
DOI: 10.1007/s004530010039

Algorithmica (2000) 28: 255–267 Algorithmica
© 2000 Springer-Verlag New York Inc.

Simple Algorithms for the On-Line Multidimensional
Dictionary and Related Problems

T. F. Gonzalez1

Abstract. The on-line multidimensional dictionary problem consists of executing on-line any sequence of
the following operations: INSERT(p),DELETE(p), and MEMBERSHIP(p), wherep is any (ordered)d-tuple
(or string withd elements, or points ind-space where the dimensions have been ordered). We introduce a clean
structure based on balanced binary search trees, which we call multidimensional balanced binary search trees,
to represent the set ofd-tuples. We present algorithms for each of the above operations that takeO(d+ logn)
time, wheren is the current number ofd-tuples in the set, and each INSERT and DELETE operation requires
no more than a constant number of rotations. Our structure requiresdnwords to represent the input, plusO(n)
pointers and data indicating the first component where pairs ofd-tuples differ. This information, which can
be easily updated, enables us to test for MEMBERSHIP efficiently. Other operations that can be performed
efficiently in our multidimensional balanced binary search trees are: print in lexicographic order (O(dn) time),
find the (lexicographically) smallest or largestd-tuple (O(logn) time), and concatenation (O(d+ logn) time).
Finding the (lexicographically)kth smallest or largestd-tuple can also be implemented efficiently (O(logn)
time), at the expense of adding an integer value at each node.

Key Words. Multidimensional dictionary, On-line algorithms, Data structures.

1. Introduction. The on-line 1-dimensional dictionary, or simply the dictionary, prob-
lem consists of executing on-line any sequence of instructions of the form MEMBER-
SHIP(p), INSERT(p), and DELETE(p), where eachp is a point (object) in 1-space. We
assume that each point can be stored in a single word, and that it can be accessed inO(1)
time. It is well known that any of these three instructions can be carried out inO(logn)
time, wheren is the current number of points in the set, when the set is represented
by AVL-trees, B-trees (of constant order), 2-3 trees, balanced binary search trees (i.e.,
symmetric B-trees, half-balanced trees, or red–black trees), or weight balanced trees.
All of these trees are binary search trees, with the exception of B-trees which arem-way
binary search trees. The balanced binary search trees require onlyO(1) rotations for
both the INSERT and DELETE operations [11], [13].

In this paper we consider the case when the data is multidimensional, i.e., ordered
d-tuples, which we refer to simply asd-tuples, whose components are real values. It is
assumed that each real value can be stored in one memory location. Multidimensional
dictionaries have a multitude of uses when accessing multiattribute data by value. These
applications include the management of geometrical objects and the solution of geometry
search problems. For example, the efficient approximation algorithms in [3] use the
abstract data type implemented in this paper to find suboptimal hyperrectangular covers

1 Department of Computer Science, University of California, Santa Barbara, CA 93106, USA. teo@cs.ucsb.
edu.

Received June 13, 1997; revised September 3, 1998. Communicated by H. N. Gabow.
Online publication May 18, 2000.

256 T. F. Gonzalez

for a set of multidimensional points. This covering problem has applications in image
processing, and in locating emergency facilities so that all users are within a reasonable
distance of one of the facilities [3].

The current set ofd-tuples is denoted byP and eachd-tuple p ∈ P has coordinate
values given by(x1(p), x2(p), . . . , xd(p)). We examine several data structures to rep-
resent a set ofd-tuplesP and develop algorithms to perform on-line any sequence of
the multidimensional dictionary operations. We show that the three operations can be
performed inO(d+ logn) time, wheren is the current number ofd-tuples in the set and
d is the number of dimensions. Furthermore, only a (small) constant number of rota-
tions are required for each INSERT and DELETE operation. The space required by our
algorithm isdn words to represent thed-tuples, plusO(n) words for pointers and data.
Other operations that can be performed efficiently in our multidimensional balanced
binary search trees are: find the (lexicographically) smallest or largestd-tuple (O(logn)
time), print in lexicographic order (O(dn) time), and concatenation (O(d+ logn) time).
Finding the (lexicographically)k th smallest or largestd-tuple can also be implemented
efficiently (O(logn) time), at the expense of adding an integer value at each node.

As noted in [10], it was a common belief two decades ago that “balanced tree schemes
based on key comparisons (e.g., AVL-trees, B-trees, etc.) lose some of their usefulness in
this more general context.” Because of this researchers combined TRIES with different
balanced tree schemes to represent multikey sets (i.e.,d-tuples). We now elaborate on
this structure. A TRIE is used to represent strings (assume all have the same length) over
some alphabet6 by its tree of prefixes. There are several implementations of TRIES:

1. Each internal node in a TRIE is represented by a vector ofm pointers, wherem is
the number of elements in6. A function, normally computable in constant time,
transforms each element in6 into an integer in [0,m − 1] (see the structure in
Figure 1(a), where6 = {0,1,2,3}).

2. Each internal node in the TRIE is represented by a linear list (see the structure in
Figure 1(b)) [12].

3. Each internal node in the TRIE is represented by a binary search tree (see the structure
in Figure 1(c)) [2].

The structures in Figure 1 represent the set{1133,1232,2131,2132,3113,3121,3213}.
For largem or when we have vectors upon which only comparisons are possible (such
as real values), method 1 is not suitable. In this case we can represent each node in the
TRIE by a linear list of tuples each storing an element and a pointer (see Figure 1(b)),
or a binary search tree replacing the list (see Figure 1(c)).

Bentley and Saxe [1] used the TRIE plus binary search tree representation just de-
scribed, but with all trees and subtrees fully balanced. The full balancing is defined as
follows. If one erases all the “middle” pointers (solid lines in Figure 1(c)), the structure is
partitioned into a set of binary search trees. The root of each of these binary search trees
and all their subtrees is such that the number of leaves (reachable through the left, middle,
and right pointers) in their left and right subtrees differ by at most one. This balanced
structure is very useful for static search problems like sorting or restricted searching [7],
[8], but these fully balanced subtrees are very rigid structures which cannot be easily
updated. Therefore, this structure is not appropriate for dynamic updates, and should be
replaced by more flexible structures in dynamic environments.

Simple Algorithms for the On-Line Multidimensional Dictionary and Related Problems 257

Fig. 1.(a) TRIE representation. (b) Linked list representation for TRIE nodes. (c) Binary search representation
for TRIE nodes. (Dashed arcs are binary search tree pointers and other arcs are TRIE pointers.)

Balancing of the TRIE plus binary search tree structure can be performed in different
ways by using techniques related to fixed order B-trees [5], weight balanced trees [10],
AVL-trees [14], and balanced binary search trees [15]. In each of the resulting repre-
sentations each of the three multidimensional dictionary operations can be implemented
to take O(d + logn) time in the worst case (for some of these algorithms the time
complexity bound is amortized, e.g., [10]). However, the number of rotations after each
INSERT and DELETE operation is not bounded by a constant and the procedures are
quite involved. An interesting open problem raised by Vaishnavi [15] is to find a way
to implement multidimensional dictionaries within the above time complexity bounds
that would only require a constant number of rotations for each INSERT and DELETE
operation.

Before we explain our approach, we discuss two naive procedures to test for MEM-
BERSHIP. Suppose that we represent our set ofd-tuples by a balanced binary search
tree in which each node stores ad-tuple and the ordering of thed-tuples in the tree is
lexicographic. MEMBERSHIP can be implemented in the obvious way, i.e., compare
thed-tuple you are searching for with thed-tuple stored at the root of the current subtree
and depending on the outcome it either terminates (having found it) or it proceeds to the
left or right subtree of that node. Clearly, the time complexity for the above procedure

258 T. F. Gonzalez

is O(d logn) and there are problem instances for which it actually requires2(d logn)
time.

We now modify the above procedure and reduce its time complexity toO(d+ logn).
The new procedure, FAST-NAIVE, is similar, except that instead of comparingd-tuples
starting always at position 1, we begin the comparison where we stopped at the end of
the previous iteration. Thed-tuple stored at a node is referred to byv and its components
can be accessed viax1(v), x2(v), . . . , xd(v). Let p andq be twod-tuples. For 1≤ i ≤ d,
we definediff (p,q, i) as the index of the first component starting ati where p andq
differ or d+1 (i.e., smallest integerj greater than or equal toi such thatxk(p) = xk(q),
i ≤ k < j , andxj (p) 6= xj (q), unless no suchj exists, in which casej is d + 1). In
what follows we say thatj is the index of the first component starting ati wherep and
q differ when j is equal todiff (p,q, i). Wheni is 1 we say thatj is the index of the first
component wherep andq differ. Procedure FAST-NAIVE is given below:

procedureFAST-NAIVE(q, r);
t ← r ;
i ← 1;
while t 6= null do

j ← diff (q, t, i);
case

: j = d + 1: return (true);
:xj (q) < xj (t → v): t is set to point to the left subtree oft ;
:xj (q) > xj (t → v): t is set to point to the right subtree oft ;

endcase
i ← j ;

endwhile
return (false);

end of procedureFAST-NAIVE;

It is simple to show that the time complexity for procedure FAST-NAIVE isO(d +
logn), since the total number of operations performed by the algorithm is proportional
to the length of the path from the root to the current nodet plus the value forj . We now
apply procedure FAST-NAIVE to search ford-tuples in the tree given in Figure 2. When
procedure FAST-NAIVE is invoked withq = (1,0,0,0,0), it setst to the root of the
tree andj to 2. Procedure FAST-NAIVE then advances to the left child oft and j is set 3.
Thent is advanced to the left subtree oft and j is set to 4. The value oft is then set to the
left subtree oft , and since it isnull the procedure returns the value of false, which is the
correct answer. When searching ford-tuple(2,3,0,8,7) the procedure returns the value

Fig. 2.Balanced binary search tree.

Simple Algorithms for the On-Line Multidimensional Dictionary and Related Problems 259

of true, which is the correct answer. However, the search for(1,1,1,4,3) returns the
value of true which is incorrect. One can eliminate this mistake by comparingq to t → v

when procedure FAST-NAIVE claims success. Unfortunately, the new procedure is also
incorrect. Searching for(1,3,0,8,7) and(1,1,1,4,1) will generate incorrect results.
Note that procedure FAST-NAIVE performs the search for(1,3,0,8,7) correctly, but
the new procedure does not generate a correct solution. The main reason why the above
procedure does not work correctly is that the prefix of thed-tuples stored at a node and
at its children nodes can vary considerable. However, this variation is more predictable
when comparing against the smallest or largestd-tuple in a subtree. This is a key idea
exploited in [4].

Manber and Myers [9] also studied the static membership problem arising when given
text (a static string) consisting ofN symbols, and then a sequence of queries is given,
each of which requests reporting all occurrences of a given string in the text. The way
they solve their problem is to create a sorted list of allN suffixes of the text. Then the
query is answered by performing a binary search to locate all the suffixes that begin with
the string being searched. Since the list is sorted all of these suffixes appear in adjacent
entries in the list. The advantage of this structure is that it requires onlyO(N) space, and
it can be constructed inO(N) expected time [9]. The way they search for an element is
a modified version of binary search. InitiallyL is the smallest string in the list andR is
the largest string in the list. First they computel , the index of the first component where
q, the string they are searching for, andL differ. They also computer , which is the index
of the first component whereR andq differ. Then the middle entry,M , in the remaining
part of the list is located, and they compute the index of the first component whereM
andq differ. This cannot be done directly, otherwise the time complexity would not be
the one they claim. They find this in a clever way by usingl , r , as well as the index of the
first component whereM andL differ, andM andR differ. This last set of values have
been precomputed, and would be expensive to recompute in a dynamic environment.
However, in their application the text is static. This list plus binary search when viewed
as a binary search tree corresponds to the fully balanced tree strategy in [1]. However,
the additional information added allows testing for membership inO(d + log N) time,
whered is the number of symbols in the stringq.

Gonzalez [4] solved Vaishnavi’s open problem mentioned above. To achieve the
proposed time complexity bound he represents the set of pointsP in a balanced binary
search tree in which additional information has been stored at each node. For every node
v this information includes the index of the first component wherev and the smallest
d-tuple in the subtree rooted atv differ, the index of the first component wherev and
the largestd-tuple in the subtree rooted atv differ, as well as pointers to thesed-tuples.
This is similar to the information stored in the suffix lists by Manber and Myers [9]. The
tree structure in [4] can be updated dynamically, whereas the preprocessed information
in the list in [9] cannot be updated efficiently. However, testing for membership in the
procedure in [9] is a little simpler. Gonzalez [4] developed for his structuresO(d + logn)
time procedures for INSERT, DELETE, and MEMBERSHIP that require only a constant
number of rotations. His procedures are simpler than previous ones [5], [10], [14], [15],
and almost identical to the ones for balanced binary search trees [13]. The main difference
is in the way he searches for ad-tuple q. Each iteration in Gonzalez’ algorithm [4]
considers a subtree rooted at a nodet , and the algorithm keeps the index of a component

260 T. F. Gonzalez

whereq and the smallestd-tuple in the subtreet differ, or the index of a component
whereq and the largestd-tuple in the subtreet differ. If q is in the tree, it is in the
subtree rooted att . Then either the algorithm finds thed-tupleq at t , or it proceeds to
the left or right subtrees oft maintaining the above invariant. Note that the invariant is:
“the index of a component whereP and the smallestd-tuple differ” rather than “the first
index of a. . . .” The reason is that it is too expensive to find “the first index. . .” in this
structure with the information that is available. However, ifq is in the tree it will be
found efficiently, but if it is not in the tree then to avoid reporting that it is in the tree one
must perform a simple verification step that takesO(d) time. This is why Gonzalez [4]
calls his search strategy principle “assume, verify and conquer” (AVC). The philosophy
is to avoid multiple verifications he assumes that some prefixes of strings match. The
outcome of our search depends on whether or not these assumptions were valid. This
can be determined by performing one simple verification step that takesO(d) time. The
elimination of multiple verifications is important because in the worst case there are
Ä(logn) verifications, and each one could takeÄ(d) time.

In this paper we modify slightly the structure in [4]. Our new structure is in general
faster to update because every node has the index of the first component where the
node and each of two of its ancestors (if any) differ, rather than the one between the
node and the smallest and largest elements in its subtrees as in [4]. When inserting
a node or deleting a leaf node, only a couple of entries need to be updated in the
structure in this paper, whereas in the structure in [4] one may need to update logn
nodes. However, when deleting a nonleaf node from the tree one has to do a little extra
work. Testing for membership is simpler in our new structure. Our new membership
procedure mimics the procedure in [9], and follows the update strategy in [4]. We show
that INSERT, DELETE, and MEMBERSHIP can be implemented to takeO(d+ logn)
time and only a constant number of rotations are needed for both INSERT and DELETE.
Other operations which can be performed efficiently in our multidimensional balanced
binary search trees are: find the (lexicographically) smallest or largestd-tuple (O(logn)
time), print in lexicographic order (O(dn) time), and concatenation (O(d+ logn) time).
Finding the (lexicographically)k th smallest or largestd-tuple can also be implemented
efficiently (O(logn) time) by adding more information to each node in the tree. The
asymptotic time complexity for the procedures in this paper is exactly the same as the
one in [4], but the procedures in this paper are simpler. To distinguish this new type of
balanced binary search trees from the classic ones and the ones in [4], we refer to our
trees asmultidimensional balanced binary search trees.

2. Data Structure and Algorithms. In this section we define our multidimensional
balanced binary search trees, and outline efficient procedures for insertion, deletion, and
testing for membership. Our representation is based solely on balanced binary search
trees, rather than based on TRIES and binary search trees as in previous representations.
It is important to note that our trees are like the ones in [13], except for the fact that
all the pointers to external nodes in [13] are replaced bynull pointers in this paper. For
example, an internal node with two external nodes as children in [13] is a leaf node in
this paper. Readers that are not familiar with balanced binary search trees (or red–black
trees) are referred to [13].

Simple Algorithms for the On-Line Multidimensional Dictionary and Related Problems 261

We now discuss our new structure and the procedures that operate on it. Eachd-tuple is
stored at a node in a balanced binary search tree in which the ordering is lexicographic.
Each nodet in the tree has the following information in addition to the information
required to manipulate balanced binary search trees, i.e., the rank bit [13]:

v: Thed-tuple represented by the node. The point is represented by ad-tuple which
can be accessed viax1(v), x2(v), . . . , xd(v).

lchild: Pointer to the root in the left subtree oft .
rchild: Pointer to the root in the right subtree oft .

lptr: Pointer to the node with largestd-tuple in r with value smaller than all the
d-tuples in the subtree rooted att , or null if no suchd-tuple exists.

hptr: Pointer to the node with smallestd-tuple in r with value larger than all the
d-tuples in the subtree rooted att , or null if no suchd-tuple exists.

lj : Index of first component where thed-tuple att and the node pointed at bylptr
differ, or one iflptr = null.

hj: Index of first component where thed-tuple att and the node pointed at byhptr
differ, or one ifhptr = null.

Our procedures perform two types of operations: operations required to manipulate
balanced binary search trees (which we refer to asstandardoperations), and operations
to manipulate and maintain our structure (which we refer to asnewoperations). The
standard operations are well known [11], [13]; therefore, we only explain them briefly.
The MEMBERSHIP procedure is similar to the one for searching in a binary search tree.
The input to the search procedure is thed-tupleq. We start at the root and visit a set of tree
nodes until we either reach anull pointer which indicates thatq is not in the tree or we find
a node withd-tupleq. In the former case we have identified the location whereq could
be inserted in order to maintain a binary search tree. For the INSERT operation, we first
perform procedure MEMBERSHIP. If thed-tuple is in the tree the procedure terminates,
since we do not need to insert thed-tuple. Otherwise, procedure MEMBERSHIP will
give us the location where thed-tuple should be inserted. Thed-tuple is inserted, some
information stored at some nodes in the path from the root to the node inserted is updated
and, if needed, we perform a constant number of rotations. The DELETE operation is a
little more complex. First we need to perform operations similar to the ones in procedure
MEMBERSHIP to find out whether thed-tuple is in the tree. If it is not in the tree
the procedure terminates, otherwise we have a pointer to the node to be deleted. The
following technique discussed in [6] (which is similar to the one used for AVL-trees) is
used to reduce the deletion of an arbitrary node to the deletion of a leaf node. Assume
that the node to be deleted has a nonempty right subtree, since the case when it has a
nonempty left subtree and empty right subtree can be solved similarly. Find thed-tuple
in the tree with the next larger value (node B in Figure 5). If such a node is a leaf, then
the problem is reduced to deleting that leaf node by interchanging the values in these
two nodes, otherwise three nodes have to interchange their values and again the problem
is reduced to deleting a leaf node. Deletion of a leaf node is performed by deleting it,
updating some information stored in the path from the position where the node was
deleted to the root of the tree, and, if needed, performing a constant number of rotations.

To show that MEMBERSHIP, INSERT, and DELETE can be implemented in the
proposed time bounds, we need to establish that the following (new) operations can be

262 T. F. Gonzalez

performed inO(d + logn) time:

A. Givenq determine whether or not it is stored in the tree.
B. Update the structure after adding a node (just before rotation(s), if any).
C. Update the structure after performing a rotation.
D. Update the structure after deleting a leaf node (just before rotation(s), if any).
E. Transform the deletion problem to deletion of a leaf node.

First we discuss procedure MEMBERSHIP(q, r) to test whether or not thed-tuple
q given by(x1(q), x2(q), . . . , xd(q)) is in the multidimensional binary search tree (or
subtree) rooted atr . This procedure implements (A) and its operation can be summarized
as follows. Lett point to any node in the multidimensional balanced binary search tree
rooted atr . We defineprev(t) to be thed-tuple inr with the largest value whose value
is smaller than all thed-tuples stored in the subtree pointed at byt , unless no such
tuple exists in which case its value is(−∞,−∞, . . . ,−∞), and definenext(t) to be
thed-tuple inr with the smallest value whose value is larger than all thed-tuples stored
in the subtree pointed at byt , unless no such tuple exists in which case its value is
(+∞,+∞, . . . ,+∞). At each iteration we maintain the following invariants. Variable
t points to the root of a subtree, initially pointing to the root of the tree. The variabledlow

is the index of the first component whereq andprev(t) differ, and variabledhigh is the
index of the first component whereq andnext(t) differ. Thed-tuple being search for,q,
is such that its value is (lexicographically) greater thanprev(t) and (lexicographically)
smaller thannext(t)

The algorithm computes (indirectly)j ′ as the index of the first component where
t → v andq differ. Consider the case whendlow ≥ dhigh (the other case is similar).
There are two cases: (1) ifdlow 6= t → l j , then j ′ is just min{dlow, t → l j }, (2) if
dlow = t → l j , then thej ′ is set to the index of the first component starting at position
dlow whereq andt → v differ. We will establish (Lemma 2.1) thatj ′ ends up with the
index of the first component wheret → v andq differ. If it is the case thatj ′ is equal
to d + 1, thenq is thed-tuple stored int and we return the value oftrue. Otherwise by
comparing thej ′th element ofq andt we decide whether to search in the left or right
subtrees oft . In either casedhigh or dlow is set appropriately so that the invariant holds at
the next iteration. The actual code is given below:

ProcedureMEMBERSHIP(q, r);
/* Is (x1(q), x2(q), . . . , xd(q)) in the multidimensional balanced binary search
tree atr */
dlow = dhigh = 1;
t ← r ;
while t 6= null do

case
:dlow ≥ dhigh:

if dlow = t → l j then j ′ = diff (q, t → v,dlow) else j ′ ← min{t →
l j ,dlow};

:dlow < dhigh:
if dhigh = t → hj then j ′ = diff (q, t → v,dhigh) else j ′ ←
min{t → hj,dhigh};

endcase

Simple Algorithms for the On-Line Multidimensional Dictionary and Related Problems 263

if j ′ = d + 1 then return (true);
case

:xj ′(q) < xj ′(t → v):
dhigh← j ′;
t ← t→lchild;

:xj ′(q) > xj ′(t → v):
dlow ← j ′;
t ← t→rchild;

endcase
endwhile
return (false);
end of Procedure MEMBERSHIP

The following lemma establishes correctness for procedure MEMBERSHIP(q, r).

LEMMA 2.1. Given a d-tuple q procedureMEMBERSHIP(q, r) determines whether
or not q is in the multidimensional balanced binary search tree rooted at r in O(d+logn)
time.

PROOF. We claim that at each iteration we maintain the following invariants. Variable
t points to the root of a subtree ofr . The variabledlow is the index of the first component
whereq andprev(t) differ, and variabledhigh is the index of the first component whereq
andnext(t) differ. Thed-tupleq is such that its value is (lexicographically) greater than
prev(t) and (lexicographically) smaller thannext(t). Initially t is set tor , anddlow =
dhigh = 1. Sinceprev(t) is (−∞,−∞, . . . ,−∞,) andnext(t) is (∞,∞, . . . ,∞,), and
all the entries in thed-tuples are different than∞ and−∞, it then follows that the
invariant holds just before thewhile loop is about to be executed for the first time.

We now show that if the invariant holds just before thewhile loop is about to be
executed, then either the procedure terminates with the correct answer or the invariant
holds at the beginning of the next iteration. Ift is null, then clearlyq is not in t and the
procedure returnsfalse. Now, we consider the case whent is notnull. We claim that the
algorithm computes (indirectly)j ′ as the index of the first component wheret → v and
q differ. We only prove this for the case whendlow ≥ dhigh, since the proof for the other
case (dlow < dhigh) is similar. If dlow = t → l j (Figure 3(a)), then the index of the first
component wheret → v andq differ is just the index of the first component starting
at positiondlow wheret → v andq differ. Therefore,j ′ is computed correctly for this
case. Whendlow > t → l j (Figure 3(b)) then the index of the first component where
t → v andq differ is justt → l j and the next value fort is t → lchild. So,nextfor the
new value oft is the old value oft anddhigh will be set to j ′. On the other hand, when
dlow < t → l j (Figure 3(c)) then the index of the first component wheret → v andq
differ is justdlow and the next value fort is t → rchild. So,prev for the new value oft
is the old value oft anddlow will be set to j ′. In either case the procedure computesj ′

correctly.
When j ′ = d + 1, we know thatt → v = q and the procedure returns the value

true which is the correct answer because, as we just established,j ′ is the index of the
first component wheret → v andq differ. So assume thatj ′ < d + 1. The appropriate

264 T. F. Gonzalez

Fig. 3.Three cases depending on the relative values ofdlow andt → l j .

subtree where we should search forq is determined by the relative values ofxj ′(q) and
xj ′(t → v). If xj ′(q) < xj ′(t → v), then we should search in the left subtree oft and
dhigh should be set toj ′ becausenextfor the new value oft is the previous node pointed
to by t . On the other hand ifxj ′(q) > xj ′(t → v), then we should search in the right
subtree oft anddlow should be set toj ′ becauseprevfor the new value oft is the previous
node pointed to byt . Clearly, the invariant holds just as we are about to execute thewhile
statement again.

The number of operations at each level is not bounded by a constant; however, they are
bounded by 1 plus the difference between the new and old value ofmax{dlow,dhigh}. Since
max{dlow,dhigh} does not decrease and it is at mostd+ 1 at the end of each operation, it
follows that the total number of operations performed is of orderd plus the height of the
tree (which isO(logn)). Thus the time complexity of procedure MEMBERSHIP(p, r)
is O(d + logn).

Simple Algorithms for the On-Line Multidimensional Dictionary and Related Problems 265

Fig. 4.Rotation.

We have identified an algorithm that implements (A) within the proposed time com-
plexity bound. We now consider (B). If the tree is empty just before the insert operation,
then the update of a single node is trivial. Suppose now that we add ad-tuple to a
nonempty tree. Letq point to the node added. Clearly, the node that we add is a leaf
node, therefore we must compute its valueslj , hj, lptr, andhptr. The pointerslptr and
hptr can be obtained from the parent of the new nodeq, and thediff valueslj , andhj can
be computed directly inO(d) time.

LEMMA 2.2. After inserting a node q in a multidimensional balanced binary search tree
and just before rotation the structure can be updated as mentioned above in O(d+ logn)
time.

We have identified an algorithm that implements (B) within the proposed time com-
plexity. It is simple to see that a similar procedure can be used to implement (D). We now
consider how to implement (C), i.e., rotations. This is the simplest part. A simple rotation
is shown in Figure 4. We only consider single rotations, since the compound rotations
in [13] can be obtained by applying several single rotations. The rotation is performed
by moving the nodes rather than just the values. This reduces the number of updates that
need to be performed. Clearly, the only nodes whose information needs to be updated
area1,a2, and the parent ofa2. Since there is a fixed number (3) of them the operations
can be implemented to takeO(d) time. This result is summarized in Lemma 2.3, which
we state without a proof.

LEMMA 2.3. After a rotation in a multidimensional balanced binary search tree the
structure can be updated as mentioned above in O(d) time.

We now consider operation (E) which is a little more elaborate to implement. Assume
without loss of generality that the node to be deleted has a nonempty right subtree, since
the case when it has a nonempty left subtree and empty right subtree can be solved
similarly. It is well known [6] that the problem of deleting an arbitrary node from a
balanced binary search tree can be reduced to deleting a leaf node by applying the
transformation in Figure 5 (the original operation is to delete the node labeledA and
it is transformed to deleting leaf nodeX). We now show how to update the resulting

266 T. F. Gonzalez

Fig. 5.Transforming deletion of an arbitrary node to deletion of a leaf node.

structure inO(d+ logn) time. Since the node with the final valueX will be deleted, we
do not need to update it. For the new root (the one labeledB) we need to update thelj
andhj values. Since we can use directly the oldlptr andhptr values, the update can be
done inO(d) time. Thelj (hj) value of all the nodes (if any) in the path that starts at the
right (left) child of the new root (node labeledB) and continues through the left child
(right child) pointers until the null pointer is reached needs to be updated. There are at
mostO(logn) such nodes. If we update them one by one without reusing partial results,
the time complexity will not be the proposed one. However, the values stored at each of
these nodes are decreasing (increasing) when traversing the path top down. Therefore,
the lj (hj) values appear in increasing order. The correct values can be easily computed
in O(d+ logn) time by reusing previously computedlj (hj) values while traversing the
path top down. Lemma 2.4, whose proof is omitted, summarizes our observations.

LEMMA 2.4. Transforming the deletion problem to deleting a leaf node can be per-
formed as mentioned above in O(d + logn) time.

Our main result which is based on the above discussions and the lemmas is given
below.

THEOREM2.1. Any on-line sequence of operations of the formINSERT(p), DE-
LETE(p), andMEMBERSHIP(p), where p is any d-tuple, can be carried out by the
above procedures on a multidimensional balanced binary search tree in O(d + logn)
time, where n is the current number of points, and eachINSERTandDELETEoperation
requires no more than a constant number of rotations.

PROOF. By the above discussion, the lemmas, and the fact that onlyO(1) rotations
are needed for each INSERT and DELETE operation on balanced binary search
trees [13].

Simple Algorithms for the On-Line Multidimensional Dictionary and Related Problems 267

3. Discussion. It is interesting to note that our technique cannot be adapted to AVL-
trees, weight balanced trees, or B-trees of fixed order, because the number of rotations
after a DELETE operation might be largeÄ(logn). Since each rotation could takeÄ(d)
time, the proposed time complexity bounds would not hold. The main reason why they
work on balanced binary search trees is that onlyO(1) rotations are needed after every
INSERT and DELETE operation.

With respect to other operations, it is simple to see that the smallest or largestd-
tuple can be easily found inO(logn) time, and that all thed-tuples can be printed
in increasing or decreasing order inO(dn) time. An O(d + logn) time algorithm to
CONCATENATE two sets represented by our structure can be easily obtained by using
standard procedures. However, the SPLIT operation cannot be implemented within this
time complexity bound. The main reason is that there could beÄ(logn) rotations. The
k th smallest or largestd-tuple can be found inO(logn) time after adding to each node
in the tree the number of nodes in its left subtree.

On average the TRIE plus binary search tree approach requires less space to represent
thed-tuples than our structure. However, our procedures are simple, take onlyO(d +
logn) time, and only a constant number of rotations are required after each INSERT and
DELETE operation.

Acknowledgment. The author wishes to thank an anonymous referee for pointing out
reference [9] to us.

References

[1] J. L. Bentley and J. B. Saxe, Algorithms on Vector Sets,SIGACT News(Fall 1979), pp. 36–39.
[2] H. A. Clampett, Randomized Binary Searching with the Tree Structures,Comm. ACM, 7(3) (1964),

pp. 163–165.
[3] T. Gonzalez, Covering a Set of Points with Fixed Size Hypersquares and Related Problems,Inform.

Process. Lett., 40 (1991), 181–188.
[4] T. Gonzalez, The On-LineD-Dimensional Dictionary Problem,Proceedings of the3rd Symposium on

Discrete Algorithms, January 1992, pp. 376–385.
[5] R. H. Gueting and H. P. Kriegel, Multidimensional B-Tree: An Efficient Dynamic File Structure for

Exact Match Queries,Proceedings of the10th GI Annual Conference, Springer-Verlag, Berlin, 1980,
pp. 375–388.

[6] L. J. Guibas and R. Sedgewick, A Dichromatic Framework for Balanced Trees,Proceedings of the19th
Annual IEEE Symposium on Foundations of Computer Science, 1978, pp. 8–21.

[7] D. S. Hirschberg, On the Complexity of Searching a Set of Vectors,SIAM J. Comput. 9(1) (1980),
126–129.

[8] S. R. Kosaraju, On a Multidimensional Search Problem,Proceedings of the ACM Symposium on the
Theory of Computing, 1979, pp. 67–73.

[9] U. Manber and G. Myers, Suffix Arrays: A New Method for On-Line String Searches,SIAM J. Comput.,
22(5) (1993), 935–948. Also inProceedings of the First ACM–SIAM Symposium on Discrete Algorithms,
Jan. 1990, pp. 319–327.

[10] K. Mehlhorn, Dynamic Binary Search,SIAM J. Comput., 8(2) (1979), 175–198.
[11] H. J. Olivie, A New Class of Balanced Search Trees: Half-Balanced Binary Search Trees, Ph.D. Thesis,

University of Antwerp, U.I.A., Wilrijk, Belgium, 1980.
[12] E. H. Sussenguth, Use of Tree Structures for Processing Files,Comm. ACM, 6(5) (1963), 272–279.
[13] R. E. Tarjan, Updating a Balanced Search Tree inO(1) Rotations,Inform. Process. Lett., 16 (1983),

253–257.
[14] V. Vaishnavi, Multidimensional Height-Balanced Trees,IEEE Trans. Comput., 33(4) (1984), 334–343.
[15] V. Vaishnavi, Multidimensional Balanced Binary Trees,IEEE Trans. Comput., 38(7) (1989), 968–985.

