensions in section IV. The
approximation algorithms are presented in section II and the approximation scheme is given in section
oL

II. APPROXIMATION ALGORITHMS FOR THE CS; PROBLEM

In this section we present several new approximation algorithms for the CSs problem. The
worst case approximation bound of these algorithms is 2¢ and 29-!. We also discuss several imple-
mentations of these algorithms. The best of the implementations that requires only O(n) space takes
O(dn + n log 5) time, where 5 is a lower bound on the number of hypersquares in an optimal solu-
tion. The constants associated with the time and space complexity bounds are very small, thus usable
in practical situations. This section is divided into four subsection. In each of these subsections we
present a different approximation algorithm. Let us now discuss the first approximation algorithm and
the different implementations for its basic operations. Note that none of these algorithm is superior
over the other algorithms for all problem instances. Each of the algorithms has a domain in which it
outperforms the other algorithms. This is why we present all the algorithms together with their dif-
ferent implementations.

839



(A) MAXIMAL SET OF INDEPENDENT POINTS APPROACH

Before presenting our algorithm based on finding a maximal set of independent points, we define
some useful terms. Points p; and p; (in P) are said to be independent if no hypersquare (with side
size D) can cover both of them. Otherwise, we say that point p; is dependent on point p; or vice-
versa. A set S ¢ P is said to be a maximal set of independent points if every pair of distinct points in
S is independent and every point in P is dependent on at least one point in S. Whenever we refer to
S, amaximal set of independent points, we use s to denote its cardinality.

The idea behind our algorithm is to find a maximal independent set of points. Since no two
points in an independent set of points § may be covered by the same square, we know that F,,, 2SI,
For the case when d = 2, the set of points dependent on each point in set § can be covered by four
squares (see figure 1). From this set of squares one can easily delete a maximal set of useless squares,
i.e., squares that contain points each of which is inside at least another square. Therefore ford = 2,
Fupz €415 Combining these two bounds, we know that Fay / Fop S 4. Ford > 2 the approach is
similar, but to cover all the points dependent on a point in set S one introduces 2¢ hypersquares. Fig-
ure 1 shows the cover for the case when d = 3. Our first approximation algorithm (MS) to construct
the set S is given below.

V- -t -

e

Figure 1: Covering of all points dependent on a point p .

Algorithm MS (P=(p1,p2, w0 Da }, D )
S « &
fori =1ton do
if p; is independent from every pointin S then S « S U {p; };
endfor
end of algorithm MS

In what follows we discuss several methods to implement the test condition in the if statement.
Let us consider first a straight forward implementation of the test condition. Testing whether a point
is independent from all other points in set S can be accomplished by comparing it against each point
in set S. Each test can be accomplished by performing O(d) arithmetic operations and comparisons.
Therefore, the overall time complexity for procedure MS is O(d s n).

The above implementation of the algorithm does not take advantage of properties of the set of
points in S. Let us now consider these properties in more detail. We begin with the case whend = 2.
For any point p € §, all points located at a distance D along each axis from it are dependent on point
p. Therefore, the test "if ¢ is independent from each point in § " can be reduced to testing whether or
not a point is inside a set of squares with dimensions 2D by 2D, where the center of each of these
squares is a point in set . These squares are called ¢—-squares (target squares). The set of t—squares
is not static, as the algorithm progresses the number of t—squares increases. One important property
of the t—squares is that all of them have identical dimensions (2D by 2D). Anocther important pro-
perty is the fact that the center of a r—square is never inside another t-square .

Partition the positive quadrant uniformly into squares of size D by D in such a way that a square
has its bottom-left comner located on the origin. The squares are called g —squares (grid squares). We

840



refer to each g —square by a wuple (i,j) for i,j = O (from left to right and bottom-up, with the bottom-
left square labeled (0.0)). Since x;(p;) > 0, the function i;(p;) defined as | x;(p; D | can be used to
determine the g—square to which point p; belongs. We use inf(p;) to identify the g—square to which
pi belongs. Since the r—squares have dimensions 2D by 2D and no center of a t—square is inside
another t—square , there is at most one center of a t—square inside a g—square. ILe., the maximum
number of independent points in each g—square is at most one. Determining whether a point p is
inside a t—square can be tested as follows. First we find the g—square (i1(p),ix(p)) to which it
belongs. Then, we construct the set S° of all independent points in § that belong to neighboring
g-squares, i.e., belong to g~square (i1 ,iz) such that liy -iy(p)l £ 1 and liz-io(p) S 1. Clearly, ford
= 2, there are at most 32 =9, and in general there are at most 3¢ of such neighbors. Since the dimen-
sion along each axis of each of the neighboring g—squares is D, it then follows that p is independent
from each ¢ -square iff p is independent from each t—square whose centeris in set S

Let us now define the abstract data type RD . The ADT consists of the set T of d-dimensional
integer points. The operations to be performed on T are:

INSERT(int(p )) [add a point to the set of points T},

DELETE(int(p)) [delete a point from the set of points T],

MEMBER(int(p))  [test whether or not int(p ) is in the set T'], and

RANGE-1(int(p))  (list all points in T that differ from int(p ) along each axis by at most one unit].

We define algorithm NMS as a modified version of algorithm MS that uses the RD ADT opera-
tons. Gonzalez (G] discusses several implementations for the d-dimensional dictionary ADT (RD
without RANGE-1 queries). Each d-dimensional dictionary operation takes O(d + log m) time,
where m is the number of elements in the set. Any implementation for such ADT can be used for RD
by simulating each RANGE-1 operation with either 33 MEMBER operations or s element comparis-
ons. Using Gonzalez’ [G] implementation (or an equivalent implementation {G}) for d-dimensional
dictionaries results in an algorithm with time complexity O(min{3¢5} (d + log s) n). We call this
implementation the balanced tree implementation of algorithm NMS .

When there is a large amount of memory we may use the double-array representation suggested
by Aho, Hopcroft and Ullman [AHU] (exercise 2.12, page 71), in which a set of ¢ integers in the range
[1,w] can be represented by two arrays; one of size ¢ and the other of size w; and determining whether
an element is present in the set requires constant time. In this case the time complexity bound can be
reduced as follows. The set S is represented by a double-array with the d-dimensional elements
compressed into a single integer by row-major (or column-major) order. We assume that the max-
imum value along each dimension is known, otherwise it can be easily computed. A simple formula
computable in O(d) time can perform the mapping. The total time reduces to O( min{3¢,s}d n ). It
is important to note that the amount of space required in this implementation may be very large
(O(TI[1;/D] )). We call this implementation the double-array implementation of algorithm NMS.

One may reduce the additional space at the expense of increasing the time. The idea is to parti-

tion the problem by finding connected components and pseudo connected components. For brevity we
shall not discuss this further. In a subsequent paper we explain this in detail.

Table L Time and Space Complexity implementations of algorithm NMS.
implementation time complexity space complexity
straight forward O s n) On)

balanced trees O(min{3¢.s} (d +logs) n) O(n)
double-array 0(d min{34,5) n) O(I]{ /D] )

841



Theorem 1: Algorithm NMS generates a solution for the CS; problem with approximation bound 24,
The time complexity for different implementations of the algorithm is given in Table 1.
Proof: By the above discussion. O

(B) SIMPLE AGGREGATION

This algorithm is the simplest of the four and it generates its solutions quickly. Its worst case
approximation bound is identical to the one of the algorithm in the previous subsection and it has a
smaller worst case time complexity bound. The only drawback is that the solutions it generates are
"normaily” inferior, with respect to the objective function criteria, to the one generated by the algo-
rithms in the previous sections. This was our conclusion after 20000 experiments. However, in many
instances its solutions are superior.

The algorithm, which we refer to as SA, is very simple. First it finds the g—square where each
point belongs. Then it introduces a square for each g-—square with at least one point in it
Let Fape =t be the total number of squares introduced. We claim that F,, 2 ¢/2¢ because no square
in an optimal solution may have points from more than 2¢ of the g—squares. Therefore, the approxi-
mation bound is 2.

Let us now consider different implementations. Finding the g—squares where the points belong
takes O(d n) time. Once we have the g—squares where points are located, they can be sorted in
O(dn + n log t) time by the procedures discussed in [G). Therefore the overall time complexity of
this implementation, which we call balanced tree implementation is O(ds + n log t) time. The other
implementation for the second algorithm is similar to the one for the first algorithm. For brevity we
shall not discuss thg:m in detail. The performance of our algorithms is summarized in Table II.

Table IL Time and Space Complexity for several implementations of algorithm SA.
implementation time complexity space complexity
balanced tree Odn+nloge) O(n)
double-array 0(d n) O(TJ[1;/D] )

Theorem 2: Algorithm SA generates a solution for the CS4 problem with approximation bound 24.
The time complexity for different implementations of the algorithm is given in Table II.
Proof: By the above discussion. (J

For any of the implementations discussed for this algorithm there are problem instances that

achieve the worst case approximation bound. This algorithm outperforms all the algorithms when ¢ is
large and there are many points per g —square.

(C) ORDERED MAXIMAL SET OF INDEPENDENT POINTS APPROACH
Let us consider the third algorithm. The idea behind this algorithm is similar to the first one,
except that we find a maximal independent set in an orderly fashion. Let us consider first the case
when d = 2. We sort the points with respect to their x-coordinate values (in case of ties the order is
not important). We shall traverse the points in that order. Our third approximation algorithm (OMS)
to construct the set S is given below.

842



Algorithm OMS(P,D )
Rearrange the set of points with respect to their first coordinate value;
Ale.xip) <1 S .. Sx1(a) )
S«
fori =1ton do
if p; is independent from every pointp in S then § « S U {p;};
endfor
end of algorithm OMS

As in the case of the analysis of procedure MS, it is simple to show that F,, 2 IS, For the case
when d = 2, the set of points dependent on a point p in S that are not located to its left can be covered
by two squares as shown in figure 2. It is important to note that when considering point p all the
points previously visited can be covered by adding two squares for each point in the current maximal
independent set. Therefore, Fup < 21S|. Combining these two bounds, we know that Fapx / Fope S 2.
For d > 2, the approach is similar, but to cover all the points dependent on a point in set P one intro-
duces no more than 2¢-! hypersquares. Figure 2 shows the cover for the case whend = 3.

‘.——4'&—_
i
i

Figure 2: Covering the set of points dependent on p; and located to the right of p;.

The straight forward implementation of OMS, which is similar to the one for MS has overall
time complexity O(r log n + d s n). The above implementation of the algorithm does not take
advantage of special properties of the sets we are dealing with. Let us now consider these properties
in more detail.

As with the case of algorithm MS, there are several implementations for algorithm OMS. The
implementations are similar to the ones in the previous case. The main difference is that instead of
t—squares we have t—rectangles with dimensions D by 2D (rather than 2D by 2D). Also, when
considering point p we only need to consider those ¢—rectangles whose distance (along the first coor-
dinate value) is at most D from it. Therefore, the cardinality of the set of t—rectangles may increase
or decrease as the algorithm advances. Remember that for algorithm MS the cardinality of the set of
t-squares only increased in size, there were no deletions. The "center” of a t—rectangle is the point
on the left boundary that is equidistant to the left comer points of the rectangle. We define the
g—squares as a strip of width D that is constantly moving from left to right, in such a way that the
current point is located on its boundary. Only those t~rectangles whose "center” is in this strip need
to be considered. The g—squares are denoted by integer (i), for i 2 0 (the bottommost g—square is
labeled 0). Since all of the t~rectangles have dimensions D by 2D and no "center” of a t—rectangle
is inside another z-rectangle , there is at most one “center” of a t~rectangle inside a g—-square. Le.,
the maximum number of independent points in each g—square is at most one. Determining whether a
point p is inside a z—rectangle can be determined as follows: first we find the g~square (i) 0 which
p belongs. Then, we construct the set S’ of all independent points that belong to neighboring
g—squares, i.e., belong to g-square (i") such that li-i| < 1. For d = 2, there are 3, and in general
there are 34-! of such neighbors. Since the x-length and the y-length of each of the neighboring
g-squares is D, it then follows that p is independent from each t—rectangle iff it is independent
from each ¢t—rectangle whose "center” is inset S’

843



Let us now explain how to implement the above test efficiently. We define the set of elements
S, such that g —square (i) has a "center” of a t—rectangle inside it iff i’ € §. Associated with each
element £ € S there a point, denoted by #; that represents the "center” of the t—rectangle inside
g—square (k). Given a point p; € P, by simple arithmetic operations we determine (i°), the
8—square that contains p;. Then we search in the set § for the elements that differ from i’ by at most
1. Once we have determined which g—squares in the neighborhood have a "center” of a t—rectangle
inside them, we test whether or not p; is inside any of those t—-rectangles . If the answer is yes, we
just proceed to the next point, otherwise, p; is independent from all points in §, so we have found a
new t—rectangle. Remember that its "center” belongs 10 g—square (i"). Therefore, we add (i) to S.
We also associate p; with the entry i* and proceed to point p;,,. At this point we delete the
t—rectangles that do not belong to the new grid. Deletion in done in the FIFO fashion. The worst
case time complexity for the new method is similar to the one in (A), though it is not hard to see that
in a large number of problem instances the third algorithm would be faster.

The other implementation for the third algorithm is similar to the one for the first algorithm. For

brevity we shall not discuss them in detail. The performance of our algorithms is summarized in
Table 11

Table ITI. Time and Space Complexity for several implementations of algorithm OMS.
implementation time complexity space complexity
straight forward O(n logn +d s n) O(n)

balanced tree O(n log n + min{34-, 5} (d+log s) n) On)
double-array O(n log n +d min{34-%,5} n) O(T][/D] )

Theorem 3: Algorithm OMS generates a solution for the CS; problem with approximation bound
24-1. The time complexity for different implementations of the algorithm is given in Table I
Proof: By the above discussion.

(D) PARTITION INTO INDEPENDENT SUBPROBLEMS APPROACH

The fourth algorithm is slightly different than the previous ones. Its approximation bound is
identical to the one for the third algorithm, but it can be implemented to run faster. Before we explain
it, let us consider a restricted version of it which we call the slab problem, i.e., all points are located
inside a rectangle (whose sides are orthogonal to the axes) with height D. An optimal solution to the
slab problem can be obtained by projecting ail points to the bottom side of the rectangle and applying
an optimal algorithm for the one dimensional case. An optimal algorithm for the one-dimensional
problem considers all points in increasing order. The leftmost point is covered by the leftmost end
point of a line segment of length D. All the points that fall inside this line segment are covered by the
same line. Then the leftmost uncovered point is covered in a similar fashion. This procedure, referred
to as the cover the leftmost point first (CLPF), has O(n log n) time complexity.

The CLPF procedure is not the procedure with the best worst case time complexity bound to find
an optimal solution to the slab problem. Let us now briefly discuss a better algorithm (fastCLPF)
whose worst case time complexity bound is only O(n log 5), where s is the number of elements in an
optimal cover. The idea behind the procedure is to sort the elements with respect to their i 1(p) values.
The elements are placed in sets S, Sy, ..., S, where all elements in set S; have identical i1(p) values
and the i1(p) value of the clements in set S; is smaller than those in S;4;. Clearly, no element in S;
can be with an element in S;.; in the same square in a feasible solution. The idea behind the algorithm
is to introduce a square for the leftmost point in §y. Then the points in S; and S, that are covered by

844



that square are deleted. Then we select the leftmost point in S (if any) and so on.

Now let us use the above procedure to obtain a fast approximation algorithm for the CS, and
then for the CS; problem. When d = 2, the set of points is partitioned into two sets, R and R5. For
each of these two problems we find an optimal cover. For simplicity, let us explain our algorithm in
terms of the g —squares introduced for the first algorithm. All the points that belong to the g —squares
(i,j) such that j is odd belong to problem R and the ones such that j is even belong to subproblem
R,. Let us consider problem Ry. It is simple to see that all the points in R; belong to slabs (with
height D) and which are D units apart. Therefore, an optimal solution to R consists of finding an
optimal solution to each of the slabs which we know can be done in O(n log 5).

Procedure PARTION-FIRST partitions the elements with respect t0 (i2(p), ..., iz(p)) into sets
and then applies procedure fastCLPF to each set. The partition can be done by sorting the elements.
Sorting can be done by the algorithm in {G] (or an equivalent algorithm) in O(d » + n log 5) time.
The second part applies procedure fastCLPF which takes overall time O(n log s). Therefore the
overall time complexity of our procedure is O(d n + n log s). We call this implementation the bai-
anced tree implementation. Let us now consider the double array implementation of procedure
PARTITION_FIRST. By using the double-array structure one can find the partition of the elements in
O(d n) time. Procedure first-CLPF can also be implemented in O(d n) time by using double arrays.
The idea is to first use the double-arrays to partition the elements into classes that have the same i (p )
value. Then "adjacent" classes are grouped together. The problem defined over each group of classes
can be solved independently by applying the fast-CLPF procedure. The outcome would be the same
as in the previous implementation, the only difference is the order in which the output is generated by
the algorithm. Table IV lists the time and space complexity for several implementations of our pro-
cedure.

Table IV. Time and Space Complexity for algorithm PARTITION FIRST.
implementation time complexity space complexity
balanced tree O(dn +n logs) O(n)
double-array O(dn) o[ 1D +I’U 5,iD) )
I

Theorem 4: Algorithm PARTITION-FIRST generates a solution for the CS; problem with approxi-
mation bound 2¢-1. The time complexity for different impiementations of the algorithm is given in
Table IV.

Proof: By the above discussion. (]

. POLYNOMIAL TIME APPROXIMATION SCHEME

Let us now consider the {,-slab problem, i.e., all points lie in £2 inside a rectangle with height
ID, for some integer ! = 1. First we show that the /5-slab problem can be solved in O(4{n¥) time via
dynamic programming. The dynamic programming procedure finds all covers that satisfy certain spe-
cial properties (which we specify later on). We then generalize the method to solve the /;-slab prob-
lem (i.e., all points lie in E4 inside a hyperrectangle in which all dimensions, except the first, have
length /D). Finally, we present an improved polynomial time approximation scheme by showing how
to combine the algorithm for the /,-slab problem with the polynomial time approximation scheme in
[HM].

845



Let us assume that the set of points are sorted with respect to their first coordinate vaiue, i.e.,
x1(p1) S x1(p2) S ... S x1(pa). A square in ¢; in a cover C is said to be an a—square (anchored
square) if there is a point r in P located on the left side of ¢; and a point s in P (not necessarily dif-
ferent than r) located on the top side of ¢; that are not contained (are not located inside or on the
boundary) in any other square in the cover C. For an a—square c¢; in cover C, the point p; with least
index located on the left (top) boundary of ¢; which is not contained in any other square in C is called
the left (top) anchor of ¢; in C. We shall also refer to the two points as simply anchors. A cover is
said to be an a~cover (anchor cover) if all the squares in it are a—squares. 1t is simple to show that
any cover can be transformed to an a—cover without increasing the number of squares in it. We say
that an a-cover is a s—cover if every vertical line does not partition into two nonempty parts more
than 2/-1 squares in the cover. To show that the time complexity of our algorithm is bounded by a
polynomial on n, we prove the following lemma which states that every problem instance has an
s—cover among the set of optimal covers.

Lemma 1: Every /,-slab problem has an s —cover among the set of optimal covers.
Proof: The proof is based on interchange arguments. [

Before presenting our algorithm we need to make a few more definitions. Deleting a subset of
squares from an a—cover C results in a partial a—cover which we call C’. If points py, p2, ... p; are
covered by a partial a—cover C’, and all the left anchors of the squares in C” are points from the set
{P1. P2, .-, D:i}, then C’ is called an i-partial a—cover. Two i-partial a—covers are said t0 be
equivalent if the left and top anchors of every square partitioned into two nonempty parts by any vert-
cal line "immediately to the right” (any line between p; and p;, where j is the smallest index of a
point that appears to the right of p;) of p; are identical in the two i-partial a—covers. The i-partial
a—cover C dominates i-partial a~cover C’ iff C and C’ are equivalent and C has fewer squares that
C’. An i-partial a—cover is said to be an optimal i-partial a—cover if there is an s—cover in the set
of optimal covers with an i-partial a—cover equivalent to it. Procedure DP processes the points in the
orderpy, py, ..., pa. During the ith iteration we construct the set of all irreducible i-partial a—overs,
i.e., set of all i-partial a~covers such that no one of them dominates another and no two of them with
the same number of squares are equivalent. To show correctness we prove that all optimal i-partial
a—covers are in the set of irreducible i-parrial a—covers.

Lemma 2: For every [»-slab problem, algorithm DP generates an optimal cover in O( 4! a¥ ) time.
Proof: For brevity the proof is not included. O

For the I;-slab problem, the number of square partitioned by a hyperplane passing through p; is
at most 2/4~1-1 instead of 2/-1, and the number of anchors per square is d instead of two. Therefore,
the time complexity for the /,-slab problem is O( d (2/4~1-1)pd @4 =131 ),

This algorithm can be easily incorporated with the polynomial time approximation scheme given
in [HM]. The idea is to apply the algorithm to /4 problem instances of the /;-slab problem. The /4
problem instances can be partitioned into /4~ groups of problems such that in each group the number
of points in all the problems is . This results in an overall time complexity bound
O( 14-1 4(214-1.1)nd@**-1*+1 ) The approximation bound is (1+1/1)4~!,

Theorem 5: Combining algorithm DP with the polynomial time approximation scheme in [HM]
results in a procedure that generates a soludon to the CS; problem with approximation bound
(1+1/1)4-! and time complexity O( [9-1 d(214-1-1)pd @-\-111

Proof: By the above discussion. (]

846



IV. DISCUSSION

All our techniques can also be adapted to the CR,4 and the CD, problem. For the CR, problem
the approximation and time complexity bounds are identical. For the CD4 problem the algorithms in
section IT have identical time compiexity bounds; however, the approximation bounds are | 2‘/d.] 4
[2¥d]4, [2Vd] 4-[Vd], and 2¢-{ V4] 4, respectively. For the polynomial time approximation
scheme, the approximation bound is 2(1 + 1/[*-! and the time complexity bound is
O 14-1d[ 2Vd] [ 1Vd] 4-1 pdl2%d1“+1 ) The same techniques can be adapted to the packing problem
studied in (MH]. The approximation and time complexity bounds are smaller than for the CS; prob-
lem. For brevity we do not discuss this further. As pointed out in [HM] it is important to develop fast
approximation algorithms for the /,-slab problem. These algorithms would imply a much better time
complexity bound for the CS; problem at the expense of a slightly larger approximation bound.

From our algorithms one can define a heuristic which we believe has a reasonable behavior with
respect to the time complexity and the approximation. The idea is to assign the points to the
g—squares first. Then the g~squares with points are partitioned into two groups. Those with a single
point and those with at least one point. The heuristic then applies our polynomial time approximation
scheme to the problem defined by all the points belonging to single point g-squares. An optimal
solution will be generated quickly for this subproblem. The remaining problem is solved by any of
the approximation algorithms in section IL.

V. REFERENCES

[AHU] Aho, A., J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1975.

[FPT] Flower, R. J., M. S. Paterson, and S. L. Tanimoto, "Optimal Packing and Covering in the
Plane are NP-complete,” Information Processing Letters 12, 1981, 133 - 137.

[G] Gonzalez, T., "The On-Line J-Dimensional Dictionary Problem", Technical Report,
University of Utrecht, July, 1990.

[HM] Hochbaum D. S. and W. Maass, "Approximation Schemes for Covering and Packing Prob-
lems in Image Processing and VLSL," Jowrna!l of the ACM, Vol 32, No. 1, January 1985,
130 - 136.

)| Johnson, D., "The NP-Completeness Column: An Ongoing Guide," Journal of Algorithms 3,
182 - 195, 1982.

[MIH] Masuyama, S., T. Ibaraki, and T. Hasegawa, "The Computational Complexity of the m-
center problems on the Plane," Transactions IECE of Japan E64, 1981, 57-64.

{S] Supowit, K. J., "Topics in Computational Geometry,” Report No. UTUCDCS-R-81-1062,
Department of Computer Science, University of lllinois, Urbana, 111., 1981.

[yl Tanimoto, S. L, "Covering and Indexing an Image Subset,” Proceedings of the 1979 IEEE
Computer Society Conference on Pattern Recognition and Image Processing, 239 - 245,
1979.

[TF] Tanimoto, S. L. and R. J. Fowler, "Covering Image Subsets with Patches,” Proceedings of
the 5th Intemnational Conference on Pattern Recognition, 835 - 839, 1980.

847



