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Abstract. In this paper we present a simple three-layer assignment algorithm for planar layouts 
generated by a class of layout algorithms. This class of algorithms includes simple variations of 
the currently best algorithms for the three layer channel routing problem (CRP). More 
specifically, this class includes algorithms "equivalent" to the following algorithms (i-ill) 
developed by Mehlhom, Preparata and Sarrafzadeh [7]. 

(i) The algorithm that generates planar layouts for the two-terminal net CRP with dma x tracks. 

(ii) The algorithm that generates planar layouts for the two- and three-terminal net CRP with at 
most L 3dmax/~ tracks. 

Off) The algorithm that generates planar layouts for the multi-terminal net CRP with at most 
2 d m a x "  1 tracks. 

The planar layouts generated by these algorithms and by their "equivalent" algorithms are three- 
layer wirable by the layer assignment algorithm given in [8]. Our approach is different. We 
make simple modifications to these layout algorithms and incorporate a simple wire assignment 
strategy to generate three-layer wirings under the knock-knee model. Consequently, we obtain 
simpier and faster algorithms that generate three-layer wirings with layouts similar to the ones 
generated by algorithms (i) - (iii). Our algorithms are faster and conceptually simpler because 
there is no need to construct diagonal diagrams and legal partitions. The channel width of the 
wiring generated by our algorithm is identical to that of the corresponding planar layout gen- 
erated by algorithms (i) - (iii). 

1. Introduction 

The channel routing problem (CRP) has been recognized as one of the most important prob- 
lems in VLSI design automation. The CRP problem is defined over the rectangular grid formed 
by lines {x = i I i ~ Z } and {y = j  I 0 <_j < h+l}. The horizontal grid lines y = 0 and y = h+l are 
called the boundaries of the channel, and the horizontal grid lines y = j, 1 _< j < h, are called 
tracks of the channel. All the vertical grid lines are called columns of the channel. A channel 
routing problem consists of a collection of pairwise disjoint sets of grid points, N = {N1, N2 ..... 
N,~ }, located on the channel boundaries. Each N i in N is called a net and each point in Ni is 
called a terminal of net Ni. Terminals in each net need to be connected by wires running along 
the grid lines. It should be noted that the terms "layout" and "wiring" are frequently interchange- 
able. In this paper we follow Preparata and Lipski's [8] convention and give these two terms a 
different connotation. A planar layout (or simply a layout) of a channel routing problem is a col. 
lection of edge disjoint connected subgraphs W = {W1, Wz ..... Wm} of the channel grid, such 
that each subgraph Wz connects all the terminals in net Ni. This definition implies that at each 
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grid point in a planar layout there can be at most two wires, and for i c j, Wi and Wj do not share 
any grid line segment. There are several different wiring models for the channel muting problem. 
In this paper, we consider the CRP under the knock-knee model. In the knock-knee model, when 
two different wires share a grid point they either cross or form a knock-knee. The two types of  
knock-knees are given in figure 1.1. The horizontal (vertical) portions of a knock-knee are called 
the horizontal (vertical) arms of the knock-knee. 

upper vertical arm upper vertical arm 

horizon larm -Jr-- ho zo.   boronS, arm 

lower vertical arm lower vertical arm 
type- 1 type-2 

Figure 1.1: Knock-knees. 

There are k > 2 conducting layers L1, L 2  . . . . .  Lk available and Li+l is stacked on top of Li 
for 1 < i < k. A wiring of a given layout W = {Wu W2 ..... Wm} is a mapping that associates each 
edge of Wi, 1 < i < n, to a layer such that for every i ~ j if edges (p 1, P2) and (P2, P3) in Wi are 
assigned to Ls and Lt, respectively, and edge (P2, P4) in Wj is assigned to Lu then either u > 
max{s, t} or u < min{s, t}. Contact cuts ( called vias ) can be established only at grid points. 
Vias allow a wire to change from one layer to the another. The objective of the channel muting 
problem consists of finding an optimal wiring, i.e., a wiring on a grid with least number of hor- 
izontal grid lines. We also refer to this criteria as minimum channel width or minimum number 
of  tracks. 

We call the open interval (c,c+l) a vertical cut, where c and c+l are two adjacent columns 
of  the channel. We define the channel density dmax for a CRP as dm~,, = max{d(c)}, where d(c), 
the local density for the vertical cut (c,c+l), is the number of nets in N whose leftmost terminal is 
located to the left of vertical cut (c,c+l) and the rightmost terminal is located to the right of verti- 
cal cut (c,c+l). Clearly, the channel density dm~ is a lower bound for the channel width in an 

optimal wiring for the CRP problem. 

Preparata and Lipski [8] developed an efficient algorithm to generate a three-layer optimal 
wiring for the two-terminal net CRP. Their algorithm consists of two phases. In the first phase a 
minimum-track planar layout that satisfies certain properties is constructed. In the second phase 
the planar layout is transformed into a three-layer wiring by a powerful transformation, legal par- 
tition of the diagonal diagram induced by the layout. Recently, Mehlhom, Preparata and Sar- 
rafzadeh [7] developed another algorithm to construct a planar layout for this problem. The algo- 
rithm is conceptually simpler and the planar layout can also be three-layer wired by the algorithm 
in [8], Another algorithm that finds a planar layout with dm~ tracks for this problem appears in 
[10]; however, it is not known whether or not the layouts generated by this algorithm are three- 

layer wirable. 

For the case when each net consists of at most three terminals, the algorithms in [7] and [9] 
generate a planar layout with no more than L 3dm~x/2J tracks. For multi-terminal net channel 
muting problems, the algorithms in [4], [7] and [11] generate planar layouts with at most 2timex-1 
tracks. The layouts generated by these algorithms are three-layer wirable by the algorithm given 
in [8]. The bounds L3dmax/~ and 2dmax-1 are believed to be best possible when one restricts to 
three layer wirable planar layouts. Recently, Gao and Kaufmann [2] showed that every 
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mult~terminal net CRP has a planar layout with 3dmax/2 + O("]dmaxlogdmax) tracks. However, it 
is not known whether these layouts are three layer wirable or not. 

Lipski [5] showed that there are planar layouts that are not three-layer wirable. Gonzalez 
and ~Aheng [3] showed that there even exist six-row planar layouts which are not three-layer wir- 
able. In general, the problem of determining whether a given planar layout is three-layer wirable 
is NP-complete([5]). Brady and Brown ([1]) showed that every planar layout is four-layer wir- 
able by finding a legal partition ( that satisfy some additional properties ) of the diagonal diagram 
induced by the layout. 

In this paper we present a simple three-layer assignment algorithm for planar layouts gen- 
erated by a class of layout algorithms. This class of  algorithms includes simple variations of the 
currently best algorithms for the three layer channel routing problem. More specifically, this 
class includes algorithms "equivalent" to the following algorithms developed by Mehlhorn, 
Preparata and Sarrafzadeh [7]. 

(i) The algorithm that generates planar layouts for the two-terminal net CRP with dma x tracks. 

(ii) The algorithm that generates planar layouts for the two- and three-terminal net CRP with at 
most [ 3dmax/2~ tracks. 

(iii) The algorithm that generates planar layouts for the multi-terminal net CRP with at most 
2dmax - 1 tracks. 

The planar layouts generated by these algorithms and by their "equivalent" algorithms are three- 
layer wirable by the layer assignment algorithm given in [8]. Our approach is different. We 
make simple modifications to these layout algorithms and incorporate a simple wire assigrhnnent 
strategy to generate three-layer wirings. Consequently, we obtain simpler and faster algorithms 
that generate three-layer wirings with layouts similar to the ones generated by algorithms (i) - 
(iii). Our algorithms are faster and conceptually simpler because there is no need to construct 
diagonal diagrams and legal partitions. The channel width of the wiring generated by our algo- 
rithm is identical to that of the corresponding planar layout generated by algorithms (i) - (iii). As 
mentioned before, algorithms (i) - (iii) are currently the best algorithms for the three layer CRP 
problem. 

2. T h r e e - L a y e r  W i r i n g  A l g o r i t h m s  

Before we define the class of layouts algorithms we are interested in and our layer assign- 
ment strategy, we need to introduce additional notation. Let A be a layout algorithm that gen- 
erates a layout by a single left-to-right column-by-column sweeping (scanning) of  the terminals, 
For column c, we define the strip area S(c) around column c as the area delimited by the two 
vertical lines c - 1/2 and c + I/2, and the top and bottom boundaries. When algorithm A process 
column c it generates the layout, W(c), for the strip area S(c). The horizontal wires leaving W(c) 
from the right of S(c) are called the output wires of W(c). There are no input wires for W(1) and 
forc  > 1 the inputwires of W(c) are the output wires for W(c-1). A horizontal wire that is both an 
input wire and an output wire on the same track in W(c) is called a continuing wire. A horizontal 
wire that is only an output wire on some track k in W(c) is called a beginning wire. We say that a 
wire Wi is a k-stranded input (output) wire in W(c) if the vertical line x = c-1/2 (x = c+1/2) inter- 
sects k: times wire Wi in layout W(c). We say that vector V = (vb v2 ..... Vm) is an input (output) 
strand vector for W(c) if wire Wi is a vi-stranded input (output) wire in W(c). We use osv(W(c)) 
(isv(W(c)) to denote the output (input) strand vector for W(c). 
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The planar layout algorithms which can be modified by our strategy to generate three-layer 
wirings are called conservative planar layout algorithms. An algorithm A is said to be a conser- 
vative layout algorithm if and only if it satisfies the following three properties. 

(1) Algorithm A generates a layout by a single left-to-right column-by-column sweep (scan), 
When column c is being considered the algorithm generates its final layout W(c), i.e., once 
W(c) is generated, the layouts W(1), W(2) ..... W(c) will not be modified. 

(2) For column c > 1 every layout W'(c-1) such that osv(W'(c-1)) = osv(W(c-1)) (remember 
that W(c) is the layout generated by algorithm A for column c), algorithm A generates a lay- 
out W' (c) with osv(W' (c)) = osv(W (c)). 

(3) For any layout W'(c-1) with osv(W'(c-1)) = osv(W(c-1)) algorithm A generates a layout 
W' (c) with no more than two knock-knees. If there are two knock-knees, the knock-knees 
are of  different types, and the knock-knee of  type-1 is below the knock-knee of type-2. A 
type-1 (type-2) knock-knee has its lower (upper) vertical arm intersect the bottom (top) 

boundary. 

Without loss of generality, assume that every conservative algorithrn is initially assigned h 
empty tracks and throughout the execution of the algorithm the value h is never increased nor 
decreased. An algorithm A that does not satisfy this restriction can be easily simulated by exe- 
cuting A once to obtain the value of h. Once this value is computed, algorithm A can be easily 
modified to satisfy this additional property. One can easily develop algorithms "equivalent" to 
algorithms (i) - (iii) that satisfy properties (1) - (3). By "equivalent" we mean that the new algo- 
rithm has the same (asymptotic) worst case time complexity, and it never generates a layout with 
a number of tracks that exceeds the bounds stated in (i) - (iii). The planar layout algorithms given 
in [8] and [10] do not satisfy some of  these properties and it seems that these algorithms do not 
have "equivalent" algorithms that satisfy properties (1) - (3). 

Let A be any algorithm that satisfies properties (1) - (3). In what follows we define our 
algorithm, A*, to construct a layout (similar to the one constructed by A) and find its layer 
assignment simultaneously. Algorithm A* constructs the layout as algorithm A in a single left- 
to-right scan of the columns. When column c is being considered, we first take W* (c-l), the lay- 
out generated by algorithm A * at the (c-1)th iteration (ifc = 1, W* (0) = O) and mimic algorithm 
A on this input. Let W' (c) be the layout obtained by this process. Note that the input wires in 
W' (c) are identical to the output wires in W* (c-l). Depending on the knock-knees in W' (c) and 
the layer assignment for W* (c-l), W* (c) is defined as either W' (c) or a slightly modified version 
of W' (c). In either case the output strand vector for W* (c) and W" (c) are identical. Let W(1), 
W(2) .... (W* (1), W* (2) .... ) be the layout constructed by algorithm A (A*) for some CRP prob- 
lem instance N. From this brief description and the assumption that algorithm A satisfies pro- 
perry (2) one can easily prove that at each step, the output strand vector for W(c) is identical to 
the output strand vector for W* (c). When algorithm A * is processing column c, the layer assign- 
ment for each wire segment in W* (c) is determined. The layer assignment rules are quite simple: 
horizontal wires are always assigned to either the top layer or the bottom layer, whereas the verti- 
cal wires are assigned to the middle layer in "normal" regions and to either the top or bottom 
layer in other regions. Vias are introduced whenever necessary. For column c, we use [kl,k2], 
where kl < k2, to represent the vertical grid segments from track kt to track k2. Note that it is a 
closed interval. For open intervals we use parentheses instead of square brackets. Remember 
that the bottom (top) boundary is track 0 (h+l). We define the strip area S(c,l) (S(c) restricted to 
I) as the set of atl points in S(c) with y-coordinate value y e I, where I = [kt, k2] for some kl < 
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k2. Similarly, the layout W* (c,l) (W" (c,I)) is defined as W* (c) (W' (c)) restricted to the strip area 
S(c,I). Depending on the knock-knees in W' (c), each of the vertical grid segments in column c is 
labeled, R I, RN, or R2. A region R~v is a normal region, and the other two regions, Ri, contain 
exactly one type-i knock-knee. The labeling procedure is given below. 

procedure LABELING 
c a s e  

:there is no knock-knee in W' (c)/* fig. 2.1(a) */: 
the interval [0,h+l] is labeled RN; 

:there is exactly one knock-knee in W' (c) and its type is type-1/* fig. 2.1(b) */: 
let k be the track where the knock-knee is located; 
the interval [0,h+l] is partitioned and labeled as follows: [0,k-l) is labeled RN, [k-l,k] is 

labeled R 1 and (k,h+l] is labeled RN. 
:there is exactly one knock-knee in W' (c) and its type is type-2/* fig. 2.1(c) */: 

let k be the track where the knock-knee is located; 
the interval [0,h+l] is partitioned and labeled as follows: [0,k) is labeled Riv, [k,k+t] is la- 

beled R2, and (k+l,h+l] is labeled R N. 

:there are two knock-knees in W" (c)/* fig. 2.1(d) */: 
/* From property (3) we know that the knock-knees are of different types and that the 

knock-knee of type-I is below the one of type-2 */ 
let kl (k2) be the track where the knock-knee type-1 (type-2) is located; 
/* From property (3) we know that k 1 < k2 */ 
the interval [0,h+l] is partitioned and labeled as follows: [0,kt-1) is labeled RN, [kl-l ,kl]  

is labeled R I, (kuk2)  is labeled RN, [k2,k2+l] is labeled R2, and (k2+l,h+l] is labeled 
RN. 

endcase 
end of procedure LABELING 

:l T 
RN 

R i • i 

u.o~u_z ,,(, 

I 
RN 

/ifJg11/ 

T 
RN 

RN 

Figure 2. i: Labeling examples. 

tn the following figures the region inside the wiggled lines is a three-layer wiring and the 
region not enclosed by wiggled lines is a planar layout. In a three-layer wiring we use solid lines 
to represent wires assigned to the top layer, dashed lines for wires assigned to the bottom layer 
and dotted lines for the wires assigned to the middle layer. Let us now explain how the layout 
W*(c) and its layer assignment are generated by algorithm A* from W'(c). Algorithm A* 
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generates W* (c) by constructing sublayouts W* (c,I) for each interval I in W'(c) uniformly 
labeled (i.e., with the same label). Let us now consider any uniformly labeled interval I. Initially 
we set the input wires in W* (c,I) to be the same as the output wires in W* (c-l,I) which are ident- 
ical to the set of  input wires in IV' (c,I). The layer assignment for the input wires in W* (c,I) is 
identical to the layer assignment for the output wires in W* (c-l,I). Depending on the label 
assigned to an interval, I, the remaining part of  the layout W* (c,I) and the layer assignment for it 
is constructed as follows. 

PROCEDURE LAYOUT AND LAYER ASSIGNMENT 

case 1: Interval I is labeled RN. 
Algorithm A * generates the layout W* (c,I) = W' (c,I). The layer assignment in this case is 
defined as follows. (Remember that the input wires in W* (c,I) are assigned to the same layers 
as the output wires in W* (c-l,I)). All vertical wires are assigned to the middle layer, all the 
continuing wires remain in the layer assigned to their input portion, and the beginning wires 
are assigned to the top layer (note that they could have also be assigned to the bottom layer). 

i 

V- 
W* (c- 1,I) W' (c,I) W* (c-l,I) W* (c,I) 

Figure 2.2: Example for case 1. 

case 2: Interval I is labeled R 1. 
Clearly, the interval is of  the form I = [k-l,k] for some track k, there is only one knock-knee in 
W" (c,I), the type of knock-knee is type-l, and the knock-knee is located at grid point (c,k). 
There are two cases. 

st~case 2.1: There is no input wire in W'(c,I) assigned to track k-1 or the input wire in 
W' (c,I) assigned to track k-1 is electrically common with the lower vertical arm of the 
knock-knee. 
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Algorithm A* generates the layout W* (c,I) = W" (c,I). The layer assignment in this case is 
defined as follows. If the input wire in track k of W* (c,I) is in the top (bottom) layer, then 
the only vertical wire and all the output wires in W* (c,I) are assigned to the bottom (top) 
layer. 

W* (c-l,I) W'(c,I) W* (c-1 ,I) W* (c,I) 

Figure 2.3: Example for case 2.1. 

subcase 2.2: The input wire in W" (c,I) assigned to track k-1 is not electrically common with 
the lower arm of the knock-knee. 
There are two cases depending on whether the output wires in W* (c-l,I) assigned to tracks 
k-1 and k are in the same layer or not. 

subcase 2.2.1: The output wires in W* (c-l,I) assigned to tracks k-1 and k are in the same 
layer. 
Algorithm A* generates the layout W* (c,I) = W' (c,I). The layer assignment in this case 
is defined as follows. If the output wires in tracks k-1 and k of W* (c-l,I) are in the top 
(bottom) layer, then the only vertical wire and the beginning horizontal wires in W* (c,I) 
are assigned to the bottom (top) layer, and the continuing wire in W* (c,I) remains in the 
same layer as its input portion. 

W* (c-1,I) W' (c,I) W* (c-l,I) W* (c,I) 

Figure 2.4: Example for case 2.2.1. 

subcase 2.2.2: The output wires assigned to tracks k-1 and k in W* (c-l,I) are in different 
layers. 
In this case the layout W* (c J) ¢ W' (c,I). W* (c,I) is W' (c,I) after performing the transfor- 
marion shown in figure 2.5. 

W* (c-l,I) IV' (c,I) W* (c-l,I) W* (c,i) 

Figure 2.5: Layout transformation for case 2.2.2. 
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The layer assignment in this case is defined as follows. If the output wire in track k of 
W* (c-l,I) is in the top (bottom) layer, then the only vertical wire and the output wire in 
track k of W* (c,I) are assigned to the bottom (top) layer. The output wire in track k-1 of 
W* (c,I) is assigned to the top (bottom) layer. 

W* (c-l,I) W* (c,I) W* (c-l,I) W* (c,I) 

Figure 2.6: Example for case 2.2.2. 

case 3: Interval I is labeled R 2. 
Since case 3 is similar to case 2, it will be omitted. 

end of procedure LAYOUT AND LAYER ASSIGNMENT 

In figure 2.11 we give a planar layout constructed by algorithm (i) in [7]. The correspond- 
ing layout and the wiring constructed by our procedure is given in figure 2.12. 

0 1 2 3 4 5 6 7 8 9 

3 9 

[ 
8 2 0 7 1 5 4 6 

Figure 2.11: Layout constructed by algorithm (i) in [7]. 

Theorem 2.1: Let N, A, and A * be as defined above. Algorithm A * constructs a planar layout 
and its three layer wiring for N. Furthermore, the number of tracks in the three-layer wiring con- 
structed by A* and the number of  tracks in the planar layout constructed by A are identical. 
Proof: Since algorithm A satisfies property (1) we know that it constructs the planar layout in a 
single left-to-fight scan of  the columns. This implies that once the layout for W(c) is constructed 
none of the layouts for W(1), W(2) ..... W(c) is modified. Algorithm A* mimics this process. If 
the input strand vectors of W*(c) and W(c) are identical, we know by property (2) and our 
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construction rules that the output strand vectors for W* (c) and W' (c) are also identical. There- 
fore, it follows inductively (after a trivial proof for the base ) that W* (c) and W(c) have identical 
output strand vectors for every c. One can easily verify that W* is a planar layout for N and that 
the three-layer wiring is valid. Therefore, Algorithm A * constructs a planar layout and its three 
layer wiring for N; furthermore the number of tracks in the three-layer wiring constructed by A * 
and the number of tracks in the planar layout constructed by A are identical. This completes the 
proof of the theorem. [] 

0 t 2 3 7 8 9 4 5 6 

l 

I . . . . .  ,f : 

; 1 J ,  . . . . . . . .  

; 1 l I 

3 9 8 2 0 7 1 5 4 6 

Figure 2.12: Layout and wiring constructed by our procedure. 

3. D i scuss ion  

There are two major approaches to solve threedayer muting problems: the two-phase 
approach and the single-phase approach. In the two-phase approach, a planar layout is con- 
stmcted in the first phase. In the second phase a three-layer wiring for the planar layout obtained 
in the first phase is constructed through a transformation, e.g., legal partition of the diagonal 
diagram induced by the layout. In the single-phase approach, layout construction and the three- 
layer assignment of the layout are performed simultaneously. 

In this paper we presented a simple three-layer assignment algorithm for planar layouts gen- 
erated by conservative layout algorithms. This class of algorithms includes simple variations of 
well known algorithms for the channel routing problem. Our approach consists of making simple 
modifications to the layout algorithm and incorporating a simple wire assignment strategy to gen- 
erate three-layer wirings. Consequently, we obtain simpler and faster algorithms that generate 
three-layer wirings for layouts similar to the ones generated by algorithms (i) - (iii). Our algo- 
rithms are faster and conceptually simpler because there is no need to construct diagonal 
diagrams and legal partitions. The charmeI width of the wirings generated is identical to that of 
the planar layouts (i) - (iii). Algorithms (i) - (iii) are currently the best algorithms for the three 
layer channel routing problem. 

We believe that if the structure of the planar layouts generated by a layout algorithm are 
simple, a three-wiring for the layout may be found by using diagonal diagrams. On the other 
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hand, if a layout algorithm generates planar layouts with simple structures, it is not unlikely that 
this layout algorithm can be transformed into a single-phase muting algorithm. 

There is a broader class of algorithms for which transformations similar to ours can gen- 
erate three-layer wirings in a single phase. Property (2) defined in this paper is too restrictive. 
We defined conservative algorithms this way in order to have a simple equivalence proof. One 
may relax property (2) and only require that the number of extended nets, paired nets, etc., have 
identical counts at the end of each step. Equivalence proofs can also be obtained for these cases. 
For brevity we did not include the broader class of layout algorithms. 

In general, wiring generated through legal partitions of the diagonal diagrams tend to have a 
large number of vias. For the layouts whose diagonal diagrams satisfy certain properties, some 
techniques can be used to reduce the number of vias. For example, the layouts generated by the 
three algorithms given in [7] can be wired in three layers by using the layer assignment algorithm 
given in [8]. This layer assignment algorithm finds a legal partition of the diagonal diagram 
corresponding to the layout. Special techniques are used to minimize the number of vias in the 
three layer wiring. It is easy to show that our layer assignment algorithm has similar performance 
with respect to the number of vias. We should point out that the time complexity for our algo- 
rithm is identical to that of the procedures given in [7]. Note that one does not need to output at 
each step unit wire segments in each of the tracks. 
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