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Simple Algorithms for Multimessage Multicasting
with Forwarding

T. F. Gonzale%

Abstract. We consider multimessage multicasting overrthpocessor complete (or fully connected) static
network when the forwarding of messages is allowed. We present an efficient algorithm that constructs for
every degreé problem instance a communication schedule with total communication time at thagh@re

d is the maximum number of messages that each processor may send (or receive). Our algorithm consists of
two phases. In the first phase a set of communications are scheduled to be carrigtitoneiperiods in such

a way that the resulting problem is a multimessage unicasting problem of diegrethe second phase we
generate a communication schedule for this problem by reducing it to the Makespan Openshop Preemptive
Scheduling problem which can be solved in polynomial time. The final schedule is the concatenation of the
communication schedules for each of these two phases. Edr2 d, we present an algorithm to generate a
communication schedule with total communication time at st 1/1)d | + 1, for problem instances where

each processor needs to send messages to atdmbesstinations. We also discuss multimessage multicasting

for dynamic networks.

Key Words. Approximation algorithms, Multimessage multicasting, Dynamic networks, Parallel iterative
methods, Communication schedules, Forwarding.

1. Introduction

1.1. The Problem The multimessage multicasting problem overrtgrocessor static
network (or simply a network)VIM¢, consists of constructing a communication sched-

ule with least total communication time for multicasting (transmitting) any given set of
messages. Specifically, there angrocessorsP = {Py, P,, ..., P,}, interconnected via

a networkN. Each processor is executing processes, and these processes are exchang-
ing messages that must be routed through the links.dDur objective is to determine

when each of these messages is to be transmitted so that all the communications can
be carried in the least total amount of tinkerwarding, which means that messages

may be sent through indirect paths even though single link paths exist, allows commu-
nication schedules with significantly smaller total communication time. This version of
the multicasting problem is referred to as M#&1F¢ problem, and the objective is to
determine when each of these messages is to be transmitted so that all the communica-
tions can be carried in the least total amount of time. In many applications forwarding

is allowed, but when security is an issue forwarding must not be permitted. Our intro-
duction is a condensed version of the one in [9] which includes a complete justification
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for the multimessage multicasting problem as well as motivations, applications, and
examples.

Routing in the complete static network (there are bidirectional links between every
pair of processors) is the simplest and most flexible when compared with other static and
dynamic networks. Dynamic networks (or multistage interconnection networks) that can
realize all permutations (each in one communication phase) and replicate datex{e.g.,
Benes network based on2 switches that can also act as data replicators) are referred
to aspr-dynamic networkdMultimessage multicasting for pr-dynamic and complete net-
works is not too different, in the sense that any communication schedule for a complete
network can be translated automatically into an equivalent communication schedule for
any pr-dynamic network. This is accomplished by translating each communication phase
for the complete network into no more than two communication phases for pr-dynamic
networks. The first phase replicates data and transmits it to other processors, and the sec-
ond phase distributes data to the appropriate processors [17], [18], [21]. The IBM GF11
machine [1] and the Meiko CS-2 machine use Benes networks for processor intercon-
nection. The two stage translation process can also be used in the Meiko CS-2 computer
system, and any multimessage multicasting schedule can be realized by using basic syn-
chronization primitives. This two step translation process can be reduced to one step by
increasing the number of network switches by about 50% [17], [18], [21]. In what follows
we concentrate on thdMc problem because it has a simple structure, and, as mentioned
above, results for this network can be easily translated to pr-dynamic networks.

We formally define our problem. Each proces$brholdsthe set of messagds
andneedsto receive the set of messages We assume thdt)h; = |n;, and that
each message is initially in exactly one bgtWe discuss in Section 4 the MultiSource
MMF¢ problem in which initially messages may belong to seviedddl sets. We define
the degreeof a problem instance ak = max{|h;|, |n;|}, i.e., the maximum number of
messages that any processor sends or receives. Consider the following example.

ExAMPLE 1.1. There are nine processors £ 9). Processor$;, P,, and P; send
messages only, and the remaining six processors receive messagestmlyessages
each processor holds and needs are given in Table 1. For this example the dien3ity

One may visualize problem instances by directed multigraphs. Each proégssor
represented by the vertex labelednd there is a directed edge (or branch) from vertex

Table 1.Hold and need vectors for Example 1.1.

hy ha h3 n hs heg h7 hg ho
{a, b} {c, d} {e, f} @ @ @ @ 9 ]

ny ny n3 ng ns ng ny ng Ng

[ [ % {a, c, €} {a,d, f} {b, c, e} {b,d, f} {c,d, e} {c.d, f}

2 Note that in general processors may send and receive messages.
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Fig. 1. (a) Directed multigraph representation, and (b) directed biparite multigraph representation for Exam-
ple 1.1. The thick line joins all the edges (branches) in the same bundle.

to vertexj for each message that proces®meeds to transmit to processBr. The
set of directed edges or branches associated with each messdnmdiedtogether.
The problem instance given in Example 1.1 is depicted in Figure 1(a) as a directed
multigraph with additional thick lines that identify all edges or branches in each bundle.
It is also interesting to visualize problem instances as directed bipartite multigraphs.
Each processd®, is represented by two vertices, one is sioeirceand the other theink
for all the messages associated with processormhere is a directed edge (or branch)
from source vertekto sink vertexj for each message that procesBoneeds to transmit
to processoP;. The set of directed edges or branches associated with each message are
bundledtogether. The problem instance given in Example 1.1 is depicted in Figure 1(b)
as a directed bipartite multigraph with additional thick lines that identify all edges or
branches in each bundle.

The communications allowed in our complete network must satisfy the following two
restrictions:

1. During each time unit each process®may transmit one of the messages it holds
(i.e., amessage in its hold dgtat the beginning of the time unit), but such message
can be multicasted to a set of processors. The message also remains in thethold set
2. During each time unit each processor may receive at most one message. The message
that processoP; receives (if any) is added to its hold dgtat the end of the time
unit.

The communication process ends when each processar ladh;, i.e., each pro-
cessor holds all the messages it needs. Our communication model allows us to transmit
any of the messages in one or more stages, i.e., any given message may be transmitted
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Table 2.Hold vector after stepS1, S2, S3, and$4.

hi hy hs hg hs he h; hg hg
St {a,b} f{c,d} {e f} {c} {a} {c} {f} {c} {c}
2 {a,b} {c,d} {e, f} {a, c} {a, d} {c, e} {d, f} {c,d} {c,d}
S3  {a,b} {c,d} {e, f} {a,c, €} {a, d} {b,c, e} {b,d, f} {c,d, e} {c, d}
A {a,b} {c,d} {e, f} {a,c, e {a,d, f} {b,c,e} {b,d, f} {c,d,e} {c,.d, f}

at different times. This added routing flexibility reduces the total communication time.

In many cases it is a considerably reduction. We now give a problem instance such that
the total communication time can be reduced by allowing this type of message routing.
The problem instance given in Example 1.1 requires six communication steps if one
restricts each message to be transmitted only at a single time unit. The reason for this
is that no two of the six messages can be transmitted concurrently because every pair of
messages either originate at the same processor or have a common destination proces-
sor. However, by allowing messages to be transmitted at different times one can perform
all communications in four steps. We now explain how this can be accomplished. In
step Sl processolP; sends messageto processoiPs; processorP, sends message

to processor®,, Ps, Ps, andPy; and processoP; sends messagieto processoP;. In

stepS2 processoiP; sends messageto processoPy; processoiP, sends message

to processor$s, P;, Pg, and Py; and processoP; sends messageto processoPs.

In step S3 processoP; sends messadeto processorss and P;; and processoP;

sends messageto processor$, and Pg. In stepS4 processolP; sends message to
processor®s andPy. Table 2 shows the hold vector at the end of each of these four steps.

To establish that forwarding reduces the total communication time we show that when
forwarding is not allowed all the communication schedules for the problem instance
given in Example 1.1 require at least four communication steps, but when forwarding is
allowed all the communications can be performed in three steps.

We now prove that without forwarding the problem instance given in Example 1.1
requires at least four communication steps. The proof is by contradiction. Suppose
that all the communications can be carried in three steps. Since there are only three
communication steps, and messageandd originate at the same processor, then at
least one of the messaggs d} must be transmitted to all its recipients during a single
time unit. The same holds for messagasb}, and messagds, f}. So assume without
loss of generality that at timemessage is transmitted to all its recipients. The only
other messages that can be sent at timencurrently with messageare: messaga
or messagd to processoPs, ang/or messagé or messagd to processolP;. Since
processor®y, Ps, ..., Pomust receive three messages, it must be that at each step each
of these processors must receive one of the messages it needs. Therefore, abtime
of the processors may receive messagand messagé cannot be transmitted to all
its recipients. This together with the fact that messagasd f originate at the same
processor implies that messagmust be sent to all its recipients at the same time. We
say that this event occurs at tile# t. However, then processoR and Ps receive
message at timet, and messageat timet’. So in the remaining time unit procesdey
must receive messapdrom Py, and processdP, must receive messagdrom Py, but,
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Table 3.Hold vector after step$ 1, T2, andT 3.

hy hy hs ha hs he h7 hg hg

T1 {a/b} {c,d} (e f} {a} {a} {c} {f} {c} {c}
T2 f{a,b} {c,d} {e f} {a, e} {a, d} {b, c} {b, f} {c,d} {c,d}
T3 {a,b} {c,d} {e, f} {a,c, e} {a,d, f} {b,c, e} {b,d, f} {c,d, e} {c,d, f}

every processor (including;) may only send one message at a time. A contradiction.
Therefore, when forwarding is not allowed the problem instance given in Example 1.1
requires at least four time units to perform all its communications.

We now show that when forwarding is allowed all the communications in the problem
instance given in Example 1.1 can be performed in three steps. IT étppocessoP;
sends messageto processor$,; and Ps; processoP, sends messageto processors
Ps, Pg, andPy; and processoP; sends messagieto processobPy. In stepT 2 processor
P sends messadpeto processor®s andP;; processoP, sends messagkto processors
Ps, Pg, andPy; and processolP; sends messageto processoPy. In stepT 3 processor
P, sends messageto processoP,; processorP; sends message to processords
and Py; processoP, sends messageto processor$s and Pg; and processoPs sends
messagd to processoP;. The last two messages were sentindirectly from their original
location. Table 3 shows the hold vector at the end of each of these three steps.

A communication mode S a set of tuples of the foriim, |, D), wherd is a processor
index (1< 1 < n), and message € h, is to be multicasted from process@rto the set
of processors with indices iB. In addition the set of tuples in a communication mode
C must obey the following communications rules imposed by our network:

1. Allthe indiced in C are distinct, i.e., each processor sends at most one message.
2. Every pair of D sets inC are disjoint, i.e., every processor receives at most one
message.

A communication schedulef& a problem instanckis a sequence of communication
modes such that after performing all of these communicatiprs h; for 1 <i < n,
i.e., every processor holds all the messages it needstotidlecommunication timés
the number of communication modes in schedBlevhich is identical to the latest
time there is a communication. Our problem consists of constructing a communication
schedule with least total communication time. From the communication rules we know
that every degreé problem instance has at least one processor that reqlfiireg units
to send, angbr receive all its messages. Therefatés a trivial lower bound for the total
communication time. To simplify the analysis of our approximation algorithm we use
this lower bound as the objective function value of an optimal solution. Another reason
for using this lower bound is that load and communication balancing (placement) and
multimessage multicasting (routing) are normally separate procedures, and the load and
communication balancing problem must have a simple objective function in terms of the
problem instance it generates that somehow represents the total communication time for
the placement and a reasonable routing procedure. In other words this allows us to define
an optimal placement as one that generates a problem instance with minimum density,
i.e., minimum value ofl.
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A communication schedule for thdMc problem under the directed multigraph and

the directed bipartite multigraph representation corresponds to coloring the edges of the
multigraphs in such a way that every two edges emanating from the same vertex but
belonging to different bundles are colored differently, and every two edges ending at the
same vertex are colored differently. Each color corresponds to a communication mode.
For theMMF¢ problem this correspondence is not that simple because when a message
is forwarded this means the edge is replaced by a set of two or more edges, or an edge
is assigned several different colors. However, our algorithm in Section 2 can be easily
expressed as a double coloration and a partition of the edges in the directed bipartite
multigraph.

1.2. Previous WorkNew Resultsand Applications Thebasic multicasting problem

BMc, consists of all the degre® = 1 MMc problem instances, and can be trivially
solved by sending all the messages at time zero. There are no conflicts becalse

i.e., each processor sends at most one message and receives at most one message. The
communication schedule has only one communication mode. When the processors are
connected via a pr-dynamic network a communication mode can be performed in two
stages: the data replication step followed by the data distribution step [17], [18], [21].
This two stage process can be used in the MEIKO CS-2 machine [9]. An important
subproblem of the basic multicasting problem is when every message is to be sent to
adjacent numbered processors. This restricted multicast operation can be performed in
one step in pr-dynamic networks [17], and in the MEIKO CS-2 machine.

Gonzalez [9] also considered the case when each message hdarfibad k(maxi-
mum number of processors that may receive a given message).kMhdnmultimes-
sage unicasting probleMU¢), the problem reduces to coloring the edges of a directed
bipartite multigraph so that no two edges incident upon the same vertex, and no two
edges incident from the same vertex, are assigned the same color. It is well known that
this problem can be solved in polynomial time and that it can be coloreddagtiiors,
whered is the degree of the graph. Currently, the fastest way to solve this problem is
to reduce it to the Makespan Openshop Preemptive Scheduling problem [12], which
is a generalization of this multigraph coloring problem. Every degresultimessage
unicasting problem instance has a communication schedule with total communication
time equal tad. The interesting point is that each communication mode translates into a
single communication step for processors interconnected via permutation networks (e.g.,
Benes Network, Meiko CS-2, etc.), because in these networks all possible one-to-one
communications can be performed in a single communication step.

It is not surprising that several authors have studiedMi: problem as well as
several interesting variations for which NP-completeness has been established, subprob-
lems have been shown to be polynomially solvable, and approximation algorithms and
heuristics have been developed. Coffman et al. [5] studied a version of the multimessage
unicasting problem when messages have different lengths, each processdiPhas
ports each of which can be used to send or receive messages, and messages are trans-
mitted without interruption (non-preemptive mode). Whitehead [22] considered the case
when messages can be sent indirectly. The preemptive version of these problems as well
as other generalizations were studied by Choi and Hakimi [2]-[4], Hajek and Sasaki
[14], Gopal et al. [13]. Some of these papers considered the case when the ports are not
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interchangeable, i.e., it is either an output port or an input port. Rivera-Vega et al. [19]
studied the file transferring problem, a version of the multimessage unicasting problem
for the complete network when every vertex can send (receive) as many messages as
the number of outgoing (incoming) links. With the exception of the work in [7]-[11]
and [20], research has been limited to unicasting, and all known results about multi-
casting are limited to single messages. Shen [20] studied multimessage multicasting
for hypercube connected processors. His algorithms are heuristic and try to minimize
the maximum number of hops, amount of traffic, and degree of message multiplexing.
Since hypercubes are static networks, there is no direct comparison to our work. The
MM problem involves multicasting of any number of messages, and its communication
model is similar in nature to the one in the Meiko CS-2 machine, after solving some
basic synchronization problems.

The MM¢ problem is significantly harder than thdUc problem. Gonzalez [9]
showed that even whdn= 2 the decision version of tiHdM¢ problem is NP-complete.
Gonzalez [7] developed an efficient algorithm to construct for any dedjr@®blem
instance a communication schedule with total communication time atafoand pre-
sented problem instances for which this upper bound on the communication time is best
possible, i.e., the upper bound is also a lower bound. The lower bound holds when there
is a huge number of processors and the fan-out is also huge. Since this situation is not
likely to arise in the near future, thdMc problem with restricted fan-out has been
studied [7], [8].

Gonzalez [9] developed an algorithm to construct a communication schedule with
total communication time@®— 1 for the case when the fan-out is two, ile.+= 2. An
O(q - d - e) time algorithm, where < nd (the input size) is given in [9], to construct
for degreed problem instances a communication schedule with total communication
time qd + k¥9(d — 1), whereq is the maximum number of different time periods
where each message can be sentland q > 2. Gonzalez [7], [8] also developed
several fast approximation algorithms with improved approximation bounds for problems
instances with any arbitrary degrdebut small fan-out. The approximation bound for
these methods is abou¢’k + 1)d, wherek is the fan-out.

It is simple to show that the NP-completeness reduction foMhk: problem given
in [9] can be easily modified to establish the NP-completeness faviMEc problem.

All the approximation results for thelM¢ problem also hold for th&IMF¢ problem.
However, ford > 2 it is impossible to prove that there is an instance of MiFc
problem that required? communication steps.

In this paper we present an efficient algorithm to construct for every ddgmesblem
instance a communication schedule with total communication time at rdpsttiere
d is the maximum number of messages that each processor may send (or receive). Our
procedure is a simplified version of Gonzalez’ algorithm [11]. We should point out that
the previous approximation algorithms [7], [8] are faster than the one presented in this
paper. However, our new algorithm generates communication schedules with signifi-
cantly smaller total communication time. Our new algorithm consists of two phases. In
the first phase a set of communications are scheduled to be carrieddtitrie peri-
ods, and when these communications are performed the resulting problem is a degree
d multimessage unicasting problem. In the second phase we generate a communica-
tion schedule for this problem by reducing it to the Makespan Openshop Preemptive
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Scheduling problem which can be solved in polynomial time. The solution is the con-
catenation of the communication schedules for each of these two phasesz For 21,

we define thé-MMF¢ problem as théMIMF¢ problem in which each processor has at
mostld edges emanating from it. We also present an algorithm to generate a commu-
nication schedule with total communication time at mp& — 1/1)d| + 1 for the
I-MMF¢ problem.

Our multimessage multicasting problems arise when solving sparse systems of lin-
ear equations via iterative methods (e.g., a Jacobi-like procedure), and most dynamic
programming procedures in a parallel computing environment. We now discuss the ap-
plication involving linear equations in more detail. We are given the veXi@ and
we need to evaluat¥ (t) fort = 1,2, ..., using the iteratiorx (t + 1) = fj(X(t)).
However, since the system is sparse evirgepends on very few terms. A placement
procedure assigns eaghto a processor where it will be computed at each iteration
by evaluatingfi (). Good placement procedures assign a large numb&r 9 to the
processor where the vector components it requires are being computed, and therefore
can be computed locally. However, the remainiiig)'s need vector components com-
puted by other processors. So at each iteration these components have to be multicasted
(transmitted) to the set of processors that need them. The strategy is to cofute
and perform multimessage multicasting, then compU®) and perform multicasting,
and so on. The same communication schedule is used at each iteration, and it can also be
used to solve other systems with the same structure, but different coefficients. Speedups
of n for n processor systems may be achieved when the processing and communication
load is balanced, by overlapping the computation and communication time. This may
be achieved by executing two concurrent tasks at each processor. One compxtes the
beginning with the ones that need to be multicasted first, and the other deals with the
multicasting of theq; values when they become available. If all the transmissions can be
carried out by the time the computation of all ths is finished, then we have achieved
optimal performance. However, if the communication takes too long compared with the
computation, then one must try other placements or alternate approaches. Our algorithm
generates a schedule with total communication time at most twice of optimal \éwr2
any given placement.

2. Approximation Algorithm for the MMF ¢ Problem. In this section we show that

for every degreal instance of theMMF¢ problem one can construct in polynomial
time, with respect to the input length, a schedule with total communication time 2
The main idea is to forward all messagedlitime units (i.e., usingl communication
modes) in such a way that the resulting problem is a dedjmealtimessage unicasting
problem. A communication schedule with total communication tamier the multi-
message unicasting problem can be generated in polynomial time [12]. Therefore, the
concatenation of both communication schedules is a schedule fotNtfe: problem
instance. Our algorithm can be viewed as an edge multicoloring procedure, or a problem
transformation procedure. The former one is concise and transparent, but the latter one
can be easily used for variations of the problem (e.g., Section 3). First we present the
edge multicoloring version, and then the problem transformation one. We only prove
correctness and give an example for the second version.
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2.1. Edge Multicoloring Our algorithm can be viewed as finding two colorings and a
partition of the edges in the bipartite multigraph representation. That is, find a partition
{za, 22, ..., zn} such that eacly; has at mostl edges and two coloringg; and C,

using at mostl colors each, where is the degree of the problem instance, such that the
following four conditions are satisfied:

1. Every two edges belonging to different bundles emanating from the same source
vertex cannot be assigned the same cold&qn

2. Every two edges belonging to different bundles in the samg sannot be assigned
the same color ilC;.

3. Every two edges in the same getannot be assigned the same coloCin

4. Every two edges incident to the same sink vertex cannot be assigned the same color
in Co.

The setgz;, 2o, . . ., z,} correspond to the index of the processor where the edges
will be forwarded. Thed-coloring C; corresponds to the time period where the edges
(messages) will be forwarded. Condition 1 guarantees that no two different messages
emanating from the same processor will be forwarded at the same time, and condition 2
ensures that no processor will receive more than one forwarded message at a time. The
d-coloring C, corresponds to the time periods when the forwarded messages will be
sent to their final destination. Condition 3 guarantees that no two messages that were
forwarded to the same processor will be sent to their final destination at the same time.
Condition 4 ensures that no two messages are received at their final destination at the
same time.

ColorationC; is just a coloring of the edges in the bipartite multigraph induced by the
z;is and the sinks. Since the induced multigraph has debveeknow it can be colored
with d colors in polynomial time using classical techniques. Clearly, such coloration
satisfies conditions 3 and 4.

What remains to be done is to find the sfts z, ..., z,} and the coloratiorC;.

The forwarding (or coloratioiC;) can be performed as follows. Number the bundles
B;, By, ... with all bundles originating at a common source vertex having consecutive
indices. Number all edges, &, ... with all edges inB; getting indices larger than
edges inB; for j < i. In the coloringCy, assign all edges in bundlg; the color

(( — 1) mod(d)) + 1. The partition of the set of edges is generated by assigningeedge
to setz;, wherefi/d]. Itis simple to show that each sgthas at mostl edges, and that
conditions 1 and 2 are satisfied.

2.2. Problem Transformation Before we present our algorithm we define additional
terms. One of the disadvantages of the notation given in Section 1 fieiNtia: problem

is that after the transmission of the messages in the first communication mode, several
processors will be holding the same message and it becomes difficult to decide which
of these processors should be the one to transmit the message at subsequent steps. To
minimize the time required to make this decision our algorithm will at all times keep

a list of the messages that each processor will be transmitting to other processors at a
later time. This information is represented by a directed multigraph (see FigGréha}

changes after each communication mode. We also use the notatio(P, H, N, d),

and a problem instance is represented by the tUpl&).
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Our algorithm consists of the following three basic steps, which we define precisely

and motivate in the following subsections:

1.

Transform to the multimessage unicasting problem:Transform problem instance

(1, G) to the instancel(, G) of the MU¢ problem withi = n processors and de-
greed = d. This transformation requires that a set of communications take place.
We construct the communication schediewith total communication timel for

the transmission of these messages. The final communication schedufaus a
communication schedule fof (G).

Construct a communication schedule for the multimessage unicasting problem
instance:Apply the reduction in [9] to problem instanck, G) of theMU ¢ problem

to generate the instané®of the openshop problem. Solve the openshop probieem

by using Gonzalez and Sahni’s algorithm [12] and construct from it a communication
schedule X') for problem instancel( G) with total communication time equal th
Construct the final communication schedule:Concatenate the communication
schedulexX andX’. The resulting communication schedule has total communication
time at most @, and is the output generated by our algorithm.

In the following subsections we show how to implement the above three steps of our

algorithm, and then establish correctness. As we describe our algorithm, we illustrate
its operations by applying it to the problem instance given in Figure 2. The problem
instance consists of 12 processors, 11 messages, and its defjree?is

2.2.1. Transform to the multimessage unicasting problerhis is the most involved

step of our algorithm, where we transform problem instahc&] to the instancel(, G)

of theMU¢ problem withA = n processors and degrde= d. This transformation re-
quires that a set of communications take place. We construct the communication schedule
X with total communication timd for these message transmissions. The final communi-
cation schedule iX plus a communication schedule fér, () with total communication

time equal tal. Procedure FORWARD, given below, constructs the instahc8) from

Fig. 2. MMc problem instancel( G).
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(I, G). The idea is to forward all messages so that each processor ends up with at most

d unicasting messages it needs to transmit. The forwarding is such that at each time
unit each processor sends at most one message and receives at most one message, i.e.,
it obeys our communication rules. Our algorithm generates the specific operations to
accomplish this based on two labelings and two functions (one indicates the time when
the message will be forwarded, and the other the processor where it will be forwarded).

Procedure FORWARD (1, G)
Label B; theith bundle visited while traversing the bundles emanating
from Py, then the ones emanating frof, and so on;
Define the functiori(i) as(i — 1) mod(d) + 1;
/* The message associated with bundie will be forwarded at time
t@).*/
Label g theith edge visited while traversing the edgesBp then the
ones inB,, and so on;
Define the functiorg(i) asfi/d];
/* Edgee will be forwarded to processd?y, */
Let (I, G) < (I, G) except thas does not have edges;
/* The edges irG will be added to reflect the forwarding operation. */
for every processoP; in G do
for every bundleB; emanating out oP; in G do

LetS= {g)|a € Bi};

Schedule irX attimet (i ) the multicasting of the message associated
with bundle B; from processorP; to the set of processosS (if
|S| = 1, the operation is unicasting);

for every edgey € B; do
Add to the hold set of processgxl) (i.e., H(g(l)), in G mes-

sageB;;
Add the edge fronfPy ) to Py in G, whereg is the processor where
edgeg ends inG;

endfor

endfor
endfor
end of Procedure

In Figure 3 we show all the labelings performed by procedure FORWARD. The
top number just below each of the vertices is the indeBgfthe next line shows the

2 3 4 5 6 7 8 9 1 1
c d e f g h i j k
2 1 2 1 2 1 2 1 2 1

123 456 789 1011 12 13 1415 161718 19 20 21 22 23

o

o
=3

112 233 445 56 6 7 78 899 10 10 11 11 12

Fig. 3. Labeling performed by procedure FORWARD.
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J
Fig. 4. ScheduleX at time 1 (T1) and time 2 (T2).

message name, and then the val@g. The line just above the bottom one has the index
of the g, and the bottom number is the processor index to where that edge is to be
forwarded.

All the communications in schedub¢ at time 1 and 2 are given in Figure 4. These
communications are as follows. At time 1 message multicasted from process®i
to processor$; and P,. Obviously one does not actually need to send the message to
processorP;, since P; holds that message. Our algorithm could be modified to detect
cases like this one, but in general the total time complexity will not be reduced and the
communication schedules will have the same total communication time. At time 1 mes-
sagecis multicasted from process®y to processor®, andPs; messageis multicasted
from processoP; to processor®s and P7; messageg is multicasted from process®y
to processor®s and Py; message is unicasted from processg to processoP;g; and
messagé is unicasted from process®%, to processoP;, (superfluous operation). All
of these communications are represented by the forest labeled T1 in Figure 4. The spe-
cific communication operations for time 2 in schedXlare given in the forest labeled
T2 in Figure 4.

The resulting unicasting problerh,(G) of degredd is given in Figure 5 (all objects).
Since the leftmost two edges in the bun@gwere forwarded to process® (super-
fluous operation), then messagés to be sent from processé to processor$s and
Ps in (I', G); the rightmost edge in bund®, was forwarded to processé, therefore
message needs to be sent to processbrfrom P;; the leftmost edge in bundB, was
forwarded to processdt,, therefore messadpneeds to be sent to processgifrom P,;
the rightmost two edges in bundB were forwarded to processBs, therefore message
b needs to be sent to processéksand P, from Ps; the leftmost two edges in bundle
B; were forwarded to process&, therefore messageneeds to be sent to processors
Ps and Ps from Pg; the rightmost edge in bundIB; was forwarded to process®,
therefore messageneeds to be sent to proces$grfrom Ps; the two edges in bundle
B4 were forwarded to processoPs and Ps, therefore message needs to be sent to
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Fig. 5.MUc problem instanceIA(, G) constructed frongl, G) in Figure 2.

processord’; and Py from Pg; and so on. The resulting unicasting problef ) of
degred is given in Figure 5.

THEOREM2.1. Problem instanceéIA, G), an instance of the MY problem and com-
munication schedule X with total communication time d constructed by procedure FOR-
WARD plus any communication schedule fbrG) is a communication schedule for

(1, G).

ProoF First we show that schedul¢ is a feasible schedule. From thg) labels and
procedure FORWARD, we know that for each processor the messages (if any) to be
forwarded to other processors are multicasted at different times. Frogyjhabels

and procedure FORWARD we know that each processor will receive messages from
at mostd bundles and from thé() labelings we know the messages associated with
these bundles are transmitted at different times, thus all the messages forwarded to each
processor are received at different times. From the functionandg(), and procedure
FORWARD, we know that all the forwarding operations take placed during tiirae
periods. ThereforeX is a feasible communication schedule with total communication
timed.

From the functiong() and procedure FORWARD we note that each message is
forwarded to the appropriate processor so that if we carry out all the communications
given by the resulting problem instande G), we also solve problem instancke G).
ThereforeX plus any communication schedule fdr ) is a communication schedule
for (1, G). O

LEMMA 2.1. The time complexity for procedure FORWARD ié@ e), where e is the
total number of edges i, G).

PROOF The steps before the first loop tak&n + e) time. Overall, the innermost loop

is executed once for each edge, the middle loop is executed once for each bundle, and the
outermost loop is executed once for each processor. Therefore, the total time complexity
is O(n+ e). O
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2.2.2. Construct a communication schedule for the multimessage unicasting problem
instance The multimessage unicasting probléiJc reduces to coloring the edges

of a directed bipartite multigraph so that no two edges incident upon or incident from
the same vertex are assigned the same color. It is well known that this problem can
be solved in polynomial time and that it can be colored witedges, wherel is the
degree of the graph. Currently, the fastest way to solve this problem is to reduce it to the
Makespan Openshop Preemptive Scheduling problem [12], which is a generalization of
this bipartite multigraph coloring problem. Therefore, communication schetuler

the instancél, G) of the MUc problem of degred with total communication time

can be constructed via the above procedures.

LEMMA 2.2 [9]. The above informal procedure constructs communication schedule X
with total communication time equal @ for any multimessage unicasting problem
(I, &) of degreed with i processorsThe procedure takes @(min{r, A2} + flogf))

time, where r is the number of messades< dn).

PrROOF The specifics of the reduction appear in [9]. O

Problem instancel( G) is given in Figure 5. Two communications modes generated for
it are given in Figure 6 (T3) and (T4). Note that sending messdgem processoPs

to P, is not actually needed because procesdoalready has it. This is a superfluous
operation which can be deleted.

2.2.3. Construct the final communication schedulé€€oncatenate the communication
scheduleX with X’. In our example, communication schedi{es given in Figure 4
(T1) and (T2), and communication schediXeis given in Figure 6 (T3) and (T4). The
resulting communication schedule has total communication time at rd@stit is the
output generated by our procedure.

THEOREM2.2. Communication schedule X generated by procedure FORWARD plus
the communication schedule’ enerated by the procedure in Secti@r?.2 is a

Fig. 6. Two communication modes for problem instanée(%).
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communication schedule fdil, G) with total communication tim@d. The overall
time complexity for our procedure is @min{r, n?} + nlogn)), where r is the total
number of messagés < dn).

PrOOF  The proof follows from Lemmas 2.1 and 2.2 and Theorem 2.1 together with
the fact than = A andd = d. O

It is important to note that all the multicasting operations are to adjacent numbered
processors. This is important since each communication mode composed of only those
type of multicasting operations can be translated to a single communication mode for
pr-dynamic networks. This guarantees that the same schedule can be used for pr-dynamic
networks.

THEOREM2.3. Communication schedule X plus ¥ a communication schedule with
total communication tim&d for any pr-dynamic network

PrOOF By the above discussion. O

In Section 5 we discuss ways to decrease the total number of messages that need to
be transmitted following the ideas behind the approximation algorithm given in [11].

3. Approximation Algorithm for the |-MMF ¢ Problem. We present in this section

our algorithm to generate a communication schedule with total communication time
at most[(2 — 1/1)d] + 1 for thel-MMF¢ problem, for 2< | < d. Our procedure is
identical to the one in the previous section, except that procedure FORWARD is replaced
by I-FORWARD. The main difference between these two procedures is that only those
processors that initially had more thdredges may forward messages, and a subset of
processors, including those with at mast- 1 outgoing edges, will receive messages

to be forwarded. After this forwarding operation we have reduced our problem to a
multimessage unicasting problem which is reduced to the openshop problem and then
solved as in the previous section. The openshop problem has dkgnee thus one can
construct for it a schedule with total communication time at rdo$the main difference

in the final schedule is that the forwarding portion has a total communication time at most
d—|d/l]+1, and therefore the resulting schedule has total communication time at most
L(2—1/1)d] + 1. Itis important to point out we do not allow processors to forward only
one edge, because forwarding would be impossible within the above communication
time bound when we hawkof these processors and only one processor receiving all the
forwarded messages.

Procedurel-FORWARD (I, G) /* Remember that < | < d*/
for i=1tondo
while P has fewer thaml bundles and at least one multi-edge bundle
do
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delete an edge from a multi-edge bundle and add it as a single-edge
bundle;
endwhile
endfor
Let G; be the number of edges emanating ouPpin G;
The tentative number of edges to be forwarded figns

FF=12 if G =d+1,
G —d if Gi>d+2

Traverse the bundles emanating outRfin nondecreasing order with
respect to the number of edges in the bundle, and visit all the edges in
each bundle in any order.

Mark the first F; edges emanating out d% visited during the above
traversal, and also mark all the bundles emanating olR ofith at
least one marked edge.

Now traverse all the marked bundles and visit ALL their edges in the
same order they were visited by the above traversal. The bundles visited
are labeled,, By, ..., and the edges are labeleg e, . ...

The number of edges to be forwarded fréinis

F, = the total number of edges in marked bundles emanating ot of

Define the functiori(i) as(i — 1) modd — |d/I| + 1) + 1;
/* The message associated with bundie will be forwarded at time
t(). *
Letri =d — (Gj — F), the maximum number of edges that may be
forwarded toPR;
DefineR = Y11}
for i=1to ndo
if R_1 # R then defineg(h) = i for each edge labeleg,, and
Ro1+1<h<R;
endfor
[* Edgeg will be forwarded to processay(i) */
(I, &) < (1, G) minus all the edges in marked bundlesGaf
[* The edges irG will be added to reflect the forwarding operation. */
for every processoP; in G do
for every marked bundl8; emanating out of; in G do
LetS= {g(l)|a € B; (note thateach edggis in a marked bundl¢;)
Schedule inX attimet (i ) the multicasting of the message associated
with bundle B; from processoP; to the set of processolS (if
|S| = 1, the operation is unicasting);
for every edgey € B; that is in a marked bundido
Add to the hold set of processgrl) (i.e., H(g()), in G mes-
sageB;;
Add the edge fromPy;) to Py in G, whereq is the processor
where edg® ends inG;
endfor
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Fig. 7.1-MM¢ problem instancel( G).

endfor
endfor
Split every multi-edge bundle ifi’, G) into single-edge bundles;
end of Procedure

We now apply our algorithm to the problem instance given in Figure 7. The first loop
transforms the problem to the problem instance given in Figure 8. The bundles that are
split are the ones emanating out of proces$ars, and Py.

In Figure 9 we show all the labelings performed by procedtFf® RWARD. The
F, andr; values computed by the procedure are the numbers that appear on top of the
vertices in Figure 9. The top number just below each of the vertices is the ind&x of

Fig. 8. Problem instancel ( G) after the first loop transformation.
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0/0 0/2 0/2
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j

.

Fig. 9. Labeling performed by procedurd~ORWARD.

the next line shows the message name, and then the M@judhe line just above the
bottom one has thg index, and the bottom number is the processor index to where that
edge is to be forwarded.

The forwarding is: message is multicasted to processof and Ps; message
is unicasted to process®%; message is multicasted to processoy and Pyg; and
messagef is unicasted to processdti. The resulting problem(i’, ), is given in
Figure 10. The difference now is that messags to be transmitted from processes
to P,, and fromPs to P;; message s to be multicasted fror®; to Py andP;o; message
is to be unicasted frorR; to Pg and multicasted fronf;o to Py; andPy; and messagé
is to be multicasted frorP,1 to P, and Ps. In the final transformation all the multi-edge
bundles are replaced by single-edge bundles. In our examples the bundles for messages
b, c, e, f, andg are replaced by two single-edge bundles.

We should point out that all thg) values could be set to 1 in the above example
and there would not be any conflicts and the total communication time needed by
FORWARD would be decreased from 2 to 1. In general this is not always possible. For
example if processdP;o had one edge emanating out of it, then proceBsavould only
forward one edge there and the other one would be forwarded to proégsderocessor
P, would also need to forward an edge to proced?ar Therefore, the two messages
to be received by process&i; would need to be sent at different times, so the above
reduction in total communication time is not possible in this other problem instance.

Fig. 10.Resulting problem instanad, G) just before last transformation (last line).
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THEOREM3.1. Problem instancél’, G), an instance of the My problem and com-
munication schedule X with total communication time-dd/I | + 1 constructed by
procedure FORWARD plus any communication schedulé fd8) is a communication
schedule fo(l, G).

PrOOFE First we show that schedukis a feasible schedule. From the definitiorFpf

andF;, we know that only those processors with more tHagdges will be forwarding
edges to other processors, and the tentative number of such edges i@. Since the
edges to be forwarded are the ones from the bundles with the largest number of edges,
it then follows that all the edges to be forwarded belong to at dost|d/| | of the
bundles emanating out of the processor. From the definitidii)ofve know that these
messages will be multicasted at different times. &dbe the total number of edges
emanating out of processér and letk be the number of single-edge bundles emanating
out of processoP,. The total number of edges in multi-edge bundles is k, and this

value is greater than or equaldo— d (the tentative number of edges to be forwarded)
sincek < d. This together with the way we defirfé implies that all the edges to be
forwarded belong to multi-edge bundles and all the edges in these multi-edge bundles
will be forwarded. From theg() labels and proceduteFORWARD we know that each
processor will receive at modtedges to be forwarded. Since the messages forwarded
consist of at least two edges, except possibly for the one forwarded to the previous and
to the next processor, it follows that at mo¢dy2] + 1 messages will be received by each
processor. Sinced/2] +1 <d — |d/I] + 1, these messages are labeled sequentially.
Therefore, all of these messages arrive at different times and there are no conflicts. Note
that because of this last discussion the total communication time is one unit more than
what was expected.

From the functiong() and proceduré-FORWARD we note that each message is
forwarded to the appropriate processor so that if we carry out all the communications
given by the resulting problem instande G), we also solve problem instancke G).
Furthermore, the resulting problem is of degikeTherefore, schedulX plus any
communication schedule foF,(é) is a communication schedule far, G). O

LEMMA 3.1. The time complexity for procedure I-FORWARD ignG- €), where e is
the total number of edges (i, G).

PROOFE  Since the proof is similar to Lemma 2.1 it is omitted. O

THEOREM3.2. Communication schedule X generated by procedure I-FORWARD plus
the communication schedul€ ¥enerated by the procedure in Sect®R.2is a com-
munication schedule fofl, G) with total communication tim@&d — |d/I| + 1. The
overall time complexity for our procedure is(@min{r, n?} +nlogn)), r is the number

of messageg < dn).

PROOFE The proof is omitted since it is similar to the one of Theorem 2.2. O
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In order for the communication schedule to be executable by pr-dynamic networks
one needs to perform all the multicasting operations to adjacent numbered processors.
In Figure 9 we see that messagevill be multicasted to processoi®; and Ps, and
message to processor$; and Pyo. Since no other processor will transmit at the same
time to processor®y, Ps, and Py, then message can be multicasted to processés
P4, and Ps, and messageto processor$;, Pg, Py, and Pyo. By applying this type of
transformation we can establish the following result.

THEOREM 3.3. Communication schedule X plug X a communication schedule with
total communication tim&d for any pr-dynamic network

PROOF As in the previous section, the proof of this theorem follows from the fact that
all multicasting messages can be sent to a set of adjacent processors. O

4. MultiSource MMF . We now discuss our approximation algorithm for a gener-
alization of theMMF¢ problem that we refer to as the MultiSourb®F¢ problem.
The main difference is that initially messages may be present at several processors. Our
algorithm reduces this problem to tMMF¢ problem by selecting a unique origin for
each message and ignoring the remaining processors, where the message is located in
such a way that we minimize the degree of the resulting problem instance. Our algorithm
is similar to a subalgorithm for an approximation algorithm for the MultiVia Assignment
problem given by Gonzalez [6].

Theideais to selectan origin for each message in such away that the resulting problem
instance has least degree. Construct the following bipartite ggaph(SUT, E), where
Sis the set of messageg,is the set of processors, akdis the set of edges defined as
follows: there is an edge from vertexe Stovertexp € T if messageis in processop.
Figure 11(a) shows five processors together with the set of messages each one holds at
time 0. The bipartite grap® constructed from it is given in Figure 11(b) (all edges).

An s-matchingn G is a subset of edges no two of which are adjacent to the same vertex
in S (for example{{a, 4}, {b, 2}, { f, 4}} is an s-matching). Aomplete s-matchinip G
is an s-matching with cardinality§|, i.e., each vertex ifs has an edge in the complete
s-matching associated with it. The set of dotted edges is a complete s-matching, but the
set of solid edges in not a complete s-matching. For each complete s-makchirg
defineM (1) as the maximum number of edgesliincident to any node i. We say
thatl is anoptimal complete s-matchirfgr G if it is a complete s-matching with least
M(l). The set of dotted edges is an optimal complete s-matchingMith = 2. It is
simple to show that in this case there is more than one optimal complete s-matching.
A polynomial time algorithm for finding an optimal complete s-matching is given by
Gonzalez [6] which is based on the algorithm in [16]. The algorithm finds a maximum
matching in a set of bipartite graphs. The time complexit@igs->t®° logs), wheree
is the number of edges,= ||, andt = |T|.

Our algorithm constructs the graghand then finds an optimal complete s-matching
I in it. Now the origin of each message that we have selected for each message is given
by | as follows: each edg@, p) € | indicates that messagavill originate at processor
p. The resulting problem is an instance of tiFc problem because every message
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adh bef

(a)

(b)

Fig. 11.(a) MultiSourceMMF¢ problem instance. (b) Bipartite graph constructed from (a).

originates at a single processor. Furthermore, it has the least possible degree, because
is an optimal complete s-matching.

THEOREM4.1. Our informal algorithm given above generatdsr any MultiSource
MMPF¢ problem instancean equivalent instance of the MMFproblem with least pos-
sible degreeThe time complexity for this algorithm is(@m-°n%> logm), where e is the
number of edge< nm), n is the number processqmnd m is the number of messages

ProOOE The proof follows from the above discussion. O

5. Discussion. The approximation algorithm in this paper generates a communication
schedule with total communication time at most Zhis is significantly better than

the one of previous algorithms [7], [8]. However, those algorithms are faster and were
designed for the case when forwarding was not allowed. Our algorithm is a simplified
version ofthe onein[11]. The approachwe have taken can be shown to require in the worst
case A communication steps. The reason for this is that when one processor contains
d multi-edge bundles, then it requirdcommunication steps (modes) to transform the
problem to a multimessage unicasting problem, and since the multimessage unicasting
problem has degregit also requiresl communication steps (modes).

The messages that need to be transmitted may be reduced as follows: processors in
(I, G) with more thand emanating edges will keeg of their edges and forward the
remaining ones, and processors with at ntdostnanating edges will keep all their edges.

In our example only 10 edges are forwarded, rather than 23. We should point out that the
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new algorithm is more complex, but has the same approximation and time complexity
bounds. This is the approach used by procelHHORWARD, and it results in a schedule
with total communication time at mog€2 — 1/1)d]| + 1, for thel-MMF¢ problem. For
brevity we did not discuss the conditions under which one can delete Itfeom this
bound.

Acknowledgments. We thank an anonymous referee for suggesting the presentation
in Section 2.1.
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