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' ABSTRACT

paths for other nets. The path for the remaining nets is selected using several
strategies and 28 layouts are obtained. The best of these layouts is the solution
generated by our algorithm, ’ ;
I INTRODUCTION i

Let G be a rectangular component of size h by w (height by width). There are n
terminals (T,, Ty, ..., Ty) on the sides of G. These terminals are partitioned into m*
subsets denoted by N N, ... Nn. Each subset N; is called a net and it is assumed |
that | N; | > 1 for alli. The problem depicted in figure 1.1 consists of five nets: N, = {75,
< Ta. T . Np={T,, Tg, Tio. Tl Na={Ts, Tia} , N, = {Ts. Ty, To} and N5 = {T),..
Ti3. Ti5). It is assumed that every pair of terminals is at least A > 0 units apart and

all line segments must be at least A units away from every side of rectangle G except in
the vicinity where a line segment connects a terminal. The R1y problem consists of -
_Specifying paths for all the interconnections subject to the rules mentioned above in

the wires inside a rectangle (with the same orientation as G) of least possible area.
This problem has applications In the layout of integrated circuits ({L] and [R]) and
conforms to a set of design rules for VLSI systems [MC]. i

The 2-R1M is defined similarly, except that all nets are restricted to be of size two.
Hashimoto and Stevens’ present an O(nlogn) algorithm to solve the R1M problem for
the case when all the points in $ lie on one side of G. An (( n log n ) lower bound on the
worst case time complexity for this problem was established in [GLL]. Algorithms to
solve the 2-R1M problem appear in [La] and [GL2]. If more than two layers are allowed
and wire overlap is permitted, the problem becomnes an NP-hard problem [SBR). Other
generalizations of the 2-R1M problem have been shown to be NP-hard [La]. Gonzalez
and Lee [GL3] present an 0( n?) approximation algorithm for the R1}{ problem that
generates a solution with area < 1.69 * OPT. I this paper we present an approximation
algorithm with a worst case approximation bound of 1.6,

terminals on exactly i sides of G. In section I we introduce our notation and present
some basic results. In order to simplify the exposition of our results, we begin by
presenting approximation algorithms for restricted versions of the RiM problem. In
section I1I-V we present an approximation algorithms for the RIM-3, R1M4 and R1M-2
problems. In section VI we combine the results obtained in sections II-V to obtain our

498



16 approximation algorithm for the R1M problem.

Sigure 1.1
11 DEFINITT ONS AND BASIC RESULTS,

Label the sides of the component (in the obvious way ) left, top, right and bottom.

L if Ty is locateq infs,, S(,H),mdm]. The function I(j) indicates the index of the net to
which termina) T; belongs, The function L(j) ig defined in such a way that the interval

[7;. Trgy] is the Smallest interval that includes all the terminals from pet Nigg). Setp’

=ldy.dg,..., 2} is said to be an assignment if the cardinality of set p jq m and D
contains exactly one indeyx of a terminal from each net, Any subset of an assignm
said to be a partial assignment. An assignment D indicates the starting point for the

For any assignment ( or partia] assignment ) p we define the height Sunction Hp
for x,y {1, Tz, TRl u {So, Sy, Sz, S3f as follows:
Hp(x, y) = max{ number of paths given by D that Cross point z | z ¢ [x,y]).

For example, Hp(So. S)) is 1, Hp(Ts, T5) is 3 and Hp(S2. S3) is 3 for the assignment,

D, whose layout appears in figure 1.1, :

Lemma 2 ;. For every assignment D, there is a rectangle Q of size hg by Wy, where
ho=h+(HD(51.Sz)+HD(53-So))')\. and '
Wo =w+ (f{p(Sc f Sl) + HD(SZ ’ SS)) *A

with the property that rectangle G together with the interconnecting Paths defineq by

D can be made to fit inside Q. A layout with area hg *wy can pe constructed in O(n log
n) time. :

Progf: The proof is a direct &eneralization of the Proof for the 2-RiM problem that
appears in [L]. The algorithm that construets the fina| layout uses as a subalgorithm
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the procedure given in [GLL)] and [HS).

Net ¥; is said to be a global net if at least two of its terminals are located on
opposite sides of G. Net N; is said to be local otherwise, i.e., if al] its terminals are
located on the same side of G or on two adjacent sides of G. Nets N, = {7y, Ty, Tyq,
Tii{and Ng = {75, T2 ) are the only global nets in the problem depicted in figure 1.1
For assignment D we define the function A(D) as

(h+(HD(S,.Sz)+Hp(Ss,So))‘)\) ‘(w+(HD(So.S,)+Hp(Sg. S3))*A)
ie., the total area required for a layout of G and all the interconnections given by D.
Definition 2. 1. p

Let D' be the partial assignment in which all the local nets are connected by paths
crossing the least number of corners of G. . =

i e

q

Lemma 2.2: Every assignment D can be transformed to an assignment M such that p' c ]
Mand A(M) < A(D).

Proof: The proof follows the same lines as the one for the 2-Ri1M problem that appears
in [L]. 5
At this point our algorithm abandons the procedures given in [La} and [GL2]. The
main difficulty that we encounter in extending the results for the 2-R1M problem to
this problem is that the divide and conquer step seems not applicable. The reason for !
this is that there seems to be no rule to Separate the nets with terminals located in
three or four sides of G into groups that can be routed independently of each other.

1II. APPROXTHATION ALGORITHM FOR THE RIM-3 PROBLEHY,.

In this section we present an approximation algorithm for the R1M-3 problem. Let
M3 be the set of global nets with terminals located on exactly three sides of G. Clearly,
all global nets belong to set Ma. For the set of nets M3 we construct assignment Dy as
follows: Dg = { all nets in M3 are connected by paths that cross the least number of
corners of Gf. Let #{% (#5%) be the set of all nets in M3 without terminals located on
either the left or right (rtop.or bottom) side of G. Let mJ? ang M3" represent the
number of elements in MEP and Mg respectively, : :

i
i
i
:
i
{
|

Lemma 3.1: Let D be an optimal assignment such that D' ¢ D, Let M be D except that
all nets in #J% y HER which are assigned as in our algorithm. Then LG
Hu(S51.S2) + Hy(S3,5,) < Hp(S1.52) + Hp(S5,S5) + 232, and .
Hy(S0.5)) + Hy(S2.53) < Hp(S0,.S,) + Hp(S2,S3) + z4R, +

where zJ% ( IES,LR ) is the number of nets in xJ8 (X4®) and xie (X4?) contains all the
nets in setAMgr (M5R) that are connected differently in D angd M.

contribution to our lower
bound for
h (M+Hn(S..Sa)+Hn(Sq Sp)
1.5mi¥ 30,520

contribution to our lower
bound for
w ()\)'FHn(Sn S:)"‘Hn(s').sq)
2miP 10,5218
i + 0.5z

Table 3.1: Lower bounds for the R1M3 problem,

Lemma 3.2: Let D be an optimal assignment such that D' ¢ D. Then assignment D and
rectangle G satisfy the lower bounds given in table 3.1. .

Theorem 3.1: For the R1M-3 problem, let D be an optimal assignment such that D' c D !

1V. APPROXTMATION ALGORI THM FOR THE R1M-4 PROBLEY.

In this section we present an approximation algorithm for the R1M-4 problem. Let
M4 be the set of al] global nets with terminals located on the four sideg of G and let m,
represent the number of nets in it. Clearly, all global nets belong to set My Nets M
and ¥; (both in set M4} are said to be agreeable if on some side of G no terminal from
A/‘« is between any two terminals from pet N; and no termina
between any two terminals from net N;. i

the set M, into the sets M{, MY, MT, Mf'.




R,

these sets consist of 1-tuples, 2-tuples and 4-tuples, by partition we mean that every
elerment in set M, is in one and only one of the tuples in these sets. After the algorithm
terminates, let m{ represent the number of tuples in MY, for X € § A, N.T.R.B,L
.T.R,BJ. ltisvery important to keep in mind that sets M4, M7 , M | M? and ME
consists of 1-tuples, set Mﬁ" has only 4-tuples and the remaining sets contain only 2-
tuples. .

precedure PARTITION

MY« § NN €Myand [N;|=4;
W My - MY
Z < { N; | N; € W has at least two terminals located on each side of G};
WVeWw-7Z;
MEw b ME o 6 ME « g Hh v ¢ BY « ¢,
while |Z| = 4 do
‘et Ny, Nj, Np and N, be any four nets in Z;
Y any two of these four nets are agreeable
then delete from Z two agreeable nets (two out of the four) and add them as a
pair to M] if these two nets are agreeable on the left or right side of G,
otherwise add these two nets as a pair to 4§
else delete all four nets from Z
MY« MY U (NN NN ) -
andif;

endwhile;
// iater on we explain what to do when Z ¢//
while there is a net in Z with at least two terminals located on side X and exactly

one terminal located on the remaining sides of G do -,
Let y be one of such nets and X be the side on which it has more than one terminal;

ZeZ-ty;
MY« Mfyu by
endwhile; .

WewWuz:
% “{ N; | N; € W has at least two terminals located on the top side if G{;
- W-7Z: :

while there are two nets in Z with exactly one
terminal located on the bottom side of G do

delete two of such nets from 7 and add them as a pair to M];
endwhile; .

while there are two nets in Z with exactly one
terminal located on the same side of G do
delete two of such nets from 7 and add them as a pair to M7
endwhile:

// later on we explain what to do when 2 # ¢ //
%{‘- { N; | N; € W has at least two terminals located on the right side of G i
«W-Z

whils there are two nets in Z with exactly one
terminal located on the left side of Gdo

delete two of such nets from Z and add them as a pair to Mf;
endwhile: C

while |7 > 2 do
delete any two nets from Z and add them as a pair to MR
endwhile;

// later on we explain what to do when Z # o // ‘

‘ZVF {N; | N; €W has at least two terminals located on the bottom side of G §;
~W-Z

while |7| > 2 do

femove any two nets from Z and add them to M? as a pair;
endwhile;
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// later on we explain what to do whenZ #¢ //
end of procedure
For some problem instances the algorithm fails to assign some nets to any of the
sets M, X€{ A, N, T .R,B.,L", L.T.R,B}. Let us assume that this is not the

case, i.e., Z is always empty whenever we reach each of the "// later on ... //* com-
ments in our procedure. Insection VI we explain what to do when this is not the case.

o) Construction of the Assignment Dj.

In what follows we explain how the assignment Dy for all the nets in set #¢ is to be
constructed. Figure 4.1 gives a layout for the assignment 0, constructed by our pro-

"« cedure for a set #{ with four nets. For any permutation, , of the nets in set #{ and

an integer i (0 < i< 3) we define an assignment ( denoted ASG(m,i) ) as follows: the first
net in 7 is connected by a path that begins on side i and ends on side (i+3)mod(4); and
the path connecting the kth net in begins on side j and ends on side (j+3)mod(4).
where j is the side on which the path connecting the (k-1)st net in m ends. We claim
that for every integer i (0 <i = 3) there Is a permutation, © (that depends on i) of the
nets in set ¢ such that there is a layout for assignment ASG(m,i) with the property
that for any k(1 <k < m$ ) the path connecting the (k-1)st net in 7 and the path con-
necting the kth net in 7 can share the same track on the side where the path connect-

ing the (k-1)st net ends. In this case we say that 1 is a valid permutation with respect |

toi. We claim that every integeri, 0<i=< 3, there is a valid permutation for the set of
netsin #{. Assignment [ is Just ASG( m, 1),

1

Figure 4.1: Assignment D} for the case whenm{ = 4,

b) Construction of the Assignment Dy.

The assignment Dy is constructed by applying the following rule to each 4-tuple in :

MY, Let ( N, Nj. Ni , N, ) be any tuple in set M{. Let us assume that these nets have :
been ordered in'such a way that N; is the net (amongst these four nets) whose bottom- '

most terminal located on the left side of G is closest to the top side of G; net Nj is the

net (amongst Ny, N and N,) whose rightmost terminal located on the bottom side of G

is closest to the left side of G; and net N, is the net (amongst Ny and N}) whose left-
most terminal located on the top side of G is closest to the right side of G. A layout for !

the assignment constructeq for these nets is given in figure 4.2,
¢) Construction of assignment Dy forX € {T", R’ , B' AN

Assignment D(x. Xe{T,R,B,L ]} is constructed by a procedure similar to the .

one used in part
d) Construction of assignment Dy forX € { T, R, B .

a). For brevity we will not discuss it.

i

Assignment Dy, X € { T, R, B ], for the set MY is constructed by ?\Pplying the follow- ‘

ing rule to each 2-tuple in MY, Let v, Nj) be any 2-tuple in set #¥. From algorithm
PARTITION we know that both of these nets are agreeable on at least one side of G
because both of these nets have exactly one pin located on some side of G. These nets

is Selected using the following priorities: the opposite side of X has the highest priority:
and the adjacent sides of G have the lowest priorities. Note that side Z cannot be the
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N, .
. N

Lemma 4.1: Let D be an optimal assignment such that D CD. Let Mbe D except that
all the nets in M u MY are routed as in our approximation algorithm. Then -

Hy(S1.S2) + Hy(S43.5,) = Hp(S1.S2) + Hp(S3,5,) + 0.5mf + 1+ 7x * #¥. and

Hyu(S2,53) + Hy(S0S,) < Hp(52.83) + Hp(So.S)) + 0.5mf + 7y = M{, where x and y
arc nonnegative reals such that x + y=1

In what follows we assume that m¥, X ¢ {T.R.B L is a multiple of four. In
section VI we indicate what to do when this js not the case.

Lemma 4.2: Let D be an optimal assignment such that D' ¢ D. Let M be D except for all

%_lge netsin #{, X e { T , R’ » B'. L'}, are routed as in our approximation algorithm,
en

Hu(S\,S2) + Hy(S3,5,) = Hp(S1.S2) + Hp(S5.50) + a » m¥, and
Hy(Sz,Sa) + Hy(So,Sl) = HD('SZ-SS) + HD(SQ,51)+ b* m{, where
13 ifXefT "B _le ifXe{r .p

(e otherwise; and b= 3 otherwise,

ForXe§{T,R,B { let p¥ be the fraction of pairs in ¥ that are connected in Dy by
Paths that do not overlap on the top or bottom side of G, and ¢qf = | - Pi. Since all
Pairs of nets in M% are agreeable on the top side of G, we know that qf =o0.

lemmq 4. 3 Let D be an optimal assignment such that D' C D. Let M be D except that
all nets in MY X€§T R B §, are routed as in our approximation algorithm. Then

Hy(S,.55) + Hy(S3.S) < Hp(S1.S2) + Hp(S3.S¢) + p¥ » m¥ + 2q% « m{,
Hy(S2,S,) + Hy(S50.5)) = Hp(S2.53) + Hp(50,5))+ 2p¥ » m{ +qf » m{.

contribution to our lower contribution to our lower
set bound for ound for
h/()\)+Hn(Sy So)+Hp(Sa Si) W/(M*‘Hn(Sn S|)+Hn(So Sa)
I 2.5m7 | 2.5m7
14my Y

am] + 4m?

45mI + 4.5mF
Iy S ™ = S

o] m] ¥ 5m] + 6m? oI Bl + el
FemB ¥ 6m¥F —" o
Py *my + 6my my +5m

Table 4.1: Lower bounds for the R1M-4 problem.

lemm,q 4.4-Let D be an optimal assignment such that p' C D. Then assignment D and
rectangle G satisfy the lower bounds given in table 4.1, A
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Theorem 4.1: For the R1M-4 problem, iet D be an optimal assignment such that p' ¢ p
and let M be the assignment generated by our algorithm. Then, A(M) < 1.6 * A(D). 3

V. APPROXIMATION ALGORITHM FORTHE R1M-2 PROBLEM.

In this section we present an approximation algorithm for the R1M-2 problem."
Clearly, all global nets contain terminals located on only two opposite sides of G. Let
MI8 (MR represent the set of global nets with terminals located only on the top and
bottom (left and right) sides of G. Let mI% and mi? represent the number of nets in
MIB and MR respectively. Assume that the number of elements in each of these sets

Mz" is similar. The set MIP is partitioned into six equally sized groups. Later on we
explain precisely how this partition is obtained. A group is said to be routed by a path
type L (R) if all the nets in this group are routed by a path that does not cross the right
left) side of G. We will construct 29 assignments. FEach of these assignments
corresponds to a string of six elements from the alphabet { L, R{. The ith element in a
string specifies the type of path used to connect all nets in the jth group, Let us now
formally define this construction process. For each net ; in M1% (4} ), let p(j) be the
index of the leftmost {bottommost) terminal of N; located on the top (left) side of G.
Let P2 = { p(j) | N; € ME0 }, and PR = { p(j) | N;i'€ M§® |, Each of these sets is parti-
tioned into the sets N8 and N tor0<i<5as follows:

NTE = {1() g j is the Ith smallest value in the set PT8  andi
(i/s_‘fpmt <k = ((i+1)/5)*P™| | and %
NI = x((') g s the kth smallest value in the set pIR and.

i/5)* PR} <k = ((i+1)/5)%| PLA] J .

We define the following sets for 0 < i < 63; i e
DI = {if in the binary representation of i the ;H—l)st least significant bit is one then:
the connecting path for each net in set NLE does not cross corner So, otherwise

the connecting path for such a net does not cross corner Sy | 0 < I< 5{, and 4

DR = {if in the binary representation of i the Ll;l)st least significant bit is one then
the connecting path for each net in set NI does not cross corner S, otherwise
the connecting path for such a net does not cross corner Spl0=i<5]. :

For 0 < i,j = 83, define assignment Dijas D ;=D upiBy DI, and 1€t P be one of the

D; 4's of least area. ]

In lemma 5.1 we assume that when interchanging the connecting paths of two nets
in M% that cross on the top side of G will increase by at most 2 the vertical height of
the assignment. This assumption is not always true. In figure 5.1 we show one coun- !
terexample to this assertion. We call this interchange a type | interchange. The two |

nets involved in this interchange form a type | pair. We also assume that when inter- 1

statement always holds true. ) J

Lemma 5.1: Let D be an optimal assignment such that o' < D. There is an assignment
D ; -g_constructed by our algorithm) such that if M is defined as D except for all the nets |
in M8 v MER which are routed as in the assignment D; ;, then

a) Hu(S1.S2) + Hy(S5.S,) < Hp(S1.S2) + Hp(Sa,Sy) + (0.6) *m1? ]
b) Hu(S0.51) + Hy(S, S,) < Hp(S0.S1) + Hp(S,.Sy) + (0.6) * miR, i

It is assumed that when D is transformed to any of the assignments [ ; and two paths
that cross on the top side of G are interchanged, such an interchange is not a type 1

interchange. |

Let L be an optimal solution that includes ', The existence of at least one of these
assignments is guaranteed by lemma 2.2, Let S be any of the D, ; assi&nments. The
difference between S and L is the way in which some nets in M.;fb)u M3" are routed.
Lemma 5.1 shows that at least one of our assignments differs in vertical height from L
by at most 1.6 * m{? and in horizontal height by at most 1.6 * mI®. As noted in the

text appearing immediately before lemma 5.1, we cannot yet claim that the 1.6 bound
holds when type | interchanges occur.,

In order for our 1.6 bound to hold true we will transform each assignment S (each
of the Dij's) to another assignment R such that if the total increase in vertical height
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when transforming L to S by interchanging the nets in MR was < v + 3a, where a is the
number of type | interchanges made and w is the contribution from al] other inter-
changes, then the actual difference in vertical height between L and R is at most w +
Zo. Before presenting our transformation algorithm we make 2 couple of definitions,

a) Before the interchange b) After the interchange

Fig. 5.1: Type 1 interchange
Lefinition 8, . A pair of nets, (a,b), in M8 is said to form a CTOSSing pair in an assign-
ment if
i) Net"a”ig connected by a path that does not cross the right side of G,
i) Nat "b"ig connected by a path that does not cross the left side of G, -
i) Cn the bottom side of G all the terminals from net "b" appear to the left of all the
. lerminals form net "a”. Ang
i¥) On'the top side of G there is at least one terminal from net “a” located to the right
“f the rightmost terminal from net "b" and at least one terminal from net "a" is
ocated to the left of the leftmost terminal from net "b", :

One can easily prove that

crossing pair. La ir has harming effects only when it ig a
conflicting pair,

Lefinition 5 o. A crossing pair (a.b) includes point x if either of the two following congj-
lions ig satisfied:

B X is located on the top side of G, then aj terminals from net "p" located on the top
Side of G appear to the left of x and the rightmost termina] from net "a" jg located
to the right of x. Or

Wy i located on the bottom side of G, then all terminals from net "p" located on the

side of

ottom G appear to the left of x and all the terminals from net "a" are
locateq to the right of x.

Defln?lion 5.3: A crossing pair (a,b) Partially inclydes point x if x i located on the bot-
Om side of G and either of the two following conditions is satisfied:

1) Al terminals from net "b” located on the bottom side of are located to the Jeft of x

and the rightmoest terminal from net “"a" located on the bottom side of G is not
located to the left of point x.

N Note that if point x is included in a Crossing pair then it is also partially included in
“but the converse is not always trye,

pD:ﬁnition 5.4: A conflicting pair, (a.b), is a Crossing pair that includes the leftmost




leftmost or the rightmost point with maximum height located on the bottomn side of G.

Our postprocessing procedure will find conflicting pairs and interchange their con-
necting paths. In figure 5.3 we show a conflicting pair and in figure 5.4 we indicate how
these paths are interchanged. This transformation reverses the effects of type | inter-
changes.

|
11T
babb aa
b a a

[

- O

]
b

Fig. 5.3: (a.b) forms a conflicting pair.

—tim ||

aa babbd a a

b b a a

LT ]

Fig. 5.4: Interchange of the conflicting pair given in figure 5.3.

algorithm MODIFY
R« S;
while there is a conflicting pair in R do
interchange a conflicting pair in R
endwhile .
end of algorithm

Let o be the number of type I interchanges made when transforming S to L and let
w + Ba be the total increase in vertical height because of such transformation.

Lemma 5.2: The vertical height of assignment R minus the vertical height of assign-
ment L is at most w + 2a. :

contribution to our lower contribution to our lower
set bound for bound for
h/(AV+ Hp{S .S+ Hp(S, Ss) w/(\)+Hp(S, S )+ Hp{S,. S4)
MY mi¥ 2mzi¥
MEE 2mi? mif

An algorithm similar to MODIFY has to be applied to the B,
claim the bound 1.8 * M4°. Let us refer to this new procedu

Table 5.1: Lower bounds for the RIM-2 problem.

rithm works as follows:

Obtain assignments [, ;;
Use MODIFY and MODIk

Output the assignment M; j of least area;

Lermmma 5.3: Let D be an optimal assignment such that
M ; gconstructed by our algorithm) such that if
in }vizﬂ v M5® which are routed as in the assignment M; ;, then

Q-LR to transform each [, ; into

M is defined

a) Hy(S1.52) + Hu(S3.50 ) = Hp(S1.S3) + Hp(Sa.50) + (0.6) * mpB
b) Hy(S0.5,) + Hu(sz-s;a) < lp(Se.S)) + Hp(S2.S3) + (0.6) * miR.

Lemma 5.4: Let D be an optimal assignment such that D’

rectangle G satisfy the lower bounds given in table 5.1.
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a new assignment, A; ;;

D' C D. There is an assignment
as D except for all the nets

€ D. Then assignment D and
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Theorem 5.1: Let D be an optimal assignment sach that D' CDandlet P be the assign-
ment produced by our algorithm, Then, A(P) =< 1.6+A(D).

VI. APPROXIMATION ALGOR] THHM FOR THE R11{ PROBLEM,

In this section we show that our algorithm takes 0( n? ) time and generates a solu-
tion with area < 1.8 * OPT, where OPT is the area of an optimal solution.

algorithm for the R1M Problem

Construct assignments ', Dy and Dy;

Diy « DUDyU D 0D plR tor 0 i,j < 63;

Apply algorithm MODIFY and MODIFY-LR to each D, to obtain #,
Let P be one of the M ;'s of least area:

Construct and output a layout with area A(P) for P;

end of elgorithm
Theorem 6.1: The time complexity of our procedure is O n?).

Theorem 6.2: Let D be an optimal assignment such that [’ C D and let P be the assign-
ment produced by our algorithm, Then, A(P)< 1.6+ A(D).

Our algorithm generates 212 assignments and it outputs one that requires the least
:ayout area. An algorithm that only generates 2% ass;i aments can be easily obtained
by only taking the best of the modified Dy v D, v D/7 together with the best of the
modified Dy v D, U DER For brevity we will not prove that this solution also satisfies
our approximation bounds. In sections [V-V we assumed that the number of nets i
some sets was a multiple of some fixed constant. More specifically, we might have to
delete at most 5 nets from sets #J# ang M5, and at most 23 nets from #,. Al of these
" number of terminals can be routed optimally by trying all possible
routing paths and then selecting the best of the solutions generated. if some of these
nets do not have a smai]” number of terminals then select any routing paths for them,
note that it will not make too much difference which routing -path is selected since
their contribution to the lower bound in an optimal solution is large (contribution from

e
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