IMPROVED BOUNDS FOR RECTANGULAR AND GUILLOTINE PARTITIONS}

TEOFILO F. GONZALEZ and SI-QING ZHENG
Department of Computer Science

University of California

Santa Barbara, CA 93106

ABSTRACT

We study the problem of partitioning a rectangle R with a set of interior points Q into rectangles
by introducing a set of line segments of least total length. The set of partitioning line segments
must include every point in Q. Since this problem is computationally intractable (NP-hard),
several approximation algorithms for its solution have been developed. In this paper we show
that the length of an optimal guillotine partition is not greater than 1.75 the length of an optimal
rectangular partition. Since an optimal guillotine partition can be obtained quickly, we have an
efficient approximation algorithm for finding near-optimal rectangular partitions.

INTRODUCTION

Given a rectangular boundary S and a set Q of points inside S, we study the problem of
partitioning 8 into rectangles in such a way that every point in Q lies on at least one of the
partitioning line segments and the total length of the partitioning line segments is least possible.
Such a partition is called an optimal rectangular partition. Lingas et. al. [8] show that finding an
optimal rectangular partition is a computationally intractable problem (NP-hard). Since then
several approximation algorithms have been proposed, i.e., algorithms for which LEN(E,,,(I)) € ¢
* LEN(E,(T)), where E,:(1) is the set of partitioning line segments given by the approximation
algorithm, E,u(1) is the set of partitioning line segments in an optimal solution, ¢ is some
constant, and LEN(E(I)) is the sum of the length of the partitioning line segments in E(T).
Jonzalez and Zheng [4] present a divide-and-conquer approximation algorithm that generates
solutions such that LEN(Eq,.(I)) < 3+V3* LEN(E,(1)). The time complexity for their algorithm
is O(n?), where n is the number of points in set Q. Recently, Levecopoulos [10] showed that it is
possible to implement this approximation algorithm in O(n log n) time. In (5] an (n')
approximation algorithm that guarantees solutions such that LEN(E,,,(I)) < 3 * LEN(E, (1)
The approximation bound is smaller than the one in [4], however there is a substantial difference
hetween the time complexity of these two algorithms. The algorithm in [5] consists of two steps.
In the first step, the original problem is transformed into a simpler polynomial time solvable
optimization problem; in the sccond step an existing O(n") algorithm is employed to solve the new
optimization problem. In this paper we present an approximation algorithm that generates
solutions whose objective function value is within 75% of the objective function value of an
oplimal solution. Gonzalez and Zheng [5] show how to modify the algorithm to generate
approximation solutions to a more general version of the problem (hounded boundary problem).
The approximation bound obtained for the new problem in [5] is smaller than the one in (7). If
instead of a rectangle we start with a rectilinear polygon and if instead of interior points, the
polygon contains holes (a hole is a rectilinear polygon without interior holes), the problem of
finding a good rectangular partition becomes much more complex. This problem has applications
in computer-aided design of integrated circuits and system for dividing routing regions into
channels [11). Several approximation algorithms for this problem exist (see 11, 17], 9] and [10]).
The algorithms with the smallest worst case approximation bound are the ones given in [9] and
[10]. The aigorithm given in [10) uses as a subalgorithm the procedure given in {4]. Since the
approximation algorithm given in this paper generates solutions of the same form as the ones in
[4] but closer to the optimal solution value, we conjecture that a smaller approximation bound
can be obtained by using the algorithm in this paper.

-

1 This research was supported in part by the National Science Foundation under Grant DCR - 8503163

334

We say that the rectangular partition E for I = (8,Q) has a guillotine cut if there is a line
segment in E that partitions S into two rectangles. We say that a rectangular partition E for [=
(S,Q) is a guillotine partition il either E is empty (note that Q must be empty) or E has a
guillotine cut that partitions S into S, and S», and both E, (partitioning line segments from E in
S,) and E, (partitioning line segments from E in S, } are guillotine partitions for I, = (5;,@1)
and I, = (S5,Q.), respectively. An optimal guillotine partition is a guillotine partition whose
partitioning line segments have least total length. Tt is simple to see that any guillotine partition
is a rectangular partition, but the converse is not true. An optimal guillotine partition can be
found in O(n®) time [12]. Du et. al. [2] show that the length of an optimal guillotine partition is
no more than twice the length of an optimal rectangular partition. Therefore, an approximation
algorithm for the rectangular partition problem is reduced to the problem of finding an optimal
guillotine partition. Gonzalez, Shing and Zheng [3] present a simple proof for this fact and point
out that it is unlikely that the dynamic programming algorithm can be speeded up. The
algorithm in [4] always generates a guillotine partition, however this in not true for the algorithm
given in [5].

t

For problem instance [= (S, Q), let E,,(I) be the set of partitioning line segments in an
optimal guillotine partition and let E,y(I} be the set of partitioning line segments in any optimal
rectangular partition. In what follows we show that LEN(E,,(I)) < 1756 * LEN(E,,(I)).
Therefore, we have an O(n®) approximation algorithm for the rectangular partitioning problem
such that LEN(E,,, (1)) < 1.75 ¥ LEN(E,(1)).

BOUNDS FOR GUILLOTINE PARTITIONS

We use P to denote the tuple (1 =(S, Q), E(I)), where I is a problem instance and
(1) is any rectangular partition for I. We present a transformation that introduces a set of line
segments E'(I) such that E'(1) U E(I} forms a guillotine partition { of course E(I) N E(T) = ¢J).
The transformation is performed in such a way that LEN(EY(I) U E(T)) < L.75 * LEN(E()).
Applying this transformation to any optimal rectangular partition E.,(I), we know that the
resulting guillotine partition E’(I) U Eop (1) is such that LEN(E(I) U E,,(I)) > LEN(E,, (1)) since
E,;,(1) is an optimal guillotine partition.

Let E,.(I) and E,(I) represent the sets of vertical and horizontal line segments in F(T),
respectively. For a vertical (horizontal) line segment [, we use x(I) (y({)) to denote the x-
coordinate (y-coordinate) of ! and use B(!) (L(!))and T({) (R({)) to denote the y-coordinate {
x-coordinate) of the lower (left) end point and the upper (right) end point of the vertical
(horizontal) line segment {, respectively. The y-coordinate of the bottom and top side of S is given
by B(S) and T(S), respectively. The x-coordinate of the left and right side of S is given by 148)
and R(8), respectively. Let X = R(S) - L(S) and let Y = T(S) - B(S).

Since rotation of P by 90 degrees generates an equivalent problem, we may assume
without loss of generality that LEN(E,(1)) < LEN(E;(I)). In what follows we claim that our
transformation process introduces a set of vertical line segments E,(I) such that LIEN(E.(T) } <
LEN({ E.(I}), and a set of horizontal line segments E,(1) such that LEN({ E;(I)) < 0.5 * LEN(
E,(T)). Therefore, LEN(E'(I) U E(I)) = LEN(E;(1)) + LEN(E.(I)) + LEN(EM)) < 0 5 * LEN(
E,(1)) + LEN(E.(I)) + LEN(E(I)) < 0.5 * LEN(E.(1)) + 1.5 * LEN(E(I)) < 1.75 * LEN{ E(T)
).

We say that line segment ! is covered by line segment !' if every point in [isin I'. The
linc segment {1is said to be covered by F{I) if there is a line segment [’ in Ii(1) such that [is
covered by I'. We use the {corrupted) notation | € I' and [€ E(I) to indicate linc covering. The
overlap of line segments | and !’ is defincd as the line segment { N I". The overlap of two sets of
line scgments is defined similarly. We say that a line segment | € 15(1) is a vertical (horizontal)
guillotine cut of § il T(!) = T(8) (L(!) = L(8)) and B() = B(S) (R(!) = R(])). Note that this
definition is equivalent to the one for guillotine cubs introduced in the previous section. A line
segment [is a vertical (horizontal) full cut of Sif T(!) = T(S) (L(}) = L(8)) and B({) = B(S) (R()
= R(S)). Note that every guillotine cut is a full cut, but not every full cut is a guillotine cut,
simply because a full cut is not required to be in I(I). Clearly, when there is a guiliotine cut [of

335

S in E(I), P is partitioned into P, and P, without introducing any new line segment. At this
point we (recursively) transform Ey(I;) and Ey(L). 1If at each step of this recursive
transformation we encounter an instance with a guillotine cut, then E,(I) = E;(I) = (& and our
claim for the 1.75 bound follows. However, when there is no guillotine cut of 8 in E(I) we must
introduce a full cut. Selecting the full cut is the crucial part of the transformation.

When there is no guillotine cut of S in E(I) we either introduce a vertical full cut or a set
of vertical and horizontal full cuts, depending on the configuration of E(I}. The concept of
separability, as we shall see later, plays an important role in this decision. We say that a vertical
full cut [is left (right) covered by E,(I) if for every point p in [there exists a line segment I’ €
E.(1) such that x(I'} < x(1) (x(I') = x(8)) and B(’) <.y(p) < T(I'). A vertical through cut is a
vertical full cut that is both left and right covered by E,(I). We say P is vertically separable if
there is at least one vertical through cut in P.

At this time it is convenient to view our transformation as follows:

case
:B(I) =) return;
:15(1) has a guillotine cut:
partition I along a guillotine cut and recursively transform the
resulting subproblems;
:I3(1) has no guillotine cut but it is vertically separable:
partition I along a vertical through cut that overlaps with at least one vertical
line segment in E(I) and recursively transform the resulting subproblems;
endcase

If at each step of the transformation process just described we encounter an instance with no
internal line scgments or an instance with a guillotine cut or an instance that it is vertically
separable, then since the transformation process introduces no new horizontal line segments, we
know that Ep(I) = . The set E.(I) # (& il in the recursive process we encounter a nonempty
problem instance without a guillotine cut. In lemma 1 we prove that for this case LIEN{ E,C(I) 1<
LEN(E.(I)). We use the projection function, p(E,.(I)), to project onto the right side of S the set
of vertical line segments E,(I). The length of the projection is given by LEN(p(E,(I))). Clearly, for
every E (1), LEN(p(E,(1))) > 0. Instead of proving that LEN(E.(1)) < LEN(E,(I)), we prove a
stronger result, i.c., LEN(E. (1)) + LEN(p(E,(1))) < LEN(E.(1)).

Lemma 1: For every P = (LLE(I)) our transformation process introduces a set of line segments E‘,:(I)
such that, LEN(E.(1)) + LEN(p(E.(I))) < LEN(E,(I}).
Proof: I"or brevity the proof is omitted. The proof appears in [6].

For problem instances P with the properties mentioned above, we know that our claim
for the 1.75 bound is correct. For any general problem instance P we cannot yet claim this
bound. This is because our transformation process is not complete, there are nonempty and not
separable problem instances without a guillotine cut. For those cases we shall apply a three-
phase transformation to be carried out by procedure ITVILCUT. In the first phase of procedure
HVIL_OUT. we introduce a set of horizontal full cuts to partition P into a set of vertically
separable subinstances. Let H(1) be the set of horizontal full cuts introduced in phase one. Let
H(l) = D) N E,(1) and let H (1) = H(I) - H(I). At this point it is impossible to prove that
LEN(H| (1)) < 0.5 LEN(H,(1)). This is why we need to perform the following steps. 1n the second
phase, each of the vertically separable problem instances constructed in phase one is partitioned
by introducing a vertical through cut. The vertical through cuts are carefully sclected so that in
the next phase we can find a set of horizontal guillotine cuts. Let Hy(1) be this set of horizontal
guillotine cuts. Note that Hy(l) € E,(I). At this point we claim that LEN(H (1)) < 0.5(
LEN(H,(D) 4+ LEN(H,(D))). Our transformation process is formally defined below.

336

procedure TRANS(P =(I=(5,Q),E(I)))
case
:E(I) is empty: return;
:P has a guillotine cut {:
partition P (along [) into P; and Py;
recursively apply TRANS to P; and Py;
:P is vertically separable:
let { be any vertical through cut in P that overlaps with at least one
vertical
line segment in E(I);
partition P (along !) into P; and Py,
recursively apply TRANS to P, and Py
:else: use procedure HYH_CUT to partition P into Py, ..., Py;
recursively apply TRANS to each P;;
endcase
end of procedure TRANS

From procedure TRANS and our informal description of procedure HVH_CUT, we know
that every vertical line segment introduced is a vertical through cut. Therefore, a proof similar to
the one for lemma 1 can be used to show that LEN(E,(I)) < LEN(E,(I)). To prove our 1.75 bound
it is only required to show that for every P we invoke procedure HVH_CUT, LEN(H (1)) < 0.5 * (
LEN(H,(1)) + LEN(H4(I)}). Hereafter we concentrate on nonempty problem instances, P, which
do not have a guillotine cut and are not separable.

The proof for the above bound is not simple. Before proving it we need to introduce
some additional notation and prove some intermediate results.

We say that P' = (T'= (3, Q) , E(IN) C P = (1 =(8, Q), E()) if T(8) < T(8), B(S")
> B(8), L(S") > L(S), R(8") < R(S), Q contains all the points in Q located inside (not in the
boundary) S’, and E(I’) contains all the line segments in E(I) located inside 8’. We say that P’ =
(T'=(5,Q), ET)) is empty if E(I') is empty, i.e., there are no line segments in E(I'). An
important property of empty subproblems is given by the following lemma.

WL‘ -
|

loose ends dangling corners
(al) (b} {e)
Figure 2.1:

Lemma 2: 1f there is an empty subproblem P’ = ('E(I’)) C P = (LE(I)) and there is a line
segment [€ E,(1) such that 1(S") < x(!) < R(S') and B({) = T(8") (T({) = B(8")), then there is a
horizontal line segment ' € E;(1) such that y(I'} = T(S"} (y(I") =

R(S").

Proof: For breyity the proof is omitted. The proof appears in 6].

Among all vertical through cuts in a vertically separable problem P the one with
smallest x-coordinate and the one with largest x-coordinate are referred to as the leftmost vertical
through cut lm(P) and the rightmost vertical through cut rm(P), respectively. Note that for some P,
the leftmost vertical cut could also be the rightmost vertical cut. In what follows we define some
scparable subproblems (via procedure MARK), then examine some of their properties and finally

337

show how to use these subproblems and their properties to perform the three phases in procedure
HVH_CUT.

Let g < y3 < ey < ¥y be the distinct y-coordinates of the set of line segments in Ey(T).
Lot yo = B(S) and yopy = T(S). For 0 <t < u < s+l let S;.. denote the rectangle defined by (
(1L(S),), (L(S), wu) (R(S), wu)s (R(S),)). Similarly, let P, denote P restricted to S;,. It is
casy Lo sce that if P, and P, , are vertically separable but P; , is not vertically separable, then
cither x(Im(P,)) > x(rm(P,) or x(rm{P;,)) < x(Im(P, .)). In the former case we call the P,
an LR-decreasing problem and in the latter case P, is referred to as an LR-increasing problem. If
P; ; is separable then P, ,, where i < h < g <j is also separable. Furthermore x(Im(Py ;) <
x(Im(P; ;) and x(rm(P; ;)) > x(rm(P; ;)). Note that Py ; is separable for all i; and for problem
instances without guillotine cuts, P; ;4 is always separable.

Procedure MARK
i—=9
for i +— 1 to s+1 do

if P;; is not separable then { assign the label A to y;_; j+—i-1 }
endfor

i+ s+1;
for j +— s to 0 by -1 do

if P, is not separable then { assign the label B to y;4;;i+—j+ 1}
endfor

end of MARK

Let yiq) < giggy < oo < Yigh) be the y-coordinates labeled A and let y;) < yjg) < ... <
Y be the y-coordinates labeled B by algorithm MARK. Note that the y;n's appear in reverse
order from the way procedure MARK labels them. For convenience, let yio) = yj0) = B(S) and
Yigkrn) = Yyp'ey) = T(S). Since the Pijp)i(p+1) is separable and the algorithm selects the y;y’s to
represent maximal separable subproblems with respect to the previous yjy's, we know that it is
ympossible for two yyy's to be in the interval (Wipy » Yitps1y |- Similarly, it is impossible for two
yi)’s to be in the interval | Yjip)» Yjp+))- Hence, k =k’ and g0 = ¥ie) < ¥in < vy < Y2 <
vim < oo < Y < ik < Yjtkar) = Yatk) In lemma 3 we prove an important property of LR-
decreasing and LR-increasing problems.

-~ Yi(m+1)
Yitm+1} -

Yiim)
Yjtm)

Yejm-1)

Yi(m—1)

Figure 2.2:

Lemma 3: Il Pigyy 1y.i(m+1) 18 20 LR-decreasing (LR-increasing) problem then Pjm_1) jim+1) i8 also an
LR-decreasing {LR-increasing) problem.
Proof: For brevity the proof is omitted. The proof appears in [6].

Let LEFT = { [|1 € By(1) and L) = L(S)} and RIGHT = { { | | € By(I) and R(}) =
338

R(S)}. In the following lemma we show that for each yj) and yj, there is a distinct horizontal
line segment from LEFT or RIGHT associated with it. For ¢, < z, we use HLS(y,z,,2,) to
represent the horizontal line segment with end points (z),y) and (za,y).

Il Yim+1)
Yitm+1) - —

O Yi(m)+t

i Yifm)
Yilm)

: Yigm—1)
Yim-np——=———— - - =7 ==

Figure 2.3:

Lemma 4:
(i) IT Pigm—1}.itm+1) is an LR-decreasing (LLR-increasing) problem then the line scgment
q I = IHJS(Yitm) X(rm(Pi(m)Ai(m)-H))y R(8)) (HLS(Yitm) [J(S)v X(lm(Pr'(m).r’(m)H)))) is in By (I}
an
(ii) if Pjim—1).j(m+1) is an LR-decreasing (LR-increasing) problem then then the line segment
| = H]‘S(Yi(m)]—‘(S)v X(lm(Pj(mi—l.j(m)))) (”LS(Yjtm) X(rnl(Pj(m)—l.j(m)))r R(S))) is in Eh(l)
Proof: For brevity the proof is omitted. The proof appears in [6].

The line segment identified by lemma 4(i) is referred to by li,) and the one identified by
lemma 4(ii) is referred to by lin). From lemma 3 and 4 we know that l,) € LEFT (RIGHT) iff
lim) € RIGHT (LEFT). If ¥(ligmy) = ¥(Liimy), then it is not possible for &) and Lim) to overlap
because we are assuming there are no horizontal guillotine cuts. Therefore, for each y; and yy ,
there is a distinct horizontal line segment in LEFT or RIGHT associated with it. In the next two
lemmas we show that each of the line segments identified by the previous lemma can be
associated with a distinct line segment in E,(I) such that their total length is at least X. This is
an important property needed to establish our 1.75 bounds. In lemma 5 we show that for each
litmy and ljin) there is another line segment in E, (1) such that the sum of their length is at least X.
Since this does not necessarily guarantee a 1-1 association between line segments, we need lemma

6.

Yi(m+1)
Yjim+1)

Yi(m)

Yi(m~1)

Yjm-1) - - —— -~~~ ==~ - =

Figure 2.4:

339

Lemma 5:

(i) If Pi{m—1),i(m+1) is an LR-decreasing (LR-increasing) problem then there exists at least one line
segment | in Ey(I) such that { = HLS(y, L(8), x(m(Pign),jm))) (HLS(y, x(rm(Pigm 1) j(m))):
R(8))), where giim—1) <¥ < yj(m) and

(i) il Pj{m—1),j(m+1) is an LR-decreasing (LR-increasing) problem then there exists at least one line
segment ! in Ey(I) such that { = HLS(y, X(rm(Pigm) jim+1)) R(S)) (HLS(y, L(S}),
X(I(Pigm), jim+1)))))y where gim) Y < Yjima).

Proof: For brevity the proof is omitted. The proof appears in 6].

When all the subproblems are LR-decreasing or LR-increasing, the previous lemma would
suffice for our transformation process, because it would associate each segment lim) and ljy) with
a unique line segment from E;(I) in such a way that the sum of their length is greater than X (
this is a fundamental property required by our algorithm). However, in general, there are LR-
decreasing problems interleaved with LR-increasing problems. For this case the previous lemma
does not guarantee the existence of a distinct line segment that could be associated with each k)
and Ly,). That is why we need to identify at least two line segments in some regions. Note that
in general not all regions have these two line segments, however-the two line segments always
exist when there is an LR-decreasing problem interleaved with an LR-increasing problem (or vice
versa).

- Yitm+1)
Yim+1)y - —
Yi(m)
Yjm)
g Yi(m-1)
Yi(m—1)
- Yi(m—2)
Yim-2)Fp ———— - - -~ "~ -7

Figure 2.5:

Lemma 6: If Pip_1)i(m+1) 18 a0 LR-decreasing (LR-increasing) problem and Pj, 2)i(m) is an LR~
increasing (LR-decreasing) problem, then (I Py jm))) = x(m(Pjim) jim) =
X(]m(Pi(nx~l]J(n1))) (X(”n(Pi(mfl)‘j(m))) = X(rm(Pj(mAl).j(m))) = X(rm(Pi(m—l),f(m)))) and there are at
least two distinct line segments {, I’ € E;(I) such that R({) = R(I") = x{lm(im—t).j(m))) and £, ' €
LEFT (L) = L(l’) = X(rm(P{(mAI],j(m))) and {, I’ € RIGHT) and Yi(m-1) < Y(l) <y < Yi(m)-
Proof: For brevity the proof is omitted. The proof appears in [6].

)

From lemma 3 and lemma 4 we know that if i) € RIGHT (l») € LEFT) then both
Pitm—1).itm+1) 204 Pji(n_1) j(m+1) ar€ LR-decreasing (LR-increasing) problems. Also from lemma 3
and lemma 4 we know that if !,y € LEFT (lyn) € RIGHT) then both Py _yyim41) and
Pjim—t).j{m+1) are LR-decreasing (LR-increasing) problems. Let EI = { im)}1 <m <k }and EJ
{Lmy} 1 £ m <k} We partition Elinto EI, and EI, and EJ into EJ, and EJ, as follows:

EIn = { [{(m) : LEN([{(m) U lj(m)) <X }; EIr = { li(m) I LEN(li(m) U [j(m)) Z X };

340

EJn = { lj(m) : LEN(lx(m) U lj(m)) <X }: and EJ(‘ = { lj(m) } LEN(llim) U lj(m)) Z X }

Obviously, liw) € EL, (lim) € EL) ifl ljin) € EJy (Lm) € BEJe). 11 lim) € EI then we say the
match for by is L) Similarly, if [y € EI, the match for Lmy is lim). If I is the match for I’
and !’ is the match for I, then we say that | and |’ form a matching pair.

The following procedure finds a match for each of the elements in set EI, U EJ;.

procedure MATCH

ES — ;
for m «— 1 to k do
if Ui,y € EI, and Py, _y)i(m+1) is a LR-decreasing (LLR-increasing) problem then
find a line segment { € LEFT (RIGHT) such that { ¢ ES UEI U EJ, yipn-1) < ¥(1) < ¥j(m)
and R(l) > X(]m(Pi(In—l)‘j(m))) (L(l) < X(rm(Pi(mfl),j(m))));
Let lj"(,,,) = HLS(Y(l)VL(S)vx(lm(Pi(mfl).j(m)))) (HI‘S(Y(Z)vx(Tm(Pi(m-—l)‘j(m)))VR(S)))
ES — ES U { ly,, b

Let i,y and 14

) be a matching pair;

endfor

for m « 1 to k do
if L) € BJ, and Py -1y j(m+1) 18 a0 LR-decreasing (LR-increasing) problem then
find a line segment [€ RIGHT (LEFT) such that [¢ ES U EI U EJ, yiimy < y(1) < ¥jtm11)
and LU) S X(rm(Px(m),j(mH))) (R(l) 2 X“m(Pr(m},j(mH))))?
Let l,’(,,,) = HIJS(YU)VX(”“(PMm),j(mﬂ)))?R(S)) (IHJS(Y(l)rl‘(s)vx(lm(};flm)‘j(mﬂ)))))
135S« ES U { l’,/(m) I8

Let l’,/‘m and) be a matching pair;

)
endfor

end of procedure MATCH

Lemma 5 and lemma 6 can be used to prove that ES can be constructed, ie., the line
scgment with the desired properties can always be found. Let T = E1 U EJ U IS, Let p = VBT
note that LEJ,) = IEL)). Since IBl} = 1)} = k and [BS} = 2 * |EL,}, we know that {T} = 2%k + 2*p.
It is simple Lo verify that | T N LEFT] = [T N RIGHT] = k + p and T contains k + p matching
pairs. Since the length of each matching pair is at least X, we know that LEN(T) > (k+p) X.

In phase one of procedure HVI_CUT we introduce a set of horizontal full cuts to
partition I into k+p+1 separable subinstanzes. Remember that set (1) contains the set of
horizontal full cuts introduced in phase one, Hi(I) = H(I) N E,(1), and H (1) = 1) - H(). We
will show that LEN(Hy (1}) < (k+p) X / 2. [n phase three of procedure HVH_CUT we identify a
st of guillotine cuts Hy(1). Remember that Hy(1} C E,(1). We will prove that LEEN(H(T) U Hy(1))
> (k+p) X. Therefore, LEN(H, (1)) < 0.5 * LEN(H (1) U Hy(1)) and the 0.5 bound is salistied.

Let us now order the line segments in T. Note that it is possible that two line segments
[and I of T have the same y-coordinate. However when this happens, the corresponding lines
cannol overlap since we are assuming that there are no guillotine cuts. Also, one of the scgments
is v(hi) or y{Ly)) and the other is y(l)) or y(l./r“). When we compare two elements with the same
v-coordinate value, l,y or l.]:() is considered smaller than f,,, or lj'i oy We sort all line segments
in T hy their y-coordinates and form the sequence fyy, Ly < Jgaseaasy) such that ¥y < vl
<o K ¥lgpagapy). Lot Loy and Lawgapan) be the bottom and top side of S, respectively.

Lemma 7: Py gfvsa is separable for 0 <w < 2%k + 2%p - 1.
Proof: For brevity the prool is omitted. The proof appears in [6].

Lt Toga = { lywy) byywr € T and w is odd } and Ty = { by § bygur € T and w is even }.

341

For each line segment [;(,) in T we define its complement as the line segment I5,), as follows:

if I(q(w)) € LEFT (RIGHT) then
its complement is the line segment {5, = HLS(y({w)),R (), R(8)) (HLS(y (4 (), L(S), L lg()))
).

Note that the complement of some line segment in T may overlap with another line
segment in T. This can happen only when two line segments in T have the same y-coordinate
value. Sets T¢4q and T, are defined to have the complements of the elements in sets T,4y and
Teven, Tespectively.

Given any nonempty non-separable problem P without guillotine cuts, we use the
following procedure to partition it.

procedure HVH_CUT

(1) Use MARK and MATCH to construct T;
Order the line segments in T following the rules mentioned above;
Partition T into T,q¢ and Tepen;
if LEN(T5¢q) < LEN(T.,) then introduce all the line segments in Ty
else introduce all the line segments in T5..n;

(2) /* for each resulting partition after step (1), introduce a vertical through cut as follows: */
if LEN(T54q) < LEN(T(,.) then let g = 1 else let g = 0;
for w = g to 2(k+p) by 2 do
case
s gy 18 Ligm) o L) for some m :
if ly+1) € LEFT then introduce the leftmost vertical through cut in Py(e) g(w+2)
else introduce the rightmost vertical through cut in Py w2y

Sy 18 li’(m) or {, . for some m :

7(m)
case
/* later on we show the existence of the through cuts we introduce at this step */
: lq(m+1) is lj/(_m) for some m and Yi(m~1) < y(ll[(1l!+”) S Yiim) *
if ly(w41) € LEFT then introduce a vertical through cut with x-coordinate value
equal to X(Im(Pi(m——l).i(m))) in Pq(w),q(tM-Z)
else introduce a vertical through cut with x-coordinate value
equal to x(rm(Pi(m--l],ll_m))) in Pq(u'),q(ll'+'l);
: lq("‘+lj is l,"(,,,! for some m and Ye(m) < Y(lq(u'+l)) < Yi(m+1)
if l;(w1) € LEFT then introduce a vertical through cut with x-coordinate value
equal to X(lln(P,‘(,,,)_J'(,,,+|')) in Pq(w)_q(m_;.g)
else introduce a vertical through cut with x-coordinate value
equal to X(rm(Pj(m).j(mH))) in Pq(vzv)Aq(tt*—t'l)'
endcase
endcase
endfor

(3) for each resulting partitions of step (2), introduce a horizontal guillotine cut if possible.

end of procedure HVH_CUT

Let us now establish some important bounds for LEN(H (I} U Hy(1)) and LEN(H,(1)). This
bounds are nceded to prove Lemma 9. Our result is given by theorem 1.

Lemma & Let H\{1) U Hy(l) and H{ (1) be defined as above. Then,
(i) LEN(H (1)) < min{ LEN(T%.,), LEN(Tiq) } € 0.5 * (k+p) * X;
(i1) LEN(H,(1) U Hy(1)) 2 LEN(T\0en) + LEN(Ty0q) 2 (k+p) * X; and
(iii) LAEN(H (1)) < 0.5 * LEN(H, (1) U Hy(1)).

Proof: I'or brevity the proof is omitted. The proof appears in [6].

342

Lemma 9: LEN(E;(1)) < 0.5 * LEN(E, (1)) and LEN(E.(I)) € LEN(E,(1)).
Proof: For brevily the proof is omitted. The proof appears in 6].

m]
Theorem 1: LEN(E,, (1)) < 1.75 LEN(E, (1))
Proof: For brevity the proof is omitted. The proof appears in 6].
0]

DISCUSSION

As pointed out in 2], there is a problem instance 1 such that LEN{(E,,(1)) = 1.5

LEN(E,,(1). In this paper we established the bound LEN(E,, (1)) < 176 LEN(E,,(I)). We
believe that our upper bound cannot be improved by following our proof technique. However,
there might be some other way of proving a smaller approximation bound.

REFERENCES

Du, D.7Z., and Y.M. Chen, "On Fast Heuristics for Minimum Edge Length Rectangular
Partition,” Technical Report MSRI 03618-86, Feb. 1986,

Du, D. 7., L. Q. Pan and M. T. Shing, "Minimum Edge Length Guillotine Rectangular
Partition,” Technical Report, MSR] 02418-86, January 1986.

Gonzalez, T., M~T. Shing and S.-Q Zheng, "Bounds for Rectangular and Guillotine Par-
tition", Technical Report #TRCS 86-15, CS Dept., UCSB, July 1986.

Gonzales, T. and 5.-Q. Zheng, "Bounds for Partitioning Rectilinear Polygons", Proc.
Symp. Computational Geometry, June 1985, pp. 281-287. {also appears as Technical
Report #85-22, CS Depl., UCSB, Dec. 1985).

Gonzalez, T. and $.-Q. Zheng, "Approximation Algorithms for Partitioning Rectilinear
Polygons”, Technical Report # 85-21, CS Dept., UGSB, 1985.

Gonzalez, T. and S.-Q Zheng, "Improved Bounds for Rectangular and Guillotine Parti-
tion", Technical Report #TRCS 86-16, CS Dept., UCSB, July 1986.

Lingas, A., "Heuristics for Minimum Edge Length Rectangular Partitions of Rectilinear
Figures", 6th Gl-Conference, Dortmund, 1983, Lecture Notes in Computer Scicnce, 195
(Spring-Verlag). .

[ingas, A., R.Y. Pinter, R. L. Rivest and A. Shamir, "Minimum FEdge Length Partition-
ing of Reetilinear Polygons”, Proc. 20th Annual Allerton Conlerence on Communication,

ol

Contro! and Computing, Monticello, lllinois, Oct. 1982. }
Leveopoulos, €., "Minimum Length and Thickest-First Rectangular Partitions of
Polygons,” Procecdings of the 23rd Allerton Confcrence on Communication, Control and
Computing, U. of lllinois, Oct. 1985.

Leveopoulos, (., “last Heuristics for Minimum Length Rectangular Partitions of
IPolygons,” Proceedings of the 2nd Computational Geometry Conference, June 1986.
Rivest, R. L. "The 'P1I' (Placement and Interconnect) System”, Proc. 19th Design Auto-

mation Conlerence, June 1982,
Shing, M.T., private communication.

343

