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AESTRACT

The problem of connecting a set of terrinals that lie on the sides of
3 rectangle to minimize the total area is discussed. We present an 0( n
log n ) algorithm to solve this problen. Our strategy is to reduce the
problem to several subprcblems that have the preperty that no matter ithat
instance we start with, at least one of these subproblems can be solved
optimally by the greedy method. If the set of terninals is initially
sorted, then the -time complexity of our algorithm reduces to 0 nd (n) ).

I. INTRODUCTION
= 22 TPPOL L AU

Let T be a rectangle and S be a set of points on the sides of 1.
Each point in set § has to be conrected by a wire to exactly one point in
set S. The wires can be assiined to two different layers. It ig assumed
that all wires in one layer are parallel to the x-ayis and all wires in
the other layer are parallel to the y~axis. Yires in different layers can
be connected at any siven point z by a wire perpendicular to the layers if
both wires cross point z in their respective layers, Every pair of dis—
tinet and parallel wires must be at least } units apart and every wire
must be at least } units {rom each side of T, except in the region where
the wire joins the peint in S it connects. Also, no wire is alloved inside
T in any of the layers.

Problem WR consists of Specifying patns for all the connacting
wires in such a way that the total area is minimized. That is, to place T
together with a1l the connecting wires (that nust satisfy the restrictions
imgosed above) inside a rectsngle of least possible area, This problem has
applications in the layout of integrated eircuits ([L] and [RI) and con-
forms to 2 set of design rules for VLSI systems [MC).,

In [HS] and [GLL1 an C( n log n ) algorithm is presented to solve
the WR problen for the case when all the points in § lie in one side of T,

where n is the number of elements in set S. In LI an 0( n°) algorithm is
presented to solve the WR problem. If nore than two layers are allowed,
then the problem becomes NP_hard [SBR]. Other generalizations of the uR
probler have also been shiown to be MNP-hard fLal. 1In this paper we present
an 0(n log n) algorithm to solve the UR problen.

Initially our algorithm follows the steps of LaPaugl's algorithm [L].
These steps are the divide—and—conquer and the final assignuent of the
direction for the connecting paths of all the local terminals (a terminal
is said to be local if it is to be connected to another terminal that is
located on the same side or on an adjacent side of T). After these steps,
it is only required to solve a restricted version of the WR problem. In
this restricted version the only non-loecal terminals appear on the top and
bottom sides of T. It is at this point that our algorithm will differ
from the one given in {L].

—_
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First we show the existence of an optimal solution that satisfies the
following properties:

a) Balanced. The number of paths crossing two predefined points on
the top side of T differs by at most one.
and b) The maximum nuwmber of paths crossing any point on the top side of
T - will not differ by more than one from the ninimum, taken over
all feasible solutions, of the waximum number of paths crossing
any point on the top side of T.

Tuo suboptimal soluticns satisfying conditions (z) and (L) are defined.
Both of tliese solutions can be easily generated. We then shiow that there
is an optimal solution that ciffers frow one of these suboptimal solutions
by a set of connecting paths that can be easily characterized. Our algo-
rithn generates these suboptimal solutions and interchanges the direction
of  several sets of paths producing two solutiens. At least one of these
solutions will be an optimal solution.

In section II we present some initial definitions and the steps from
LaPaugh's ([L] algorithm that our procedure follows. Then in section III
ve present a series of lermas that show the existence of an optimal solu-
tion that can be generated by tihe greedy method. The final algorithm and
complexity issues relating to the WR problet: are discussed in section
Iv.

II. Definitions and Problem Reductions

In this scction we redefine the WR problem. Our algoritin can be
easily explained under this new definition. We also define some terms and
present the steps of LaPaugh's algorithm that our procedure follows.

Let T be a rectangular component of size - by w (height by width).
There are 2n terminals (T1 ' T2 Y oeen T2n) on its sides. It is assumed

that every pair of terminals is at least A units apart. The function Ci)

, for 1 <£1i < 2n, indicates that terminal Ti is to be connected to Lerui—
nal TC(i)' If C(i) = J then C(J) = i, i.e., C is a symmetric function.
Ti is to be connected to TC(i) by a path that starts at terminal Ti and
ends at terminal TC(i)' Each connecting path can be partitioned into a

finite number of straight line sepgrmients, Each of these line segments must
lie on the same plane as T, be on the outside of T and be perallel to a
side of T. Perpendicular line segnents can intersect at any point, but
parallel line segments nust be at least A units apart. Also, all line seg—
ments must be at least } units avay from every side of rectangle T except
in the vicinity where a line segrient connects a terminal. The WR problem
consists of specifying paths for all the interconnections subjgct to the
rules mentioned above in such a way that the vtotal area is minimized,
i.e., place the compcnent together with all the interconnecting paths in-
side a rectangle of least possible urea. '
Label the sides of the component (in the obvious way ) left, top,
right and bottom. Starting in the left-bottom corner of T, traverse the
sides of the rectangle clockwise. The ith corner to be visited is labeled
Si—1‘ Assume that the ith terminal visited is terminal Ti . The close in-

terval [x , y] , where x and y are the corners of T or the terminals T

i
consists of all the points on the sides of T that are visited while
traversing the sides of T in the clockwise direction starting at point x

and ending at point y. Parentheses are used instead of square brackets
when it is desired to specify an open interval. We use ) Sl] . [Sl s
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32] , [82 . S3] and [53 , SO] to represent the left, top, riint and bottom
sides of T, respectively. Terminal Ti is saicd to belong to side £, S(i) =

£, ir Ti is located in [S( R S([+1)mod(4)J'

R — —
S1 T3 Tq T5 52
7
T Tg
SO T‘}0 T9 53
2

figure 1.

Set D = {d1 . d2 Veees dk} is said to be an assignment of Jirections
——=-oTROL Of  directions

if the cardinality of set D is n
and { di . C(di) 1< <n}o=1{1,2,...,2n}.

D is said to be 3 partial assignment if the cardinality of set D is <n,
{ di ' C(di) H i<k} c{1, 2 veeey 20},

t t
and:{di,c(di):1<i<k}:=2*k.
! - - i
An assignment D indicates the direction of the connecting path for all
terminals. The connection of terminal Ti' for any i in D, to terminal

TC(i) starts at terminal Ti moving perpendicular to side S(i), it then

continues moving in the clockwise direction with respect to T until it ean
be joined to a line segment (all of it on the cutside of T) perpendicular
to S(C(i)) that starts at terminal TC(i)' In a partial assignment, the
direction of some connecting paths might not be specified. The assignment
for the layout given by figure 1.1 is (3 +5,8,9, 10}. For any [ €
D, we say that the connecting path for f as given by D crosses point z
it z e [¢2, cu.

For any assignment ( or partial assignment ) D we define the layer
function HD for x,y € {T1,T2,.... T2n} () {SO.S ,82.83} as follows:
HD(x,y) = max{number of paths given by D that cross point z | z € [x,y1}.
Let D be the assignment for the layout shown in figure 1.1. For assignment
D we have that HD(SO , S1) is 3, HD(T5 ' TS) is 2 and HD(S2 . 53) is 2.
We shall refer to HD(x , ¥) as the height of the interval {x , yl in T
{for assignment D.

The next two lenmas establish that the WR problem reduces to the
problem of finding an assignment D with least

a ¥ Q

(HD(S1 ' 52) + (HD(o3 ' SO)) (HD(SO y 51) + (HD(S2 f 83))
and then in 0( n log n ) time (0(n) time if the set of terminals is inj-
tially sorted) one can construct a final layout for the connecting paths.
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Lemma 2.1: For every assignment D, there is a rectangle Q of size hQ by
w,, Where

Q
»
with the property that rectangle T together with the interconnecting paths
defined by D can be made to fit inside Q.

Proof: The proof appears in [L]. []

hQ =h + (HD(S1‘82)+HD(S3'SO))' *4\ and Wo T W+ (HD(SO.S1)+HD(52,S,);)‘) ¥

Lemma 2.2: A final layout with the area given by lemma 2.1 can be obtained
in 0( n log n ) time (O(n) time if the set of terminals is initially sort-
ed) for any assignment D.

Proof: The proof of this lemma appears in [L]. The procedure that con-
structs the final layout, uses as a subalgorithm the procedures given in
[GLL] and [HJ1. 2

Terminal Ti is said to be a global terminal if [S(i) - S(c(i))] = 2,
i.e., terminal Ti is global if it is to be connected to a terminal Jocated
“on the opposite side of the rectangle. Terminal Ti is said to be 1loecal

otherwise, 1i.e., if it 1is to be connected to a terminal located on the
same side or on an adjacent side of the rectangle T. The problem shown in
figure 1.1 has T2 , T8 ' TM and T10 as the only global terminals. For as~

signmnent D we define the function A(D) as

% ® 3 3 ¥
(h + (HD(S1' 52) + HD(S3' SO)) N (v + (HD(SO, S1) + HD(JZ, S3)) N
i.e., the total area required by the layout of T together with all the in-
terconnections specified by D. >
Definition 2.1: D!

Let D' be the partial assignment in which all the local terminals are
connected by paths crossing the least number of corners of T. []

Lemma 2.3: There is an optimal assignment, D, such that D! C D.
Proof: The proof appears in [L]. []

Lemma 2.3 shows that given any instance of the WR problem it is pos-
sible to find an optimal solution in which all local terminals are con-
nected by paths that cross at most one corner of T. The WR problem has
been reduced to the problem of finding the direction for the connecting
paths of all global terminals in the presence of the partial assignment
D'. The next lemma partitions the WR problem into two separate problens:
the problem of finding an optimal solution to the WR problen in which all
global terminals appear in the top and bottom sides of T and the one in
which all global terminals appear in the left and right sides of T. 1In
both these subproblems, local terminals are connected by the paths speci-
fied in D'.

Lemma 2.4: D is an optimal assignment if and only if both
- 3 % -
hQ = h + (HD(S1,82)+HD(S3.bO)) A and wQ =W+ (HD(SO'Sl)+HD(52‘S

are optimal.
Proof: The proof of this lemma appears in [L}. {]

3 %

III. The restricted problem

In this section we show that given any instance of the restricted WR

problem, it is always possible to obtain an optimal solution by solving
one of its subproblems with the greedy method,
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Fron now on we shall restriet our attention to the solution of the WR
problen in which al1 global terminals are located on the top and bottonm
sides of T and all local terminals are connected by the Faths specified in
D'. Noteé that the second subproblen mentioned in the previous Section can
be transformed to this one by rotating the rectangle 90 degrees. If the
number of alobal terminals located on the top side of T is zero, then
D' is an optimal assignuent (lemma 2.3). In what follows wWe assume there
is at least one global terminal located on the top cide of T.

First the points Td and T will be define!. It will then be shown the

existence of an optimal solution in which the global terminals located in -

the interval [S1 . Td) and (T, , 32] are connected as in assignment b
(def 3.2). . P

Definition 3.1: « and B-
Let
L = D (1) {all global terminals are connected by a path crossing the
left side of T};
d = max{ k ) HL(Tk , Tk) = HL(S1 , 32) and Tk € [S1 ' 32]};
R = D! () {al1 global terminals are connected by a path crossing the
right side of T};

and B = pin{ k | HR(Tk . Tk) = HR(S1 . SZ) and Tk € [S1 , 32]}. [3

Definition 3.2: pv
Let D" = D () {all global terminals located in the interval [S1 , Td)
connected by a path erossing the left side of T} () {all global terminals

located in the interval (T v S,] connected by a path crossing the right
. [ 2
side of T} [] !

Definition 3-3: «' and g
Let (' = HD"(T& , Td) and B' = HD"(Tﬁ , TP)' (1

It will now be shown that there is an optimal assignment such that
D" is a subset of it.

Lenna 5.1: Let D" be as defined above. There is an optimal assignment, D
Such that p» ¢ p,

Proof: The proof of this lemms appears in [GL], []

Definition 3.4: ¢t
Let t be the number of global terminals in the interval [21,TB]. [
1
If t = 0 then p* is a complete assignment, i.e., we have Specified the
direction for the connection of all terminals, and by lemma 3.1 we con-

clude that pv jig an optimal assignment. In what follows we shall assume
that t > 0.

A lower bound for the height on the top side or T for any optimal

solution satisfying the conditions of lemma 3.1 is given by A which is
defined below,

Definition 3.5: N
Q:r(d’+p’+t)/2‘l[]

In what follows we show that there is an optimal solution satisfying
lemma 3.1 whose height on the top side of T is A or A+ 1 ang with
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the property that the number of paths crossing at points Td and T
differs by at most one. !

Lemmna 3.2: There is an optimal solution, D, such that
(a) D" C Dp;
(b) HD(Td . Td) - HD(Tp , Tﬁ) <1

and (¢) f\ < HD(S1 . SZ) <A+ 1.

Proof: The proof of this lemma appears in [GL]. [}

There are instances for which there is no optimal solution satisfying
(a) and (b) of lemma 3.2 and whose height on the top side of T isA.
Also, there are instances that do not have an optimal solution satisfying
(a) and (b) of lemma 3.2 and whose height on the top side of T is N+
1. When d' + B' + t 1is odd, one can show that there always exists an
optinal solution whose height on the top side of T is /A . The proof of
this fact is similar to the one of lemma 3.2. In the next two lemmas we do
not take advantage of this fact, however it will be used by the final al-
gorithm, .

We now define assignments E1 and E2. These assignments have the pro-

perty that there is an optimal assignment that differs from them by a set
of connecting paths that can be easily characterized.

Definition 3.6: E. and E ‘ -

Let ! 2
M={2z] T( is a global terminal located on the bottom side of T and
L, ci)y e D}, :
M1 = { L) {is in M, £ is the ith largest value in M and

iir(d'+p'+t)/2°" -d'};
My = { £ ] ¢ is in M, £ is the ith largest value in M and
2
R I C U TR P A
E1 =D" ()Y {1 e M1} Qita t e w- M1) };
and E2 =D ()Y {1 te MZ} Licnt re - M2)}. (]

We should point out that if ' + B' + t is even then E1 = EZ' Howev-

er, if this is not the case, then E1 and E2 will differ only on the direc-
tion of one connecting path.

In what follows we define some terms for assignment E which can be
either E1 or E2. When we make use of the terms defined this way, it

will be explicitly indicated which of E1 or E2 was used in the defini-
tion,
Definition 3.7t R, T'f and T"!

Let R = Hy(S, , 8)) -\,

For L =1,2, ... ,R, let T'[ (T”l) represent the terminal 1lo-
cated in the interval [S1 , 32] With largest (smallest) index whose

height is A+ £. Let T'O (T"O) represent Tﬁ (Td)' {1
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We say that assignment D conforms to E1 (or E2) if HD(T T,)

d " «

”E (Td , Td) (or H (T Td) = H

. (T, , T ).
" D" E2 d d )
It is required to define both E1 and E2 because there are instances

for whiech there is no optimal solution that conforms to E,. The same is
also true for E2. Note that this happens only when ' + B''+ t is odd.

Let D be an optimal assignment that satisfies the conditions of
lemma 3.2 and let E € {E1 , E2} conform to D, A& connecting path is said

to be of type I (type II) if it crosses the right (left) side of T in D
but not in E.

Lemma 3.3: There is an optimal solution D such that E 2 {E1 , E2} con-~
forms to it and

a) D" ¢ D;

b) HD(Td , Td) - HD(Tﬁ , Tﬁ) <1

A CHS L8 <A 4 o

d) all type I ¢ type IT ) paths connect a terminal located in the in-
terval [T'R , T.] ([Td , T"R])

and e) The number of type I and type II paths is
r R /2 "] If Hy(8,,5,) = A and L R/ 2 __] otherwise,
Proof: The proof of this lemma appears in [GL]. []

Sets of terminals will te defined and subsets of them will be labeleq A,
A', B and B', This sets will be used in lenma 3.4 where it will be shown

that there is always an optimal solution that differs fronm E1 or E2 by

the set of paths that connect the terminals labeled A and A' or B and B'.
Consequently in order to construct an optimal assignment it is only re-
quired to construct E1 and E2 and then interchange some set of connecting

paths. One of the assignments obtained this way will be an optimal as-
signment,

¢
v 2, ..o, R, let Q( (Q'f) be the set of indices of the
global terminals located in the interval (T'I , TP] ( [Td , T"I) ) if ¢

Definition 3.8: Q( N Q'I , Pf and P!
For £ = 1

is odd and [T'l , TB] ¢ [T, , T'{] ) otherwise, such that these terminals
¥

are connected by a path that crosses the left ( right ) side of T in as-
signment E.

For £ =1 ,2, ... R, let P( (P'I) be the set of indices of the
global terminals located in the interval [T'{ Y TPJ ( [ﬂi , T”I] Y it
is odd and (T'( ' Tﬁl ( [Td . T"l> ) otherwise, such that these terminals

are connected by a path that crosses the left ( right ) side of T in as-
signment E. []
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Definition 3.9: A , A' , B and B' labeling.
We shall label terminals as follows:

A labeling:

“Tfor L = 1 toR do

Letf=r L /2 ‘|—r -1 72 j

Let X = { C(i) | i € P( and i was not labeled when considering sets

Pr o Pa c P! .
Let X' = the f elerents of smallest value in set X
Each index i such that C(i) € X' is labeled A.
endfor

A' labeling: .

This labeling procedure is identical to the previous one, except for
the sets P( being replaced by P'I'and "smallest" is replaced by
"largest", .

B labeling:
for £ = 1,to R do
teer=|_ t/2 | - w-ns2 |

Let X = { C(i) | i € QI and i was not labeled when considering sets
Q1 , 02 Ve 01_1 }

Let X' = the f elements in set X with smallest valuz,
Each index i such that C(i) € X' is labeled B.
endfor .
B' lavbeling:
This labeling procedure is identical to the previous one, c¢xcept for
the sets QI being replaced by Q'I and "snallest" is replaced by

"largest". []

The rnext lemma establishes that there is an optimal solution which
can be obtained by starting from E1 or E2 and reversing the connecting
path for the terminals labeled A and A' or B and B'.

Lemma 3.4: There is an optimal assignment D, such that E € {E1 , E;1} con-

forms to it and 2
a) D" C D;
o) {ip(Ty T - (T Tp)l <1

¢) All type I ( type II ) paths connect a terminal located in the in-

] 1 11 i -
terval ([T o TPJ (T, , T RJ),
d) The number of type I .and type II paths in D is [‘ R/ 2 .] if
HD(S1,32) =/\ and L~ R/ 2 _J otherwise.

and e) if HD(S1 s SZ) =/\ then all the type I (type II) paths in D con-
necting & terminal in the interval [T'R , T.1 ([Td s T”R]) con-
nect a terminal with label A (A'). if HD<S1 s 52) E AN

then all the type I (type II) paths in D connecting a terminal
in the interval [T‘R R TBJ ([Td . T"R]) connect a terminal
with label B (B').

Proof: The proof of this lemma appears in [GL]. (]
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IV. Algorithm and Complexity Issues

In this section We present our algorithm to solve the WR problem. The
algorithm is based on the lemmas presented in sections 17 and " III. Our al-
gorithm has worst case time corplexity O( n log n ) and O( n < ( n ) )
vilen the set of terninals is initially sorted. In the last part of this
section we discuss lower bounds on the worst case time complexity of decj-
sion tree algorithms for the WR problem.

He now present the algorithm;

algorithim ROUTING :
Rename the set of terninals in such 4 Way that when traversing T in the
clockwise direction starting at point SO' the terninals are visited

in the order T1 Y T2 Voeea Ten;

Label the terminals 1oeal and global following the Jdefinitions that

appear after lemma 2.2;
Construct D!'; //def 2,177
Partition the problem into the following two subproblems:
P1 is the original problem after deleting all global terminals
appearing in the left and right sides of T, and
P_ is the original problem after deleting all global terminals
2 : N \ .
appearing in the top and bottom Sides of T;
D1 <{— SOLVE( P’.l );

D2 {— SOLVE( P2 )
Combine D1 and D2 into the final assignment D;

Construct ang output the layout for D using the proof of lemna 2.2;
encd of algorithm ROUTING;

Procedure SOLVE( p ).

Construct D' for P; //def 2.1//

if there are no global terminals then return( pt ) endif;

Compute d andg B; /ldef 3.1//7

Construct D", //def 3.2/7/

Compute t; //def 3.4/7

if t = 0 then return( D" ) endif;

Computeék ; //def 3.5//7

Construct E1 and EZ; //def 3.6//

Compute R; //def 3.7//

Define T'1 Y oeen T'R , T"1 el T"R fer 51 and E2; //def 3,77/

Perform the A » A' , B and pr labelings for E1 and E2; //def 3.9//
if o' 4 B' + t is even then D1 e MODIFY(A , AT, ET);
D2 {— MODIFY(B , g' . El);
else D] <{— MODIFY(A , a' ' E1);
D2 <{— MODIFY(A , A’ . E2);
endif

return( D1 it A( D1 Y <A D, ) and D, othervise )

2
end of procedure

procedure MODIFY( L , L' , E)
return( p );
end of Procedure

644

;
E




Theorem ﬂ.l: Algorithm ROUTING solves thie WR problem.
Proof: The proof is based on lemmas 2.1 , 2.2 , 2.3 and 3.4. [}

Theorem 4.2: The time complexity of procedure ROUTING is O( n log n ).

Proof: The proof of this lemma appears in [GL]. []

Theorem 4.3: The time complexity of procedure ROUTING is O( nd ( n ) )

wnen the set of terminals is initially sorted.

Proof: The proof of this lemmas appears in [GL]. {]

In [GLL] it was shown that Q( n log n ) comparisons are required by
any decision tree algorithm that solves the 1-dimensional WR problein.
This result holds even when comparisons among linear functions are al-
lowed. A similar result can also be proven for the case when the input to
the 1-dimensional WR problen is restricted to terminals located at a dis-
tance of at least } units from each other. Clearly, this result also holds

for the WR problem. llence, the worst case time complexity for the WR
problem is 8( n log n).
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