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ABSTRACT

The problem of connecting a set of 2m terminals that lie on the sides of two equal-width
rectangles to minimize the total area is discussed. We present an O(m log m)
approximation algorithm to solve this problem. Our algorithm generates a solution with
area < 2 * OPT, where OPT is the area of an optimal solution. The nets are routed
according to the following greedy strategy: the wire connecting the two points in a net is
one whose path crosses the least number of corners of the rectangles. For some nets
there is more than one path that crosses the least number of corners of two rectangles.
These nets are connected by wires whose paths blend with the paths for other nets.

L INTRODUCTION.,

Let T (top) and B (bottom) be two rectangles with equal width (possibly different
heights) and placed on the same plane with the same orientation. The left side of T and
B have been placed along the same vertical line and rectangle T is above retangle B.
The distance between these two rectangles is not fixed and will be decided by our
routing algorithm. This distance must be at least )\ units. Let S be a set of 2m
terminals that lic on the sides of T and B, and let N, » N2y .., N be any partition of set
S such that the size of each subset is exactly two. Each subset Ny is called a net. All the
points in each net have to be made electrically common by interconnecting them with
wires. The wires follow a path consisting of a finite number of horizontal and vertical
line segments. These segments are assigned to two different layers. All the horizontal
segments are assigned to one layer and all the vertical segments are assigned to the other
layer. Line segments on different layers can be connected directly at any given point z
by a wire perpendicular to the layers if both line segments cross point z in their
respective layers. Every pair of distinct and parallel line segments must be at least
units apart and every line segment must be at least X units from each side of rectangles
T and B, except in the region where the path Jjoins a point in S to connect it. Also no
path is allowed inside of T and B on any of the layers. We are assuming that no two
terminals in the middle channel (the region between the bottom side of rectangle T and
the top side of rectangle B) are placed along the same vertical line. This assumption,
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which is not too restrictive, will simplify our routing algorithm. Later on we explain
how this assumption can be eliminated.

Problem 2-R2M (routing two terminal nets around two rectangles) consists of
specifying the paths for all the wires in such a way that the total area is minimized.
That is, to place T and B together with all the wires (that must satisfy the restrictions
imposed above) inside a rectangle (with the same orientation as T) of least possible area.
This problem has applications in the layout of integrated circuits {11].

The R1M problem is defined similarly, except that all terminals are located on the
sides of one rectangles and the size of each net can be arbitrary. Hashimoto and Stevens
[8] present an O m log m) algorithm to solve the RIM problem for the case when all the
points in S lie on one side of a rectangle. An ©( m log m ) lower bound to solve this
problem was established in [7]. Algorithms to solve the RIM problem for the case that
all nets are restricted to be of size two (called 2-R1M problem) appear in [9] and [;]. The
one in [3] is optimal with respect to the time complexity bound. Several approximation
algorithms for the R1IM problem have been given by Gonzalez and Lee ([4] , [5] and [6]).
The time complexity of all these algorithms is O ( m*(n + log m)) and the best of these
algorithms generates a solution with area < 1.6 * OPT, where OPT is the area of an
optimal solution, m is the number of terminals and n is the number of nets. If more
than two layers are allowed and wire overlap is permitted, the R1M problem becomes an
NP-hard problem [14], even when the size of all nets is two. Baker [1] presents an O(m
log m) algorithm for the 2-R2M. This algorithm generates a solution within 1.9 of
optimal. For this case the optimality is measured with respect to the perimeter of the
smallest enclosing rectangle. In this paper we present an approximation algorithm for
the 2-R2M problem that generates solutions within a factor of 2 of the optimal solution.
Our algorithm is simpler than the one appears in [1]. Our lower bound is obtained by
similar technique. However, our analysis is much simpler than the one appears in [1].
One of the reason is our assumption for the terminals located in the middle channel.

Let 2g-R2M (2¢-R2M) denote a 2-R2M problem in which for each global net there
exists exactly one (more than one ) connecting path that crosses the least number of
corners. In Section II we introduce our notation and present some basic results. In
order to simplify the exposition of our results, we begin by presenting approximation
algorithms for restricted versions of the 2-R2M problem. In section IIl we present an
approximation algorithm for the 23-R2M problem. An approximation algorithm for the
2¢-R2M is presented in the section IV and in section V we indicate how to combine
these results to obtain our approximation algorithm.

1I. NOTATION AND BASIC RESULTS.
We b:egin by defining the 2-R2M problem and introducing notation similar to the
one in [2]. Let T and B be two rectangular components located on the same plane with

size hy by wr (height by width) and hg by ws, respectively. We assume that wy = wa.
Rectangle T is above rectangle B and the distance between these two rectangles is not
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fixed, but must be at least » units. The left side of T and B have been placed along the
same vertical line. Since T and B have the same width, the right side of T and the right
side of B are also located along the same vertical line. There are 2m terminals (T, , T,

-, Tom) on the sides of T and B. The set of terminals is partitioned into m subsets
denoted by N, , N, , ... , N and each subset contains exactly two terminals. Each subset
Ny is called a net. It is assumed that every pair of terminals is at least % units apart and
every terminal is located at least X units from each of the corners of T and B. All the
terminals in each net must be made electrically common by connecting them with wires.
The path followed by these wires consists of a finite number of horizontal and vertical
line segments. Each of these line segments must lie on the same plane as T and B, be
parallel to a side of T and B, and be on the outside of T and B. Perpendicular line
segments can intersect at any point, but parallel line segments must be at least x units
apart. Also, all line segments must be at least X\ units away from every side of rectangles
T and B except in the vicinity where a line segment connects a terminal. The 2-R2M
problem consists of specifying paths for all the interconnections subject to the rule
mentioned above in such a way that the total area is minimized, i.e., place the
components T and B together with all the wires inside a rectangle (with the same
orientation as T and B) of least possible area.

Label the sides of the components (in the obvious way) left, top, right and
bottom. Starting in the bottom-left corner of T, traverse the sides of rectangle T
clockwise. The ith corner visited is labeled S, and the ith terminal visited is terminal T;.
Assume that terminal T, is the last terminal visited by this procedure. Using a similar
procedure traverse the sides of rectangle B, the ith corner of B visited is labeled Ry, and
the ith terminal (that lies on the sides of B) visited is terminal Tm. The close interval

[z ,y/ consists of all the points on the sides of rectangle X ,Y € {T , B} that are visited
while traversing the sides of rectangle X in the clockwise direction starting at point x
and ending at point y. Note that the interval [x , x| consists of a single point.
Parentheses are used instead of brackets for open intervals. We use [So, 84, 81, 84, [Ss,
8o and [Ss , So] ([Ro , R, [R1, R, [Re, Re) and [Re, Ro]); T', T, T% and T% (B!, B, B and BY)
to represent the left, top, right and bottom sides of T (B), respectively. The function
C(j) indicates the index of the terminal to which terminal Ty has to be connected.

In order to simplify our notation we introduce the following lemma which can be
proved by simple interchange arguments.

" Lemma 2.1: Let W be any layout for an instance of the 2-R2M problem. Let T, be any
terminal located on the bottom (top) side of T (B). If T, and Ty are located on different
rectangles and T, Is connected to Tgq by a path that crosses the top (bottom) side of
rectangle T' (B), then there exists another layout W’ such that T, is connected to Tag by
a path that does not cross top (bottom) side of rectangle T (B), and the area of W’ is
not larger than the area of W.

Proof: For brevity the proof is omitted. 0

By lemma 2.1 whenever we refer to an optimal layout, we may assume it cannot
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be transformed by applying the interchange argument given in lemma 2.1. In the layout
that our algorithm generates we cannot apply the transformation implied by lemma 2.1.
Note that this assumption will not make the problem easier, it will just allow us to use a
simpler notation.

Set D = { (dy,x(a1),y(21)), (dosx(2e),¥(22)), .- , (dmX(am),¥(2m)) }, where 1 < a; < 2m
and the functions x and y are defined from {1,2,..,2m} to {CR}, is said to be an
assignment if | { 2,C(a)), 3,C(as), - , amClem) }| = 2m. Any subset of an assignment is
said to be a partial assignment. An assignment D indicates the direction of the path
connecting the two points in each net. If (1,x(i),y(i)) € D, then the path connecting this
net is as follows. If T; and Tqy are located on the same rectangle then x(i) 5% y(i) and
the path connecting this nets starts at terminal T; (Tqyp) if x(i) = C (x(i) ¢ C) moving
perpendicular to the side that contains this terminal and then it continues in the
clockwise direction (with respect to the rectangle) until it reaches point Tey (Ty). This
second terminal is joined to this path by a line segment perpendicular to the side where
it is located. On the other hand if T, and Tcy are located on different rectangles, assume
that T, is located on rectangle T, the path connecting this net consists of three segments.
The first segment starts at terminal T, moving perpendicular to the side that contains
this terminal and then it continues in the clockwise direction, if x(i) = C otherwise
counterclockwise direction, until it reaches either the point to be connected , or the
bottom-left or bottom-right corner of rectangle T. The second segment starts at
terminal Toy moving perpendicular to the side which contains this terminal and then it
continues in the clockwise direction, if y(i) = C otherwise counterclockwise direction,
until it reaches either the the point to be connected, or the top-left or top-right corner of
rectangle B. The third segment will join the end points of the previous two segments.
Note that this segment could be a horizontal line segment through the middle channel.
Note that a path. that connects a net which could be changed by applying the
transformation implied by lemma 2.1 cannot be represented by an assignment. Also, it
is simple to see that doglegs can not be represented by an assignment.

For any (k, x(k) , y(k)) € D, we say that the path connecting Ty , Tcy given by D
crosses point z (7 is on the sides of T and B but not a corner point) if the connecting
path intersects a line segment perpendicular to the side where z is located that starts at
point z and ends at the point where it intersects the rectangle where z is not located
(note that if it never intersects the rectangle, it is a half line). Introduce all horizontal
and vertical half lines that intersect exactly one corner point. Introduce all vertical line
segments that intersect exactly one corner of each of the rectangles. It is simple to
verify that the above procedures introduce exactly two line segments (one vertical and
one horizontal) that intersect each of the cormer points of the rectangles. We called
these segments extension lines. A connecting path vertically (horizontally) crosses corner
z if the connecting path crosses the horizontal (vertical) extension associated with corner
7. 1

For any assignment (or partial assignment) D we define the height function Hp for
[x , ¥] representing a side in one of the rectangles. as follows:
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Hg(x , y) = max{ number of the paths given by D that cross point z | 2 € (x,5)}

Similarly, for any assignment D we define height function VEp and HOp for corner
point z:

vep(z) = number of the paths given by D that vertically cross point z.

hop(z) = number of the paths given by D that horizontally cross point z.

The height of assignment D for side X of rectangle T (B) (X € {top , left , right,
bottom}) refers to the value of Hy(x , y), where [x , ] is the interval that represents side
X of rectangle T (B). For an assignment D, we define Hp(R, , S;) and HyfS, , Rs) as
follows:

Hy(Ro , 1) = max( Hy(S, , S,) , Hp(R, , R,)), and
Hi(S; , Rs) = max( Hy(Sz , Ss) , Ho(Rs , Ry)).

The next two lemmas establish that the 2-R2M problem reduces to the problem of
finding an assignment D with least

(hrthg + (Ho(S, , 82) + H(R, , R;) -+ HyfRs Rg)) * ) *
{(wrt Hp(R, , 8)) + HiS; Rs)) * X )

and then in O( n log n) time one can construct a layout of area hg by wq for it.

Lemma 2.2: For every assignment D, there is a rectangle Q of size hg by wg, where

hq == hr -+ hp + (Ho(S: , S2) + Hp(Ry , Ro) + Ho(Rs, Ro)) * X, and
Wo = wrt{(Hp(Ro , 81) + Hp(S, , Ra)) * X

with the property that rectangle T and B together with the interconnecting paths
defined by assignment D can be made to fit inside Q.

Proof: The proof is a direct generalization of the proof for the RIM problem that
appears in [10]. One additional vertical track might be required when there is no nets
with exactly one terminal located in the middle channel [13]. O

Lemma 2.9: For any assignment D a layout with the area given by lemma 2.2 can be
obtained in O(n log n) time.

Proof: The proof of this lemma is a straight forward generalization of the proof for the
RIM problem that appears in [10]. The algorithm that constructs the final layout uses
as a subalgorithm the procedure given in [7], [8] and [13]. O

Net N, is said to be a local net if its two terminals are located on the same side of
one rectangle or if one terminal is located on the bottom side of T and the other is
located on the top side of B. Otherwise, net N; is said to be global. Let X7 v* represent
the sel of nets in which one of its terminals is located on side j of rectangle X and the
other is located on side k of rectangle Y, where X,Y € {T , B} and j , k € {l, % r, b}
Let | X7 Y*| represent the number of nets in this set. For an assignment D we define the
function A(D) as
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(hrths + (Ho(S: , S2) + Ho(Ry , Ra) + Ho(Rs , Ro)) * \) *
(wrt Hp(Ro , 83) + Ho(Sz , Rg)) * ).

ie., the total area required for a layout of T and B and all interconnections given

by D.

Definition 2.1: D’
Let D’ be the partial assignment in which all the local nets are connected by
paths that do not cross any of the corners of T and B.

Lemma 2.4: Every assignment D can be transformed to an assignment M such that

D’ C M and A(M) < A(D).

Proof: The proof follows the same lines as the one for the 2-R1M problem that appears
in [10]. O

It should be clear that it is only required to specify the paths connecting all the
global nets since we know that the local nets can be routed optimally by routing them as
indicated in assignment D’. Also, once we have an assignment the proof of lemma 2.3 (a
constructive proof) can be used to find a layout of optimal area for it.

1. APPROXIMATION ALGORITHM FOR THE 25-R2M PROBLEM.

In this section we present our approximation algorithm for the 2g-R2M problem.
Let Ms be the set of global nets for which the number of distinct connecting paths that
cross the least number of corners is exactly one. Clearly,

Ms = { T'T% , B'B® | f,g are adjacent sides on the same rectangle}
U{mB, ™8 | je{l, t, b rjand k€ {l,r}}.

For the set of nets Mg, we construct assignment Ds as follows:

Ds = { all nets in Mg are connected by paths that cross the least number of
corners of T and B}.

Lemma 8.1: Let D be an optimal assignment such that D’ € D. Let M be D except that
all nets in T'T® and BBE, where f and g are adjacent sides on the same rectangles, are
assigned as in our algorithm. Then

Hy(S1,S2)HHnRi, Ro)+Huf(Re,Ro) < Hil(S5,82)+-Hp(Ra,Re)+Ho(Ra Ro), and

Hi(Roy$1)+Hu(S5,Ra) < HofRo,S1)+Hn(So,Ro)+ max(( 3 |YYH], 35 (] 22°]).
e \g
adjacent adjacent

where YY® (2725 is the subset of nets in T'T® (B'B¥) that are connected differently in D and
M.
Proof: For brevity the proof is omitted. O

555



contribution to our lower contribution to our lower

set bound for wr/(A\) + bound for (hr+hg)/(\) +
Hp(Ro,S1)+H(Sz,Rs) Hi(S1,S2)4Hp(R1,Ra)+Ho{Rg,Ro)

TITf 0.5%(|T'Te|+[v'ye|) | TT8|+ [YFYe| adjacent
BBf 0.5%(|BBE|+|Z2¢)) [B'BE|-+|27Z¢| adjasent
TIBk 0.5%(| T'BY+-[Y/Z4) 2% BN+ [Y'ZY) ik e{lr}
T'B* | T*BY| 2%|T'BY| ke{lr}
T"B¥ 0.5%(| T*BX|+ |Y*ZX)) IT'BY|+[YPz¥| ke{l,r}
T+B* 0.5%(JT'BY|+|Y*2Y) [TBY|+|Y*z!| ke{l,r}
TEB® | T*BY| 2%| TkBY) ke{lr}

Table 3.1: Lower bounds for the 2¢-R2M problem.

Lemma 3.2: Let D be an optimal assignment such that D’ C D. Let M be D except that
all nets in TB* U T*B' , where j € {I, t , b, r}, k € {1, 1} are assigned as in our algo-
rithm. Then

Hy(S1,S2)+H(Rs Ro)+HuRa,Ro) < Hp(81,8)4-Hp(Ry,Rs)+Hp(Rs,Ro) , and
Bu(Ro,S1)+Hu(S2,Rs) < Hp(Ro,S1)+Hp(Sa,Rq)+ ‘E Yz + 33 |ve.
1€ {1tbr}

Xe {irt %(Ee ({‘1',13

where Y/Z* (Y*7) is the subset of TB* (T*Bi) that are connected differently in D and M.
Proof: For brevity the proof is omitted. 0

Before proving our main result in this section we establish a lower bound on the
area required by an optimal solution. Note that from lemma 3.1 and 3.2 we know that
our algorithm generates a solution with minimum height for the 25-R2M problem. The
lower bounds are given in table 3.1.

Lemma 8.8: Let D be an optimal assignment such that D’ C D. Assignment D and rec-
tangles T and B satisfy the lower bound given in table 3.1, where Y'y® (z'z#) is the subset
of nets in T'T% (B'B%) and Y/z¥ (Y*7)) is the subset of nets in T'BE (T*B!), that are connected
differently in D and M.

Proof: For brevity the proof is omitted. 0

Theorem 8.1: For the 23-R2M problem, let D be an optimal assignment such that D’ -
D and let M be the assignment generated by our algorithm. Then A(M) < 2 * A(D).
Proof: For brevity the proof is omitted. O

1
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IV. APPROXIMATION ALGORITHM FOR THE 24-R2M PROBLEM.

In this section we present an approximation algorithm for the 2¢-R2M problem.
Let Mg be the set of global nets for which the number of distinet connecting paths that
cross the least number of corners is more than one. Clearly,

Mg = { T'T® , B'B | f g are two opposite sides of one rectangle} U
{T'B*, T8 | k € {t, b} }.

In what follows we only explain how the assignment Dg(T'BY) for all nets in T'B® is
constructed, since all assignments Do(X'Y*), where X'Y* € { T'T", BB, T'T%, B'B®, T'B!, T°B,
T'B® }, are constructed by similar procedures. For any permutation, m, of the nets in set
T'B® we define an assignment ASG(T'B®, ) as follows: the first net in 7 is connected by a
path that begins on side T', crosses the left side of rectangle T and B and ends at side
B% and the path connecting the kth net (1 < k < |T*BY) in 7 begins on side B* (T),
crosses the right (left) side of T and B and ends at side T* (B*), when k is even (odd).
We claim that there is a permutation, =, of the nets in set T'B® such that there is a lay-
out for assignment ASG(T'B", ) with the property that for any k (1 < k < |T°BY|) the
path connecting the kth net in 7 can share the same track on the side where the path
connecting the (k-1)st net ends. In this case we say that 7 is a valid permutation for the
set of nets T'BP.

Claim: There is a valid permutation for the set of nets X'Y*, where X'v* € { T'I*, BB,
T'T®, B'BY, T'B', T'BY, T'B" }.

Proof: For brevity the proof is omitted. O
contribution to our lower contribution to our lower
set bound for wr/(3) + bound for (hrthg)/(3) +
Hp(Ro,$1)+Ho(S2,Ra) Hi(S1,85)+Hp(R1,R2)+Ho(Rs,Ro)

T'1" U BB 0.5%(| T'17|-+[B'B7|) 2 *(| 717 +({B'BY)

T U B (1] +me)) (1l +BE?])

TB U T'B (T +Hp ) (I per])
T'BP 1.5 *|T'BY [T'BY|

Table 4.1: Lower bounds for the 24-R2M problem.

Lemma 4.1: Let D be an optimal assignment such that D> C D. Let M be D except that
all nets in XX, where X}y* € { T'T", B'B", T'I", B'B®, T'B!, T°B®, T'B® }, are assigned as in
our algorithm. Then

HS1,88)+HiRi,Re)+HufRa,Ro) < Hp(Ss,82)4-Hp(Ry,Re)-+HHp(Ra Ro) + [XIYY],

where Y% € { T'T®, B'B®, T'B', T°B®, T'B® },

Hd(So,50)+HH(S2,55) < HpfS0,51)4+H(S2,5s)+ x *[37Y¥,
where x = 1 if XY* = T'T", x = 0.5 if X'Y* € { T'T®, T'B’, T'B' }, and
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Hyf(Ro,R) - Hu(Re,Rs) < Hp(Ro,Ra)-+Hp(Re,Ra)4- x ¥[XPYY],
where x = 1 if X}Y* = BB, x = 0.5 if X’y* € { B'B®, T'B", T'B" }.
Proof: For brevity the proof is omitted. m|

Before proving our main result in this section we establish a lower bound on the
area required by an optimal solution. Our lower bound is given in table 4.1,

Lemma 4.2: Let D be an optimal assignment such that D> C D. Assignment D and rec-
tangles T and B satisfy the lower bound given in table 4.1.
Proof: The proof for these bounds is similar to the one in lemma 3.3. ]

Theorem 4.1: For the 2¢-R2M problem, let D be an optimal assignment such that D7 C
D and let M be the assignment generated by our algorithm. Then A(M) < 2 * A(D).
Proof: For brevity the proof is omitted. )

V. APPROXIMATION ALGORITHM FOR THE 2-R2M PROBLEM.

In this section we show that our algorithm takes O(m log m) time and generates a
solution with area < 2 * OPT, where OPT is the area of an optimal solution.

algorithm for the 2-R2M problem
Construct assignment D’;
Construct assignment Dg;
Construct assignment Dg(TIT?),Dg(B'B7),Da( T'T?),Do(BBY) Do T'BY), Do T*B), Do T'B?).
Let P be the assignment generated by the above steps.
Construct and output a layout with area A(P) for P.

end of algorithm

Theorem 5.1: The time complexity of our balgorithm is O(m log m).
Proof: For brevity the proof is omitted. O

Theorem 5.2: Let D be an optimal assignment such that D> C D and let P be the solu-
tion generated by our algorithm. Then, A(P) < 2 * A(D).
Proof: For brevity the proof is omitted. o

VI. DISCUSSION.

We have shown that there is an efficient approximation algorithm that generates
a solution within a factor of 2 of the optimal solution value for the 2-R2M problem. The
algorithm takes O(m log m) time and the constant associated with this bound is small.
In section I we assumed that no two terminals in the middle channel were placed along
the same vertical line. If this is not the case, we may use four layers to route the set of
nets T'B' by applying the optimal algorithm given in [12]. This procedure will not
increase the time complexity of our algorithm. It is possible to obtain a better solution
(not a better approximation bound) by using an optimal algorithm for the R1IM problem
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to route the set of nets in Mg. However, for brevity this method will not be discussed.
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