Department of Information § Computing Scienceé

Uﬂiversity of Oklahoma

[| |
 ALCORITHMS ON SETS AND RELATED PROBLEMS

- Teofilo Gonzalez

Technical Report No. 75-1%
December 1975

"Algorithms on Sets and Related Problems”

Teofilo Gonzalez
Information and Computing Sciences
University of Oklahoma

A new structure for representing sets is present

. ‘ . » : i .
is shown that algorithms which make use of this structure will

edj It

solve in linear time the following problems: set equality,

dictionaries, disjoint sets, element uniqueness, mode

min gap, etc. For all of these problems a lower bound on the

time complexity of Oc(nlogn) has been cbtained. The

requirements for these algorithms, even though bounded, might

be extremely large compared to the number of inputs.

., IRS,

storage

We pre-

sent an algorithm for the max-d gap problem which only requires
linear time and space, however a similar problem, the min-d gap

can only be shown to be as hard as some of these set problems.
; | e j

f ‘ : j 3 ‘
Key Words: computational complexity, linear time algorithms,
searching, dictionarie$, element uniqueneéss, min

ap, max ga sets, set operations, mode, IKS.
3 X b4 b

I; Introduction

| J ‘
. The problems we study in this paper are:

mmd$? dictionaries, IRS, element uniqueness, time-space, max
gap;:minlgap, set equality, union, intersection, symmetric
différence,etc.% For most of these problems a lower bound on
tﬁe time complexity of Oc(nldgn) has been obtained (see
Réipgold [6]1, Dobkin and Lipton [3] and Shamos and Hoey f?}),
| j For the‘subset problem (A & B), Knuth [4, p. 391} suggests
three approaéhes which yield algorithms of time complexity
O(nm), O((n+m)logn) and O(n+m), where n={A|, m=|B] and n<m. The
11inear time solution requires a "suitable"™ hashing function and
‘tﬁe‘time required to find this function is not incliuded in
‘thefanalygis. For any given hash function the time complex-
ity}of this algorithm would in the worst case be of O{mm},
see Ah@, Hopcroft and Ullman [1, p. 163}.
“We presént:a linear time algorithm for
the subset problem. The space requirements, even though
bounded, might be ex#remely large compared to the length of
the sets.‘ Let us now define memory and space complexity.
The épecific memory locations which the algorithm modifies

during its execution, expressed as a function of the size

of the problem is called the memory complexity of the algo-
rithmo The total memory required (highest location used -

lowest location used) by the algorithm, expressed as a

function of the size of the problem is the space complexity

[ae]

of the algorithm. Similarly as in [1] we can define asymptotic
memory and space complexity. The algorithm we present for this

proplem has asymptotic time complexity of O(n+m), memory com-

plexity is O(n+m) and the space complexity is bounded by the

£}

difference between the largest and smallest integer used to
répresent the elements of the set.

Aﬁy algorithm for a machine with sequential access wemory

dévice (e.g., Turing machines) has the property that the time
complexity > space complexity = memory complexity. For random
access machines, it is not known whether this relation between
time and space is always true. In other words, take any algo-
rithm with Tl(ﬂ)» My(n}) and Sl(ﬂ}» where Ti(m}, Ml(n) and Sl(n)
afe funatibns representing the asymptotic time, memory and
space complexity, such that O(M;(m)) < O(T,(n)) < O(5,(n)).
I$ there an algorithm (to solve the same problem) with Tzfn) =
0(T;(n)), My(n) = O(M;(n)yand S,(n) = O(M;(n))? In section II
‘wé show that this problem (time - space)}, is equivalent to the
oﬁ line dictionary.

Throughout this ﬁaper we make the following assumpftions:

i) elements in sets are uncrdered,
1i) sets are stored without repetitions,

and iii) groups: of numbers are unordered.

We now define formally the problems we are going to study.
1. element uniqueness

o - s T e P . i oy P SPT O
input: elements Ky Xopeoe, Xy (D ey

- property: all elements are different

*bfobérty: A=B or A+B

i
2. | set equality ﬂfri o 1
input: ' sets A and B lelewments , imteqens) | ”

it
=

z, subéet

input: = sets A and B (Aeﬂﬁvwﬁﬂ45,imigﬁeﬁgx

i
=

properfy: AEB or A-B

4, 'disjoint sets . | ‘;
‘ : . ‘i‘ wirteo € VG 1 ‘}
input:, sets A and B (@QQLMKFW{Qf ‘“\Qf 3

pfobert&: AfB = @ or |AUB| = |A]|+|B|

5. mode

; %
. b : . P A~_f«.; ; ‘Iiﬁf L E S
input: | integer ¢ and elements x, R i Teq s

property: there is an element repeated £ times.

i
|

6, multiset representation |

(xS m ’z;ﬂ’ f”}

 1 ;iﬂput:li integer k and elements X1sXpseee Xy {
propertf: there is a representation <y1,il>9 <y2,12},.,., ¥
<y, ,i,> such that al 's are diffe : i, =
Yk’}k uch that all yi's are different, jgl 1J n
and <y,i;> = (there are i; elements in X equal

to yj) for j = 1,2,i.;kn ‘

i

7. gRS
inpuﬁ:; employer forms X5V gely” (emplmyer;xi paid employee
1 | Yis 2 dollars) and employee forms <ui,vi‘wi% j |
(employee u;, received from employer v,, w. dollars)ﬁ%@ig&ﬂﬁﬁg
property: there is a‘peyfect match between employee | reports and |
- em@loyer TEpOrts. ‘
8. iéiétionaries ;i
inpﬁt:i opérationS‘of the form insert x , search ﬁ and
delete x . (X 4»«3M@&r>
. property: answer all search queries.
x ‘ |

9 ti%e - space
input: algorithm (T (n), My (n), S;(n))
output: there is an algorithm (for the same problem]) such

that T,(n) = O(T,(n)), M,(n) = 0(¥;(n)) and |

5,(n) = 0(M;(n)). | |
‘10.‘ min gap
input: numbers d,il,xz,,.,,xn (oS wd ‘“klgﬁefvﬁ)

i property: there are two numbers x, and X such that‘]ximxji < d

% ol and either Xy < min(xi,xj) oT Xy zvmax(xiixjj‘fbr ?

| k=1,2,...,0. |

1 | |
ilw;ﬂmax‘gap‘ | ‘
input: numbers d,xl,xz,,,.,xn { 4 4 Jﬁgaﬁ ¥“€«9153
p%o?éréy: | >

there are two numbers x. and X; such thatilxi~xj§ > d

and ejither x, < min{(x.,x.,} or X, > max(x.
k — (i’ j) k - (Xl

|
| | |
k=1,2,. .n.

Ly for

j)

o
I | S

. N ;
‘ Ty i i
» Pl |

iIt can be easily shown that some of théééfprablems are
just instances of more general problems, for example: set
jeQua};ity of symmetric difference; disjoint set of set uﬁion
of set intersection and subset of relative complement. Some
of these problems are better known as optimization problems:
max mode is just the maximum £ for! which the mode has a‘solutioﬁ
and @n min-d gap (max-d gap) we fihd the minimal (maximal) d
gsuCh‘th&t min gap (max gap) has a solution.

In section II we present a new structure for representing

sets. Then we will show several new reductions between these

problems., Finally we present an algorithm which will execute

iaﬁy‘n instructions for dictionaries in O(n) time, and show how
to solve problems 1 to 7 and 10 in linear time. In section III

we present a linear time and space algorithm for the max-d gap

problem.

II.| Set Operations and Related Problems "_F; | I

| ‘ ‘ ‘ '
B Sets are usually represented by a list. - This structure
| ‘ f

requires O(n) spéce and the set up;time is also O(n), where n ié
‘theilength of the set. Another structure is the bit orlcharac;
teristic vector. The space requirement is O(m) and the set up
timé is O(n+m), where‘m is the length of the universe of dis-
cou}se.

The structure wejpropose is aicombinatiqn of the 1i5t and |
:cna%acﬁeristic vector representations. The sequential iixt
fconﬁains the elements in the set and the characteristicivector
?con%ainﬁ the indexes of the elements in the list. Note that
‘the:index vector need not be initialized and it may

contain any information. In order to identify elements in the

‘set from elements not in the set, we make use of a 1-1 corres-

pondence between the list and the index vector. The
space required is O(n+m). The initialization time is 0(n).

Pigﬁre 1 is an examplé of this representation for set A={5,3,9,2}

List Index vector

0 5

1] 3 21 3 crossed memories

2 > 3 } : may contain any

3 2 4
;o g i information.
. ‘ i
| i | ;
| 6 Iif \ i
P 71X | }

| | 9 2

P Fig. 1 Representation of set A={5,3,9,2}

We can e@sily see that this structure céh be used %o
Stokesparse te‘iblesymatr:’tces,‘treesf,s graphs,etc. With this
comparismn in mind we can imprwve hashing methods. Al1 known
hashing schemes (Knuth [4]) make use of a table of length m
such that n<m<kn for some comstant k. By using this stfuctur@

ps

we may use larger tables e.g., U{DZ)n Since there is no né@d
|

to initialize the table and the size of the table is la?gerl,
we obtain algorithms with better average and worst case time.

We now present several reductions between these problems.
By Py o P, we mean that problem Py can be reduced to an
ingtance of problem PZ after at most O(n) operations iu‘O(nj
spa§ey where n is the size of problems Pl and sz Thus a linear
time and space algorithm for Pz implies one for Plﬁ

The reduction set eguality o subset is shown by Reingold
[61. Disjoint set o element uniqueness is trivial. Element
uniqueness o min-d gap is shown by Shamos and Hoey [7] and i
similarly we can obtain it‘for mode and multiset repreﬁénta@iﬁnm‘
Set equality o IRS and set equality o multiset representation

can be easily obtained. The lower bound of O_{(nlogn) on the

time complexity for these problems follows from these reductions

and the proof of Reingold [6] for the set equality problem and
the proof of Dobkin and Lipton [3] fov the element uniqueness
problem.

oy

\
We assume n is sufficiently large so that k]ﬂ“ > kn

We now show the equivalanca1 between dictionaries and the

time - space problem.

Lemma 1 The dictionary and time - space problems are equivalent. |
! I |

lxggf The proof is presented in two parts.

a) time - space o dictionary

Given any algorithm with ' (n Mj(m) and S]Kn):such

that O(Ml(n)) < O{Tl(n)} < O(Sl(n))w where Tl(rl,]g Mlxn);an& 81{n)
are functions representing the asymptotic time, memory and space
complexity of the alporithm, We are going to simulate this algo-

rithm by the use of a dictionary. The keys in the dictionauy

are the specific memory locations used and every time a Memory
is inserted in the dictionary a new consecutive addr@gﬁ\is ;‘
assigned to it. The simulation will permit the algur” thm to

execute any operation until there is a request to u%e a partic

ular memory m, in this case we search for m in the dicfionarvﬂ

If the search is successful (we have alre adv assigned an addres §
to m) then its address is returned to the original algmflthm an@
let it contiﬁue. Othérwise we assign the next consecutive addréss
to m; insert it intojthe dictionary and return the address to the
original algorithm,

Thus if we can execute N operations on a diction ary in

0(N) time and space, then we have an algerithm foy the griginal |

Two problems P1 and P, are equivalent iff P, o P, and
i ot

PZ o Pl‘

problem of time T,(n) = O(T,(n)), space 5,(n} = O(Ml(n)) and

memory‘M?(n) = O(Ml(nj).

b) dictionary a time space | X oy
- This part of the proof follows directly fram the
algorithm which we present for the dictionary problem. This

algorithm is of the form required by the time - spacc phoblem E@

We should note that if we have an algorithm of tlmc T (n),\l‘

Spéae S (n) and memory M (n), by using lemma 1 | 1‘
| L
and if we implement the dictionary by balanced search trees,

we automatlcally obtaln an algorithm of time T (n) = O(T (n) 1

1og(T (n)), space S (n) = O(M (n)) and memory M (n) T O(Mlhn)).

Now we present an algorithm that executes n instructions

in a dictionary in O(n) time. |

Line Algorithm DICT
| //Global variables used:
table: Vector of size M-L (wheve M is the iargest ;li
and L the smallest key) used to %tofe |
indexes. Initially it may cenﬁgin any in-

formation,

elem: Vector used to store the elements previously |

inserted. :} . ‘ ‘ﬂ
Entries for the algorithm

INITIALIZE, DELETE, INSERT and SEARCH.//

(7]

[y

10

11
12

13

10

//entry for initialization//
entry INITIALIZE(i,z)
//i is the number of inserfions made and z is tﬂe smallesﬁ
key to be used.// |
i+ 0; L « z
return |
//entry for insgrtions//
entry INSERT(i,x)
//x: key to be inserted (assume to be between‘L and M)
i: number of successful insertions in dictionary//
if SEARCH(i,x) = false
then [table (x-L) <« i; elem (i) <« x; 1 + i+1]
//entry for deletions//
entry DELETE(i,x)
//x and 1 as in dinsert//
if SEARCH(i,x) '= true
then felem (table (x-L)) « L-1]
return
//entry for searching. SEARCH is a logical fuﬁction//
entry SEARCH(i,x) |
//x and i as in insert//
z « X-L | i
//next instruction is executed from left to fiéht//
if O<table (z)ki-1 and elem (table (z)) = x
then [SEARCH <« true; return]

else ISEARCH <« false: return!

end of algorithm DICL.

The fellowing two lemmas will show thaﬁfélgorithm DICT

correctly implements a dictionary in linear time.

Lemma Z Algorithm DICT executes correctly any inser{, delete

and search operation.

Ezggﬁ: The proof is by induction on the number of Sgécc sful
insertioﬁsn ‘

basis: We prove that any instructions until th% first
insert is executed correctly.

From line 14, cleatly any search operation will. b false.

Then any delete operation should do nothing. The firﬁt key we
o
want to insert will be inserted as the search in line 5 will

‘ |

be fal

induction hypoth651s. Assume every instruction until the

.th | . ; . ,
i successful insert have been carried out corrvectly.

induction step: We now prove that any instruct%dﬁ after
the 1™ successful]nsert until the 1™41 succes fulifnsert arei‘
| | ‘
executed correctly. ; i
case i: key x has never been inserted nor deleted. ‘
Then x ié not in the element list and from line 14‘j
we know that any search for x would be false. Delete xi
‘would do nothing and if insert x then in liﬂe 6 we woul&
establish a 1-1 correspondence between the élement list

~and the index table for key x.

\\\\\\\

12

e iis The last insert or delete on kéy‘ﬁnwas a delete
before the ith insert.

From the induction hypothesis we know that
delete x was done properly, so ¥ is not in the
element list, therefore the same arguments used in
case 1 alsoc apply. |
case iii: The last insert or delete on key x was an insert x.

Then there is a 1-1 correspondence for x between
the element 1list and index table, so any search x
would be true. An insert x would do nothiﬁg and a
delete x would eliminate x from the element 1ist so
that further search x would be false.
gasé iv: The last insert or delete on key x was a‘déleté after
the ith insert. 1 ‘
Then from case i, ii, or iii we know that the

first delete x after the ith insert was done correctly,

so X is not in the element list, therefore the same

proof as in case i applies.

Lemma %3 n delete, insert or search operations in algorithm DICT

can be carried out in O{n) time on a random access machine.
Proof: As there are no 1Q0psy any call to this algorithm would

take a constant amount of time, therefore n entries must take

O{nj time.

We now show how to solve several problems by the use of
dictionaries.

i) element uniqueness: We execute the following instruc-

tions: (insert Xy search X%+1} for i=1,2,...,n-1. The output

is true if all search operations are false.

ii) symmetric difference: From set theory we
know that A+R = (A-BjIJ(B;A)ﬁ so we just call the rélative
| ‘
coﬁplement and set uﬁion algorithms. Note that te solve set
equélity we just perﬁorm the symmetric difference between the

sets and check to see if the result is empty.

ii1) relative complement: To solve this problem we make
use of the followingioperations: insert bi for i=1,2,...,m
(biVS are elements Of set B}, search a. for izl,zym,f,n (aiis
are elements of set A}, if for any a. the searc
then &, is not part @f A-B, otherwise it is part of A-B.

iv) subset: we just call the relative complement and check
if answer 1is empty.

v} set intersection: The following operations are per-

formed: insert ay for i=1,2,...,n and search bi forjiﬁlyzy.&.,m.
Whenever a search*is%swcceﬁsful, element bi is part of the
solution set, |

vi) set union: ;The operations we should execute are insert.
a; for i=1,2,...,n and insert bi for i=1,2,...,m, thelresulting
element list is the solution.

vii) mode: We write an algorithm for this problem,

14

Algorithm MODE (X,n)

Line |
//We are‘gmingjfo find the 1arges£ L ftor which there is
a mode. k |
L‘is assumed ic be the min‘{xlgxz,“.@,xn}
count: a vector that has és values the number of times
| an element is repeated//
1 max <« 0
2 call INITIALIZE(i,L)
5 for j <« 1 to n‘ég
4 if_SEARCH(i,xj} = true
5 then [%ﬂunt(tahle(xj—h)) “ Coumt{tabie(XjWLJ)+l
6 if count (max) < ﬁOunt(table(xj~L))
7 1 then [max + ﬁabie{xij)}i
8 else [%0unt(i) + 1
9 call INSERT(i,x;)]
10 end ;
11 return (count(m%x),elem(max))
12 end of MODE |

viii) Multiset: This algorvithm is very similar to the mode,

just eliminate line 1, 6, 7, 11 and after line 10 do the f@ilowingw

for j « to i-1 do

Output (count(j),elem(j))}

and

ix) min gap

Line Algorithm MINGAP(X,n,L,M,d)

//Assume L is smallest element//

//In this algorithn Q@ are going to place together a
group of obsefvationge We are going to have several
bins, where binO contains element L, bin] contalns
elements (L; L+d]l..... and the last, bink$1 contains
elements (L+kd; M] where M is the largest X and

(M- (L+kd)) < d.
Vector B is uéed to store the value of the elements in
the bins//

1 call INITIALIZE(i,O)

2 for j « 1 tondo

3 ko« (x;-L)/d]

4 if SEARCH(i,k) = true

5 then {OUTPUT(Bgtablegk)),xj)

6 return]

7 © else [if (M-x)) > d

8 ﬁggg [if SEARCH(i,k+1) = true

9 | | then [if B(table(k+1)) - x5 < d
10 | then [Output (B(table(k+1})7x§}
11 | }fﬁj@]]}] n
12 | Af XA
13 ! then [if SEARCH(i,k-1)=true

14 : then [if xij(table[kwl)) < d

15 | then [Output (B(table(kwl}ng}j

16

16 ‘ ~ return]i]
17 B, « X, call INSERT(i,k)]
18 end }

19 output (no result)

20 end of MINGAP.

x) IRS: this problem is included for its practical appli-
| | ‘ :
cation. This algorith@ is feasible provided sufficient auxiliary
memory on disks or drpms is available.

Line Algorithm IRS(n,m)

//input the employer forms, assume there are m of such
forms. <x,y,z>: employer x paid employee y, z dollars.
L: smallest'émployee social security numbers//

2 for j + 1 tomdo

3 input <x,y,z>
4 if SEARCH(i,y)=true
5 then [//sets Si are stored sequentially as all

employees are assumed to have at most a

constant number of jobs//

6 istahle(wa) N Stable(y}L)%J tex, 2>)]
7 else [S; + {<x,z>}
8 call INSERT(i,y)}]}

g end

10
11

12
13
14

15

16

17

18
19

20

17

|

»
e

//read employee forms, assume n of Suchiformg//
for j«1tomdo -
iéEEE <u,V;w> //employee u, received from empi0yer
‘v, w dollars//
if SEARCH(i,u) = true
Eﬁﬁﬂ,tif VW2 £ Stable(u~L}

then [S {<v,w>1}]

‘table(umL) < Stable(u~L)
else [//Send message to employer stating that
| employee reported this salary//
output <u,v,w>]]
g}éﬁ_{//send message to employer stating that
employee reported this earning//
output <u,v,w>]
end
for j « 0 to i-1 do
while Sj%U do
//5end message to employee stating that employer
reported this earning//
<KL, 7> * Sj //copy first pair from set Sj//
S. « 8, - <x,z>
output <x,elem(j),z>
end

end

ggg‘of IRS

18

time on a random access machine.
Proof: Let us assume that n is the length of the input for
these problems. From lemma 3 and the fact that all bf these

problems make O(n) calls te algovithm DICT, it follows that the

time complexity is O{n). &

I11. Gap Problem

In this section we are going to look at the max«dggap
problem. Clearly max éa? o max-d gap. Shamos and Hoe? {71
claim the reduction element uniqueness o max-d gap, however,
it is not corvect. We now present an O(n) time and space
algorithm for the max-d problem. It is surprising that such
alporithm exists for this problem, as it is very similar to
the min-d gap for which there is no known linear time solution,
and the min gap even though it has a linear time solution, its
space might be very 1argea‘ Sahni [8] also reported two éimilar
problems, one of which, the Kolmogorov - Smirnov with a contin-
uous distribution function can be solved in O{n) time and space
{(see [51), however the set equality problem can be reduced to
the K-S test with discrete functions. Again we have two‘very
similar problems, cne with a linear time and space solution and
the other that requires O(nlogn) time and is as hard as the set
problems.

The technique used to solve this problem is similar to the
one used by Gonzalez, Sahni and Franta [5] for the Kolmogorov .

Smirnov and Lilliefors tests.

Line Algorvithm MAXdGAP(n,X,d)

//This algorithm finds the maximum gap {d)} between n
ordered points. The input are n unordered points
initially stored in vector X. OQutput is returned in

d.

pae

fead

20 until KMAXJ # small
2 i§‘XMINj WZXMAXi > d then [d + XMINj - KMAXS]
22 i« 3

23 end

24 end of algorithm MAXdGAP.

Lemma 4: Algorithm MAXACAP computes the correct value fov the

maximum gap d.

Proof: Since there are n+l bins, it must be that at least one
of them is empty. Furthermore we know it cannot be the first
nor the last bin. Tﬁen the maximum gap must be > % ¥ diff.

But the maximum gap bétween peints in the same bin is < % * dift,
50 we need only consider distances between points that belmmg;

to different bins (lines 17-24). Therefore d is computed

correctly.

Theorem 2: Algorithm MAXAGAP has O(n) time and space complexity.

Proof: Obvious.
We sheould note that these gap problems are similar to the
problems studied in [Z]. A related problem is to find the k
max-d gaps. This problem takes O(kn) time and O(n} space, The
solution is by finding the largest gap, then substracting the

gap to numbers above the gap. This process is vepeated k times,

i ,.- P - RN RN e S
det

2 Vectors of size n+l each are made use of:
XMAXia..Maximum point in bin i

N ; 0<i<n
XMINiUENMjnimal point in bin 1 /Y

s s
//Find the smallest and largest elements//

:- 1 big « small <« X,
2 for i« Ztomndo
if x;<big them [if x; < small them [small < x,1]
4 élgg.[big + Xy |
5 end | |

//Initialize bins// |

6 for i « 0 to n do

7 XMIN; « big
8 XMAX, + sm%ll ' |
9 end |

//Place X inte bins//
10 diff « big - small

11 for i « 1 ton ig

12 j %7<xi + small)/diff) ﬁng //find bin//
i '
13 if XMAX. <|x. then [XMAX. <« x.]
- J Pl — 3 i
14 if XMIN, > 'x. then [XMIN, < x.]

15 end ‘ |
//Find interbin distances//
16 d « 0; 1« 0; 3§ +«0

17 while i < n do

18 repeat
19 j o« i+l

B
[N

IV, Conclusions

Bven though the space required fovr the dimtionary p}obl@m
might be very large, we could have several search procedures
over the same space as long as we take care of collisiomgy SO
the unused storage can be decreased. The space used for the
table need not be scratch, for examplie it might be prmgramgg
files, etc., as long as they remain inactive. Whenever we use
one of those stores, the information would he saved and at the
end restored.

There are still several open problems. Is there a linear
time solution for the min-d gap? Find algorithms which requive
less space for these set problems. Can we solve some of these
problems in linear space but say nloglogn time? Note that any
key comparison algorithm takes\@c{nlogn}a

For the reduced problem (e.g., keys in the range [0 0)]
a O0(kn) algorithm is known for some of these problems by the use
of radix sort. Our méthod is still an improvement, The:differenﬁe
in time might not be very impressive if all our data can?fit in
the internal memory @f the computer. However, if it is not
the case, the difference on time is more impressive when using

external storage devices.

8.

References

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., "The Desion
and Analysis of Computer Algorithms,' Addison-WeST&y, 1977, |

Bodin, L. D., "A Graph Theoretic Approach to the Grouping
of Ordering Data," Networks, 2, 1972, pp. 307-310.

Dobkin, D. and Lipton, R., "On the Complexity of Computations
under Varying Sets of Primitives,” Yale Univ., Dept. of Comp.
Sci., Technical Report #42, 1975,

Knuth, D. E., "The Art of Computer Programming. Vol. I1I,
Sorting and Searching,” Addison-Wesley, 1973.

Ry

Gonzalez, T., Sahni, S. and Franta, W. 2., "Efficient
Algorithms for the Kolmogorov - Smirnov and Lilliefors Tests,"
to appear ACM TOMS.

Reingold, E. M., ﬁOn the Optimality of Some Set Algorithms,"
JACM, Vol., 19, No. 4, Oct. 1972, pp. 649-659,

Shamos, M. I. and Hoey, D., "Closest-Point Problems,"
Proceedings of the 16th Annial Symposium of Foundations of
Computer Science, Oct. 1975, pp. 151-162.

Sahni, S., private communication, Jan. 1975,

