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ABSTRACT

It is well known that every planar layout is four-layer wirable. If we decrease the number of layers,
there are planar layouts that cannot be wired on three layers. The problem of determining whether a planar
layout is three-layer wirable is an NP-complete problem. A planar layout may be stretched vertically
(horizontally) by introducing empty rows (columns). Clearly, stretching a planar layout increases its area;
however, if it is stretched in certain locations it can be wired in fewer than four layers. In this paper we consider
two layout stretching schemes. We present lower bounds for the worst case wiring area bounds under these two
stretching schemes. We show that our lower bound for the two-layer wiring is tight and our lower bounds for
three-layer wiring are not too far from known upper bounds for this problem.

I. INTRODUCTION

The rectangle routing problem (RRP) is a fundamental problem in VLSI design automation. As input
we are given a rectangular grid R determined by the horizontal lines with y-coordinate values i, 0 <i<h+1 (
called tracks or rows ) and the vertical lines with x-coordinate values j, 0 < j < w+ 1 ( called columns ). The
horizontal lines with y-coordinate values 0 and h + 1 and the vertical lines with x-coordinate values 0 and w + 1
form the boundary of R.Let N = {N, N3, ..., N, }, where each N; is a subset of grid points on the boundary of R
( excluding the corners of R ), such that N; N N; = (J for all i # j. Each set N; is called a ner and its grid points
are called terminals. We assume that there are k conducting layers L1, Lo, ..., Lg, each is a copy of the channel
grid, and L;,; is considered to be laid upon L;, 1 £1i £ k - 1. Contacts between two layers ( vias ) can be
introduced only at grid points. Under the knock-knee model a k-layer wiring (which is the final routing solution)
is a three dimensional structure which can be characterized by two mappings: wire layout and layer assignment.
A wire layout for a RRP is a mapping that associates each net N; to a connected subgraph W; of the grid R such
that W; does not share an edge with W; for all j # i. This wire layout is called a planar layout or a path disjoint
layout or simply a layout. We use W = {Wy, W, ..., W, } to denote the wire layout. The layer assignment of a
planar layout is a mapping that associates each edge in W to a layer in {L1, Ly, ..., Lx } in such a way that for any
W; and W;, i # j, if edges (p1, p2), (2, p3) in W; are assigned to Ly and L,, respectively, and (po, ps) € W; is
assigned to Ly, then u > max{s, t} or u < min{s, t}. A solution for an RRP is a k-layer wiring formed by the
composite mapping of wire layout and layer assignment. Obviously, in a wiring the segments of the same wire
W; can be connected through a via without sharing a grid point with a segment of another wire W; in any layer.
Physically speaking, in a wiring all terminals from the same net are made electrically common and no two
distinct nets are connected. In practice knock-knee wirings minimize crosstalk since the area of the grid shared
by two different nets is limited to grid points. A variation of the rectangle routing problem is the channel
routing problem (CRP) in which all terminals appear on the top and bottom sides of the grid R and the objective
is finding a k-layer wiring with the least number of tracks.

The above characterization of the wiring provides an approach for constructing a wiring for a CRP by
finding a planar layout with least number of tracks for the given CRP and then finding a layer assignment for the
layout. This approach is used by the routing algorithm for the two-terminal net CRP ( each net is of size 2 ) by
Preparata and Lipski ( [PL] ). The first phase of their algorithm finds a minimum-track planar layout that
satisfies some special properties. In the second phase of their algorithm, the planar layout is transformed into a
three-layer wiring by a powerful transformation ( legal partition of the diagonal diagram induced by the planar
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layout ). Their algorithm guarantees a three-layer optimal solution. Several other routing algorithms for the CRP
are also based on this approach ( e.g., see [PS], and [SP] ).

Brady and Brown ( [BB] ) showed that any planar layout can be transformed into a four-layer wiring
with dimensions identical to the dimensions of the planar layout. The implication of this result is that one can
reduce the rectangle routing problem to the problem of finding a planar layout, since for any planar layout a
four-layer wiring is always possible in the layer assignment phase. One may consider this two-phase four-layer
routing approach as "standard”. For example, necessary and sufficient conditions for the existence of a planar
layout for the two-terminal net RRP are given in [F]. If these conditions are met, a planar layout can be found
by the algorithms in [F] and [MP]. A four-layer wiring for this planar layout can be found by applying the layer
assignment algorithm given in [BB]. It is not known whether the layouts generated by the algorithms in [F] and
[MP] are three-layer wirable. By using the reduction given in lemma 2.1 (refer to the next section) Lipski ( [Li]
) gives a 19-row wire layout that is not three-layer wirable. He also shows that the problem of deciding whether
a given planar layout is three-layer wirable is an NP-complete problem.

A planar layout may be stretched vertically ( horizontally ) by introducing between a pair of adjacent
rows ( columns ) an empty row ( column ) ( figure 3.1 ) without a horizontal ( vertical ) wire. Clearly, stretching
a planar layout increases its area; however, if it is stretched in appropriate places it can be wired in fewer than
four layers. Let us now investigate the trade-off between the routing area and the number of layers needed for
wiring a planar layout. Let A( W ) denote the area of planar layout W. The simple stretching algorithm
described in [MP] generates a two-layer wiring with area not larger than 2 * A('W ), by vertically stretching it
between every pair of adjacent rows. In this paper we propose two different stretching schemes. Then, we show
that for each of these schemes if two conducting layers are available the area bound of 2 for arbitrary planar
layouts is tight, i.e. there exist planar layouts with area A(W) which cannot be stretched and wired in an area
less than (2 - &) * A(W), for all € > 0. Before we consider the three-layer wirability of planar layouts, we
classify planar layouts into four classes according to their structure. Then, for each layout class and each
stretching scheme we give lower bounds for the worst case wiring area.

II. PRELIMINARIES

In this section we review some definitions and results from [PL]. Their algorithm for finding a three-
layer wiring for a given planar layout W consist of the following steps:

(i) construct the diagonal diagram D that corresponds to the layout W;
(i) find a legal partition P of D that partitions D into two-colorable regions; and
(iti) find a layer assignment W’ of W from P.

The diagonal diagram corresponding to the given layout is constructed as follows. At each grid point
in R where W has a bend, a (‘5/2)-Iength diagonal ( called half diagonal ) emanating from the grid point and
internally bisecting the bend wire is introduced. Thus, in case there is a knock-knee at the grid point, a V2-length
diagonal ( called full diagonal ), centered at the grid point, is formed. We assume that two wire segments from
the same wire can form a knock-knee. One may easily transform layouts with these knock-knees and loops. We
elaborate on layout transformations in the discussion section. The resulting geometric structure from this
transformation is called a diagonal diagram. The core diagonal diagram of a given layout is the diagonal
diagram with the half-diagonals deleted ( figure 2.2 ). For the grid R, the partition grid G(R) is defined as
follows. The grid points of G(R) are the points (x + 1/2,y + 1/2), 0 <x <n, 0 <y < m. The grid points with x =
0,x=n,y=0ory=m are called boundary points and the other points are called internal points. A vertical (
horizontal ) grid line in G(R) is the smallest line segment that includes all the grid points with the same y-
coordinate ( x-coordinate ). The space between any two adjacent horizontal ( vertical ) grid lines is called a row
( column ) of G(R). Note that a row ( column ) in R is a horizontal ( vertical ) grid line in R, but a row ( column
) in G(R) is all the space between two adjacent horizontal ( vertical ) grid lines in G(R). The edges of G(R) are
the segments connecting each point with its immediate neighbors, vertically, horizontally, or at 45-degree
angles. It should be noted that a full diagonal in D is an edge of G(R), the end points of a full diagonal are grid
points of G(R) and no two full diagonals in D cross. Let D denote the core diagonal diagram of layout W. The
end points of the diagonals of D lying on nonboundary grid points of G(R) are called vertices of D. We say that




D has degree i, 1 i< 4, at vertex (s, t) if there are i full diagonals with end points at (s, t). We say that D is of
degree i, 1 <1 <4, if the maximum degree of any vertex in D is i; otherwise the degree of D is zero. A legal
partition P of D ( figure 2.2 ) is any collection of edges in G(R) satisfying the following conditions:

(a) Every internal point of G(R) is incident with an even number of edges in P;
(b) The diagonals in P are exactly the diagonals in D; and
(c) P does not contain any of the patterns shown in figure 2.1.

( dashed lines mean that the diagonal must not be present ).

Forbidden patterns.
figure 2.1

The following lemma shows the significance of the notion of diagonal diagram D constructed from W and the
legal partition P with respect to D.

Lemma 2.1: ( [PL] ): If there is a legal partition P of the core diagonal diagram D induced by the planar layout
W, then there exists a three-layer assignment for W. Furthermore, a three-layer assignment for W can be easily
constructed from P.

Planar Layout Core Diagonal Diagram

Legal Partition 3-Layer wiring
top layer (solid lines); middle layer (dotted lines) bottom layer (dashed lines)
figure 2.2: Examples.

We omit the description of the process for finding a layer assignment of W from a legal partition P of
D. Interested readers should refer to [PL] for details. In figure 2.2 we give a layout W, its corresponding core
diagonal diagram D, the legal partition P of D and the three-layer wiring for W obtained from P. In the
remaining portion of this paper we use the term diagonal diagram to refer to a core diagonal diagram.

The previous lemma allows us to reduce the problem of three-layer wirability of a planar layout W to
the problem of determining the existence of a legal partition P with respect to W. The crucial notion in this
reduction is that of full wire layout. We say that a layout W is a full layout if every nonboundary edge in R is
covered by a wire in W. For example, the full layout constructed from the layout in figure 2.2 is given in figure



2.3. We say that a wire layout W contains a loop if there is a path ( (v, v2), (v2, V3), ..., (W1, V&) ) in W such
that k > 4 and vy = vi, where v1, vy, ..., v are grid points in R. If we only consider two-terminal net full layouts
( we call the full layout of this type standard full layout ) and allow wires with loops, then there is one-to-one
correspondence between standard full layouts in R and diagonal diagrams in G(R).

figure 2.3: Full layout for the planar layout given in figure 2.2.

Theorem 2.1: ([L]) A loop-free standard full wire layout W* in R is three-layer wirable iff there exists a legal
partition P of D in G(R) with respect to W*.

I LAYOUT STRETCHING SCHEMES

Since the problem of determining whether a planar layout is three-layer wirable is NP-complete, we
investigate the problem of stretching and then wiring a planar layout. Stretching a layout vertically (horizontally)
is equivalent to dividing the layout horizontally (vertically) between two adjacent rows into two sublayouts, then
inserting an empty horizontal (vertical) grid line between these two sublayouts and merging the vertical
(horizontal) wires in these two sublayouts at the newly introduced grid line. The following layer assignment
scheme is a direct generalization of the layer assignment algorithm given in [MP).

(1) Divide W horizontally and/or vertically, into sublayouts W1, ..., W¢, such that Wi, 1 <i < t, is three-
layer wirable;

(2) Find a k-layer wiring for each sublayout Wt of W;

(3) Extend the grid R to form grid R’ by inserting a horizontal (vertical) empty grid line between sublayouts
separated by a horizontal (vestical) dividing line introduced by step (1).

(4) Merge two adjacent sublayouts at the newly inserted grid line and introduce vias at the grid points on
the new grid line if it is necessary.

Depending on the types of additional grid lines introduced, we make a distinction between the following two
stretching schemes:

Scheme I: Wirings are obtained by only introducing either additional horizontal or vertical grid lines.
Scheme II: Wirings are obtained by introducing additional horizontal and vertical grid lines.

Let the height and width of grid W be h and w, respectively. The layout corresponding to the wiring
obtained by the above algorithm is denoted by W’. Clearly, for Scheme I we have

AW?) = (1+t/h) * A(W), (or A(W’) = (1+t/w) * A(W))

where t is the number of additional horizontal ( or vertical ) grid lines. For Scheme II we have
AW?) = (I+t/h)*(1+u/w) * A(W),

where t and u are the number of additional horizontal and vertical grid lines introduced, respectively.

Stretched layouts under scheme I and II for the layout in figure 2.2(a) given in figures 3.1 (a) and 3.1
(b), respectively.




figure 3.1 (a): Layout stretched under scheme I.

figure 3.1 (b): Layout stretched under scheme II.

1V. TWO-LAYER WIRABILITY BOUNDS

In this section we discuss two-layer wirability of planar layouts. Consider the simple layouts given in
figure 4.1. Both of these layouts are not two-layer wirable since one cannot assign the wire segments in these
layouts so that wires from different nets do not share a grid point in one of the two available layers. Consider
the full planar layout W, which has identical dimension in both directions, shown in figure 4.2. It is simple to
verify that any sublayout consisting of two adjacent rows ( columns ) contains a sublayout with the structure
shown in figure 4.1. Hence, under scheme I no less than h-1 ( w-1 ) additional horizontal ( vertical ) grid lines
are needed in order to obtain a two-layer wiring W’. The area of W’ is A(W’) = (2 - T/h)*A(W) = (2 -
1/w)*A(W). A straight forward generalization of the above observations is given by theorem 4.1.

Theorem 4.1: For any € > 0, there exists a planar layout W such that under scheme I and II any two-layer wiring
W’ for it has area A(W’) > (2 - e)*A(W).
Proof: For brevity the proof is omitted. [

The above theorem provide a lower bound for the worst case wiring area under scheme I and scheme II when
two conducting layers are available for wiring a planar layout. In [MP] it is shown that by inserting an empty
grid line between any two adjacent rows of a given planar layout, a two-layer wiring can be constructed.
Therefore, the area bound 2 for wiring planar layouts under scheme I and 1T is best possible.

figure 4.1




figure 4.2

V. A CLASSIFICATION OF PLANAR LAYOUTS

Let W* (D) denote the set of full layouts sharing the same diagonal diagram D and S* (D) denote the
standard full layout corresponding to D. From the discussion in section II we know that for a given wiring grid
R, all layouts in R that share the same diagonal diagram D ( W*(D) ) are equivalent when obtaining three-
wirings through legal partitions of diagonal diagrams is concerned. Also it is easy to verify that for any diagonal
diagram D if §*(D) contains a loop, so does any other full layout in W* (D). Because of this, we use the
standard full layout S* (D) as the representative of W* (D).

‘When we explore the three-layer wirability of planar layouts, we need to consider the following two
aspects of planar layouts. First, we believe that the three-layer wirability of planar layout depends on the
structural complexity of layouts. For example, the layout shown in figure 4.1 is not two-layer wirable. However,
it is straight forward to construct a three-layer wiring for this layout. When three-layer wiring is concerned, the
structure of this layout is simple. Second, we believe that in practice there are layouts with certain structures that
may never appear. For example, in a layout corresponding to a diagonal diagram of degree three or degree four
there are loops. Those loops corresponding to the vertices of degree three and four in the diagonal diagram can
be easily eliminated by slightly modifying the layout so that the modified diagonal diagram has degree less than
2 and the modified layout maintains the same connectivity of wires as that in the original layout.

Based on these considerations we classify layouts in a particular R by their core diagonal diagrams D
into four classes:

Class (a): layouts whose core diagonal diagrams are of degree greater than two;

Class (b): layouts whose core diagonal diagrams are of degree two and the standard full layouts
corresponding to their core diagonal diagrams contain loops;

Class (c): layouts whose core diagonal diagrams are of degree 2 and the standard full layouts
corresponding to their core diagonal diagrams are loop-free; and

Class (d): layouts whose core diagonal diagrams are of degree one.

In the following sections we investigate the three-layer wirability under scheme I and scheme II for
each of these layout classes.

VI. THREE-LAYER WIRABILITY BOUNDS FOR SCHEME 1

The technique used to deriving lower bounds for the worst case wiring area under scheme I and
scheme II in section IV can be generalized to handle the case when there are three conducting layers available
for wiring. If we are restricted to constructing a three-layer wiring by finding a legal partition of the diagonal



diagram corresponding to the given layout, the stretching and wiring schemes given in section III can be restated
as follows.

(1) Construct the core diagonal diagram D corresponding to the given layout W on the grid R;

(2) Divide D on G(R) into blocks D1, ..., D*, horizontally or/and vertically, by partitioning lines on grid G (
accordingly layout W on R is partitioned in to sublayouts W1, ..., W, such that W#, 1 <i < t, is three-
layer wirable );

(3) Find legal partition P for each D* and construct a three-layer wiring A‘ for the sublayout W from P!
of D¢;

(4) Extend the grid R to form grid R’ by inserting a horizontal (vertical) empty grid line between sublayouts
separated by a horizontal (vertical) division line introduced in step (2).

(5) Merge two adjacent sublayouts in the division at the newly inserted grid line and introduce vias at the
grid points on the new grid line if it is necessary.

figure 6.1: Strip tile arrangement A 1;

Suppose there exists an m-row by n-column diagonal diagram D, where 1 < m < n, for which there is
no legal partition. We can construct a diagonal diagram D* using D as a basic building block as shown in figure
6.1. It is easy to see that every m adjacent rows ( columns ) of D* contains a subdiagram D. By theorem 2.1 we
know that for the full layout W corresponding to D* the area of any three-layer wiring W’ obtained under
scheme I satisfies A(W’) = (m/(m-1) - £)*A(W), where € > 0 can be arbitrary small when the dimension of D* is
large. Thus, one may find a lower bound for the worst case wiring area under scheme I by just finding a m-row
by n-column diagonal diagram which has no legal partition. Clearly, the smaller the m value the larger the worst
case area bound. We call the component diagonal diagram D of D* a strip tile, and the diagonal diagram D*
constructed by using the D’s as shown in figure 6.1 the strip tile arrangement A1;.

Theorem 6.1: There exist a four-row layout in layout class (a) (see figure 6.2), a five-row layout in layout class
(b) (see figure 6.3), a six-row layout in layout class (c) (see figure 6.4) and a seven-row layout in layout class (d)
(see figure 6.5) whose corresponding diagonal diagrams do not have legal partitions.

Proof: For brevity the proof is omitted. [

Figure 6.2



figure 6.3

figure 6.4

figure 6.5

Theorem 6.2: For any € > O there exists a planar layout such that under scheme I any of its three-layer wirings
W’ obtained through legal partition of its corresponding diagonal diagram has area A(W’) > (cl -8)*A(W),
where cl is 4/3 if the layout is in class (a); c1 is 5/4 if the layout is in class (b); c1 is 6/5 if the layout is in class
(c); ¢l is 7/6 if the layout is in class (d);

Proof: The strip tile arrangement for all the layouts is A1;, except for the layout in class (¢) which is the one
given in figure 6.6. For the layout in class (c) one also needs to prove that there are no loops. For brevity the
proof is omitted. [

Theorem 6.3: For any € > O there exists a planar layout such that under scheme I any of its three-layer wirings
W’ has area A(W?) > (6/5 -e)*A(W).
Proof: By Theorem 2.1 and Theorem 6.2. [J

figure 6.6

VII. THREE-LAYER WIRABILITY BOUNDS FOR SCHEME Il

As in the previous section, to derive lower bounds for the worst case wiring area under scheme IT for
each of the layout classes defined in section V, we need to find layouts with small dimensions for which legal
partitions do not exist and then use these layouts to construct a larger layout with certain structure. Consider an
n-row by n-column three-layer layout for which there does not exist a legal partition of its corresponding
diagonal diagram. We call the diagonal diagram of such a layout a square tile. Let us arrange identical n-row
by n-column square tiles in such a way that the lower left corner of every tile has x-coordinate i*n+j and y-
coordinate j*n-+i, where i and j are integers. The arrangement restricted to the rectangle formed by the horizontal
lines of y-coordinate value 0 and h and vertical lines of x-coordinate values O and w is shown in figure 7.1. We
call the arrangement restricted to this rectangle as square tile arrangement A ;. 1t is important to note that A 51 is
a diagonal diagram of some full planar layout.




figure 7.1:

We define a window in the arrangement A, as a rectangular region with boundary lines on the
horizontal and vertical grid lines of G(R). We define t(u,n) = v, for u > n, if v is the smallest integer such that in
Ag formed by unwirable rectangles of size n by n, any u row by v column window contains at least one
component square tile. The computation of t(u,n) can be performed by only considering those windows whose
lower left corners are located at grid points (0, y), where 0 <y < n2, Therefore,

t(u, n) = myax { min { x|the window defined by (0, y), (0, y+u), (x, y) and (x, y+u) in A,; contains at
least one n-row by n-column square tile} }
In any (wirable) division by scheme II, if there is a sublayout with height u there must be at least | hfy
horizontal division lines and there must be at least| w/(t(u,n)-1)| vertical division lines. Therefore, the area is at
least (1 + 1/u)*(1 + 1/(t(u,n)-1))*A(W). Without loss of generality assume w = h and | w/(t(u,n)-1)] = w/(t(u,n)-
1). Then, a lower bound for ¢, under scheme II, when obtaining a wiring through legal partition is considered, is
given by

c2=min{ [1+1/u]*[1+1/(t(u, n)-)]n <u < n?}.
To obtain a larger ¢ value, a smaller t(u, n) value is required; and to get a smaller t(u, n) value, smaller n value

is required.

Theorem 7.1: There exist a 6-row by 6-column layout in class (a) (see figure 7.2), a 7-row by 7-column layout in
class (b) (see figure 7.3), a 10-row by 10-column layout in class (c) (see figure 7.4), and a 15-row by 15-column
layout in class (d) (see figure 7.5) whose corresponding diagonal diagrams do not have legal partitions.

Proof: For brevity the proof is omitted. O

Figure 7.2 Figure 7.3

Figure 7.4 Figure 7.5




Theorem 7.2: For any € > 0 there exists a planar layout such that under scheme II any of its three-layer wirings
W’ obtained through legal partition of its corresponding diagonal diagram has area A(W’) > (c2 -£)*A(W),
where ¢2 is 1.173333 if the layout is in class (a); ¢2 is 1.134375 if the layont is in class (b); c2 is 1.075630 if the
layout is in class (c); and c2 is 1.060950 if the layout is in class (d).

Proof: The square tile arrangement for all layout classes are A 1. In the tile arrangement we use square tiles of
class (c) similar to the one shown in figure 7.4 to ensure that the standard full layout corresponding to the tile
arrangement is loop free. For brevity the proof is omitted. OJ

Theorem 7.3: For any € > 0 there exists a planar layout such that under scheme II any of its three-layer wirings
W’ has area A(W’) > (1.075630 -£)* A(W).
Proof: By Theorem 2.1 and Theorem 7.2, the proof is straightforward. O

VIII. DISCUSSIONS

We considered two different layer assignment schemes for the layer assignment problem for planar
layouts. We showed the lower bounds 1.20 and 1.075630 for the worst case three-layer wiring area bounds
under stretching schemes I and II, respectively. The upper bound 4/3 for the approximation factors under
Scheme I by using the algorithms given in [BrS] and [GZ] is close to the lower bound 1.20 developed in this
paper. Using the structare of the standard full layout W, we classified planar layouts into four different classes.
We considered the problem of constructing a three-layer wiring by finding a legal partition of the diagonal
diagram corresponding to the stretched layout. The lower bounds we found for the approximation factors under
Scheme II are much smaller than those for the Scheme I. This provides evidence that better approximation
factors can be obtained under Scheme II. Under scheme I the lower bound for the worst case wiring area bound
is 4/3, when a wiring constructed by finding a legal partition of the diagonal diagram corresponding to the
stretched layout is concerned. This indicates that the bound 4/3 is tight unless other wiring methods are
employed. Several techniques are proposed in [GZ]. We believe that the combination of the two stretching
schemes considered in this paper and some wiring techniques proposed in [GZ] may result in better wiring area
bounds.
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