SORTING NUMBERS IN LINEAR EXPECTED TIME AND CONSTANT EXTRA SPACET

DONALD B. JOHNSON and TEOFILO F. GONZALEZ
Computer Science Department

The Pennsylvania State University
University Park, Pennsylvania 16802

ABSTRACT

An algorithm is shown which sorts n numbers in O(n) time on the
average where the numbers to be sorted are selected randomly., The algorithm
uses only constant extra space, independent of n , and therefore is an
advance over known algorithms which sort in linear expected time.

INTRODUCTION

Among the most widely used internal sorting algorithms are quicksort
[2,3,4]) and heapsort [8,4]. The expected running time of both of these al-
gorithms is 8(nlogn) (time asymptotically proportional to nlogn) when
sorting n numbers each permutation of which is equally likely. Quicksort
consumes O(logn) extra space whereas heapsort requires only constant extra
space. Both space bounds apply in the worst case.

In 1965, Maclaren [5] presented an algorithm which sorts numbers in
8(n) time in the expectation when the input numbers are independently and
uniformly distributed. We note that this randomness assumption implies
each permutation equally likely, but the converse does not hold. One rea-
son, perhaps, that this result has received little attention is that Mac-

Laren's algorithm requires for some fixed integer p>1 at least n + nl/p
extra locations which in general must be as large as those required for the
numbers to be sorted. Variants proposed by others also require asymptoti-
cally significant extra space. Knuth's improvement [4] needs at least vn
extra locations. Dobosiewicz's recursive version of Maclaren's algorithm
[1] requires at least 2n extra locations.

Our algorithm sorts n numbers in 6(n) expected time under the ran-
domness assumption, and it requires only constant extra space independent
of n . In addition to these asymptotic results we also discuss evidence
below which indicates our algorithm could be implemented to perform slightly
faster than quicksort on files of size practical for internal sorting. It
has been asserted (see L6], for instance) that quicksort is the best extant
sorting algorithm for practical purposes, so an estimate of comparative
running times on files of practical size is of some interest.

In order to determine the extra space required by our algorithm it is
necessary to assume that the registers, or memory locations, which hold a
single input number, or key, have a fixed size which in general is neces-
Sary to represent the key. Under this assumption it is assumed impossible
to encode additional information in a location containing a key without
loss of information in the key. 7To make this assumption concrete, let each
location containing a key be capable of storing a binary number of at most
h bits and let the keys be h-bit nonnegative numbers. Our results could
easily be restated under other assumptions for they are in tact independent
of the question of number representation provided arithmetic operations on
numbers of magnitude adequate to represent keys are taken to be of unit
cost.

T This work was partially supported under NSF grant MCS77-21092.

64

To understand our algorithm it is helpful to understand Maclaren's al-
gorithm. It has two stages. In the first stage, the n input keys are
bucket sorted according to a subkey comprised of the m most significant
bits of each key. If extra space is allowed for bucket headers and pointers
with which to chain elements in buckets, it is clear that this stage can be

implemented to run in O(pn + p2m/p) time for any input where p>1 bucket
sorting passes are employed. The second stage is an insertion sort on the
whole keys. This stage runs in time asymptotically proportional to

2™
T(n,m) = I cost(r,)
. i
i=0
where Ty is the number of keys for which the subkeys comprised of the m

most significant bits have value i and the cost to fully sort a sequence
of y numbers is cost(y) . To reflect the asymptotic cost of insertion
sort, we choose

0 =0 ,
cost(y) = (1 y=1 ,
y(y-1) y=2,...,0 .

Under the randomness assumption the probability that ri=k is

GEIEE.

for k=0,...,n . Thus, for i=0,...,2"-1,
2"-1 271
E(T(n,m)) = E| I cost(r,)] = I E(cost(r.)) = ZmE(cost(r),
1 . i i
i=0 i=0
and
n 1 k 1 n-k
E(cost(r.,)) = L cost(k)(k)(-;;) (1 - —E)
* k=0 2 2
n-1 n k n-k.
- (1 - lE) + I k(k—l)(i)(la) (1 - lﬁ)
2 2 k=2 2 2
n-1
=l“—l(l—};) +
2 2
n(n-1) ; (n—Z (l—)k_z(l 5 l_)n—k
22m k=2 k-2 2m o
=n_(l_1_“_l+r_w:_l.l
2m 2m 22m
Substituting,

65

2IIl m

n-1
E(T(n,m)) = n(l - E;J + nlo-l)
2

To obtain linear running time for thisg stage Maclaren sets m=log2n

for n a power of two. If we choose m=[log2n] then
. 4
E(T(n,flogzn])) 5-3%€ tn-1 = 0(n), n>1

MacLaren proposed pP=2 in stage 1 but it is clear that any constant number
of passes P>l will yield an algorithm with O(n) running time overall
provided w=8(logn) . Knuth's modification alluded to above is MacLaren's
algorithm with P=2 in which the bucket sort is replaced by an address
computation sort, thereby eliminating the pointers used to chain keys with-
in buckets. Extra Space is still consumed by the v n locations needed for
bucket headers. The algorithm reported by Dobosiewicz is Maclaren's algo-
Tithm with p=1 » but it applies stage 1 of MacLaren's algorithm recursive-
ly in place of the stage 2 insertion sort. Inp addition, a linear time
median finding algorithm is used to balance the number of elements between
the first tn/2) buckets and the remaining buckets. This latter feature
improves the worst case running time to O(nlogn) while worsening the ex-
pected running time by a constant factor.

SORTING IN LINEAR EXPECTED TIME AND CONSTANT EXTRA SPACE

Insertion sort requires only constant extra space. Thus to present a
linear expected time sorting algorithm which runs in constant extra space
it suffices to show how to implement a one-pass bucket sort on large keys,
the magnitude of which is of the order of the number of keys, which runs in
linear time and no more than constant extra space.

Given an array X of keys, the array being indexed from 1, to R,
the algorithm shown below permutes these keys so that they are sorted in
nondecreasing order on the subkeys k(i) , which are comprised of m=
flogZ(R—L+l)1 bits of X(i) for i=L,...,R . We assume the following

definitions for the variablesg describing the several fields of key X(i)
which the algorithm references. If the key X(i) has h bits numbered
from 0 through h-1 » then for i=L,...,R ,

code(i) = X(i)[0,1]
k(1) = X(i)[2,m+1]
z(1) = X(1) [m+2,h]

y(i) = X(i)[2,n]

where X(i)[a,b] for a<bhb denotes the field composed of bits a through
b of X(i) . See Figure 1. It is assumed that h satisfies h>m+2
Alternatively we can express X(i)[a,b] as

k

code p——A—ee ——
N~ T

y
Figure 1. Fields of key X .

66

rem(x(1),2"%)

2h~b—l
We assume code(i)=0 for di=L,...,R . We will also use a bitwise notation,
ie. code(i)='00' . 1In addition we assume X(i)[2,2] , the leftmost bit in

k(i)4 satisfies X(i)[2,2]=0 , for i=L,...,R , so it is possible to count
up to R-L in any k(i) while restricting |I|<R-L+l for I = {k(1i)]
i=L,...,R} , the set of distinct subkeys k . We obtain from arbitrary in-
put X an input satisfying the restrictions on the first three bits of
each key by sorting X on X(i)[0,2] for i=L,...,R and recording the
positions of the eight subsequences in the resulting X which are uniform
on these fields. Thus these fields may be zeroed, to be restored at the
end of the computation.

The algorithm which runs under these assumptions is as follows. The
phases in which more than one loop traverses X can be condensed to a
single loop in each case. We have decomposed these phases to aid in under-
standing the correctness proof.

//Phase 1: For each distinct key, move one instance to corres—
ponding address, mark and count. //

1 for il toR do

2 t « k(i)+L

3 while k(t)#t-L do

4 X(1i) ++ X(t)

5 t « k(i)+L

6 endwhile

7 endfor

8 for i«L to R do

9 if k(i)+L=1i then [code(i) <« '01'
10 k(i) « 0]

11 endfor

12 for i*L to R do

13 if ¢code(i)='00" then [k(k(i)+L) « k(k(i)+L)+1]
L4 endfor

//Phase 2: Set initial positions for the distinct keys and mark
their initial positions. //

15 t « R+1-L
16 for i+R to L by -1 do

17 if code(i)='01" then [t < t-k(i)-1
18 k(i) « t]
19 endfor

20 for i<L to R do . .

21 if code(i)='01"' or code(i)='11" then [code(k(i)+L) <
code(k(i)+L)or'10" |}

22 endfor

//Phase 3: Set final positions for all keys. //
23 for i*L to R do

24 if code(i)='10" or code(i)='00" then [k(k(i)+L) «

k(k(i)+L)+1
25 k(i) + k(k(i)+L)-1]
26 endfor

67

27
28
29

31

Before proving correctness of our

//Phase 4: Rearrange. [/

for i«L to R do
while k(i)#i-L do
y(1) > y(k(i)+L)

endwhile

endfor

//Phase 5: Substitute

1«3 +1L

loop
© while code(i)='00' or code(i)='10" do

i<« i+l
endwhile
Yepeat
k(j) « i-L
J + j+i
if j>R ¢t

]

hen

[exit loop]

until code(j)='10"' or code(j)='11"

i« i+l

forever

for i<«L to R do
code(i) « '00'
endfor

following definitions.

Furthermore, let X°

LEMMA.

Proof:

where

isfies

o}

Let

& be any sorted order of X .

s(3) = min {i-L|R(i)=j} ,

L<i<]

max {i-L|R(i)=j} , and

£()

i

L<ic)

£(G3) - s(3) +1 .

c(d)

<R

<R

be a copy of X

Let X" and X be as defined above. There exist

permutations of

{o,..

hold after execution of phases 1 through 5:

(1) X(my(m (3))+L) = X"(3+L) , §=0,...,R-L , and

(i1) k(+L) < k(G+L+1) ,

subkey values and replace codes. [/

Then, for

just before phase 1 is executed.

i
Wl and

3=0,...,R-L-1_.

Furthermore, the algorithm terminates following phase 5.

It can be verified that all phases terminate.
a copy of the program variable
at line 7.

Since the only operations on

Therefore let
X following termination of the loop ending
X are exchanges of elements,

algorithm shown above we state the

jel, ,

’

.»R-L} , for which the following conditions

X! be

sat-

Xh(m (4L = X° G+ 320,00 koL,
™ is a permutation of {0,...,R-L} . It can be scen that X!
kl(j+L)=j for jel . Thus, to complete the proof that the algori-

thm correctly sorts the input it remains to be shown that there exists, upon
termination of phase 5, a permutation 7w, of {0,...,R-L}

2

68

for which

(1) X(my(i)+L) = X1(G+L) , j=0,...,R-L , and
(ii) k(j+L).i k(j+1+1) , j=0,...,R-L-1 .
The remainder of phase 1 sets code(j+L)='01"' and k(j+L)=0 for jel

in lines 8 through 11 and then counts distinct keys in k(j+L) for jeI
yielding these conditions when phase 1 terminates:

z(3+L) = z'(3+L) , j=0,...,R-L ,
c(j)-1, jel ,
k(j+L) =
k!(j+L) otherwise, and
01, jeIl ,
code(j+L) =
‘00", otherwise .

It can be verified that the information retained in X is sufficient to
restore X' and therefore to complete the sort.

In phase 2, the loop comprised of lines 15 through 19 sets k(j+L) to
s(j) for jel . The loop at lines 20 through 22 sets code(s(j)+L) to
code(s(j)+L) or '10' for jeI . Consequently X?, the result of phase 2,
has the properties

22 (341) = 2! (5+) 4=0,...,R-L ,
s(i) jel ,

K2 (j+L) =
k(L) otherwise, and
ql' , iff jeI ,

codez(j+L) =
'1q' , iff j=s(l) for some Rel
where qe{0,1} . Again it can be verified that X contains information

sufficient to restore X' .

The assignments in phase 3 are executed for those values of i for
which i-L¢I . The effect is to set k(j+L) to ﬂz(j) , for j=0,...,R-L,
for some L which will sort X! . Thus each field k(3+L) will encode

the position of X'(j+L) in the final sort. We support this assertion by
considering one fixed value tel . Since there are f(t)-s(t) distinct
values of i for which i-L¢I and k}(i)=t, there will occur a sequence
of assignments induced by these values, which we denote {il,.
as follows.

k(t+L) + k(t+L)+1 = s(t)+l
k(il) < k(t+L)-1 = s(t)

k(t+L) « k(t+L)+1l = s(t)+2
k(1,) « k(t+L)-1 = s(t)+1

k(t+L) L k(t+L)+1 = f£(t)
k(t+L)-1 = £(t)-1

4

K (y-s(e))

69

ol (e)-sey)

where {Xl(il),...,Xl(i),X'(t+L)} is precisely the set of keys

f(t)-s(t)
which must be in positions s(t)+L through £(t)+L in any sorted order ﬁ
of X! . Furthermore this sequence of assignments references locations dis-
joint from the locations referenced for any t'#t , t'el . Thus it can be
seen that the sequence k3(L),...,k3(R) records a suitable permutation "2
where X? is a copy of X after phase 3 is completed.

With this understood, the operation of phase 4 is clear. It simply
applies T to yd (X® exclusive of the code fields). The code fields
still recofd the entire structure of ﬁ(j) for j=L,...,R for any sorted
order X of X' {or X° for that matter). For X after phase 4, then,
these facts may be stated precisely as

2(T)(§)+L) = 2" (G+) , 3=0,...,R-L ,
'ql' , iff jel ,
code(j+L) =
'1q' , iff j=s() for some 2LeI ,
where q€{0,1} . The values in k are now immaterial since the code fields

for the entire array encode what each k value should be.

Phase 5 completes the k fields by extracting this information. Index
i is advanced until i~min{2+L} , indicating that i-L 1is the first dis-
Lel
tinct subkey k in x° . Index j is then incremented from s(i-L) to
f(i-L) in order to store i-L as needed. Repetition for each i-leI
yields, for X after line 43,

2(T,(§)+L) = z (§41) 3=0,...,R-L ,

k(m, (1)+L) = k' (G+) j=0,...,R-L , aund
k(j+L) < k(G+L+1) , 3=0,...,R-L-1 .

When phase 5 resets all code fields to '00' we then have

X(Trz(j)+L) = x}(j+L) , or
X(‘nz(ﬂl(j)+L)) = x°(4+L) , j=0,...,R-L , and
k(j+L) < k(j+L+1) , j=0,...,R-L-1 ,

as required. [J
THEOREM. It is possible to sort n numbers in 0(n) expected time and

constant extra space provided the numbers are identically and
uniformly distributed and at least h=flog2nl+c bits are required

to represent the numbers, for any fixed constant ¢ .
Proof: For ¢>2 a complete algorithm is:
(1) Bucket sort X on three most significant bits.

(2) Sort each subsequence of X produced in stage (1)
using the algorithm described above.

(3) Insertion sort X .

70

It is well known how to implement stage (1) to run in O(n) time and
to use only constant extra space. It has been established in the lemma giv-
en above that stage (2) can be performed using only constant extra space.
The procedure exhibited for stage (2) can easily be seen to run in 0(n) -
time when it is noticed that there can be no more than n iterations in to-
tal for each of the while loops at lines 3 and 28. Given the analysis in
the introductiom, it is clear that stage (3) runs in 0(n) expected time.
Of course, 1t is well known how to implement insertion sort to use only con-
stant extra space.

2~c . .
Whenever ¢<2 at most 2 auxiliary counters are required. a

The above theorem can be shown to hold for any h whenever n 1is di-
visible by the number of distinct keys. The construction involves grouping
equal keys in adjacent locations to expand counting capacity. We omit the
details. Of course, the theorem holds when h 1is a constant in any event.

CONCLUSION

We do not consider whether this algorithm is practical in the sense
that it should be used in data processing. However, the recent analysis of
quicksort by Sedgewick [6,7) invites an attempt to estimate at what value
of n does L(n)=Q(n) where L(n) is the running time of our linear time
algorithm and Q(n) 1is the running time of quicksort. Certainly if this
n were very large, our tacit assumption that our algorithm can reasonably
be called an internal sort would be brought inte question.

Sedgewick employs a computational model which essentially counts memo-—
ry references on an idealized computrer in some implementation at the memory
reference level. Although our algorithm is susceptible to a similar analy-

sis, we have taken a different approach. Using the second paper cited above

we have produced an implementation of quicksort on the IBM 370 which appears
to admit only minor improvements. Then the task has been to implement our
algorithm as well as we can and call the n at which the running times are
equal, an estimate for an upper bound on the crossover. For simplicity we
choose the number of machine instructions executed as our time measure.

We have an implementation of a more complicated algorithm, a predeces—
sor of the one presented in the previous section, for which our crossover
estimate is n=200,000 . Preliminary results on this new version indicate
that a value of n between 20,000 and 50,000 can easily be demonstrated
above which L(n)<Q(n)

It is not likely that our algorithm can be speeded up by replacing in-
sertion sort, in the last stage, with another sorting method. This judgment
follows from observing that E(ri>0) , the expected length of subsequences

which the final sort must reorder, is small. This quantity 1is given by

n Prob(ri=k)

E(r.,>0) = I kg ooy
i k=1 Prob(ri>0)

71

e

Coms gty 253

A

n

= n
2 1-(1—1—)

2m

which for m=[log2n] evaluates asymptotically to less than or equal to

1 oo 1 = 1.58 .

It is easy to see that our algorithm is not stable (see [4]). However,
neither are quicksort, heapsort, Knuth's modification of MacLaren's algori-
thm, nor Dobosiewicz's algorithm. It is an open question whether there
exists a stable sorting algorithm which runs in 0O(n) expected time and
constant extra space.

REFERENCES

1. VW. Dobosiewicz, Sorting by distributive partitioning, Inf. Proc. Let-
ters 7, 1(Jan. 1978) 1-6.

2. C. A. R. Hoare, Partition(Algorithm 63); Quicksort(Algorithm 64);
and Find(Algorithm 65), Comm. ACM 4, 7(July 1961) 321-322.

3. C. A. R. Hoare, Quicksort, Computer J, 5, 4(April 1962) 10-15.

4. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, 1973.

5. M. D. MacLaren, Internal sorting by radix plus sifting, J. ACM 13, 3
(July 1966) 404-411.

6. R. Sedgewick, The analysis of quicksort programs, Acta Informatjca 7
(1977) 327-355.

7. R. Sedgewick, Implementing quicksort programs, Tech. Report No. CsS-38,
Brown University (March 1977), (to appear Comm. ACM).

8. J. W. J. Williams, Algorithm 232: Heapsort, Comm. ACM 7, 6(1964) 347-
348,

72

