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Simple Algorithms for Multimessage Multicasting
with Forwarding

T. F. Gonzalez1

Abstract. We consider multimessage multicasting over then processor complete (or fully connected) static
network when the forwarding of messages is allowed. We present an efficient algorithm that constructs for
every degreed problem instance a communication schedule with total communication time at most 2d, where
d is the maximum number of messages that each processor may send (or receive). Our algorithm consists of
two phases. In the first phase a set of communications are scheduled to be carried out ind time periods in such
a way that the resulting problem is a multimessage unicasting problem of degreed. In the second phase we
generate a communication schedule for this problem by reducing it to the Makespan Openshop Preemptive
Scheduling problem which can be solved in polynomial time. The final schedule is the concatenation of the
communication schedules for each of these two phases. For 2≤ l ≤ d, we present an algorithm to generate a
communication schedule with total communication time at mostb(2−1/ l )dc+1, for problem instances where
each processor needs to send messages to at mostld destinations. We also discuss multimessage multicasting
for dynamic networks.

Key Words. Approximation algorithms, Multimessage multicasting, Dynamic networks, Parallel iterative
methods, Communication schedules, Forwarding.

1. Introduction

1.1. The Problem. The multimessage multicasting problem over then processor static
network (or simply a network),MMC, consists of constructing a communication sched-
ule with least total communication time for multicasting (transmitting) any given set of
messages. Specifically, there aren processors,P = {P1, P2, . . . , Pn}, interconnected via
a networkN. Each processor is executing processes, and these processes are exchang-
ing messages that must be routed through the links ofN. Our objective is to determine
when each of these messages is to be transmitted so that all the communications can
be carried in the least total amount of time.Forwarding, which means that messages
may be sent through indirect paths even though single link paths exist, allows commu-
nication schedules with significantly smaller total communication time. This version of
the multicasting problem is referred to as theMMFC problem, and the objective is to
determine when each of these messages is to be transmitted so that all the communica-
tions can be carried in the least total amount of time. In many applications forwarding
is allowed, but when security is an issue forwarding must not be permitted. Our intro-
duction is a condensed version of the one in [9] which includes a complete justification
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for the multimessage multicasting problem as well as motivations, applications, and
examples.

Routing in the complete static network (there are bidirectional links between every
pair of processors) is the simplest and most flexible when compared with other static and
dynamic networks. Dynamic networks (or multistage interconnection networks) that can
realize all permutations (each in one communication phase) and replicate data (e.g.,n×n
Benes network based on 2× 2 switches that can also act as data replicators) are referred
to aspr-dynamic networks. Multimessage multicasting for pr-dynamic and complete net-
works is not too different, in the sense that any communication schedule for a complete
network can be translated automatically into an equivalent communication schedule for
any pr-dynamic network. This is accomplished by translating each communication phase
for the complete network into no more than two communication phases for pr-dynamic
networks. The first phase replicates data and transmits it to other processors, and the sec-
ond phase distributes data to the appropriate processors [17], [18], [21]. The IBM GF11
machine [1] and the Meiko CS-2 machine use Benes networks for processor intercon-
nection. The two stage translation process can also be used in the Meiko CS-2 computer
system, and any multimessage multicasting schedule can be realized by using basic syn-
chronization primitives. This two step translation process can be reduced to one step by
increasing the number of network switches by about 50% [17], [18], [21]. In what follows
we concentrate on theMMC problem because it has a simple structure, and, as mentioned
above, results for this network can be easily translated to pr-dynamic networks.

We formally define our problem. Each processorPi holds the set of messageshi

andneedsto receive the set of messagesni . We assume that
⋃

hi =
⋃

ni , and that
each message is initially in exactly one sethi . We discuss in Section 4 the MultiSource
MMFC problem in which initially messages may belong to severalhold sets. We define
thedegreeof a problem instance asd = max{|hi |, |ni |}, i.e., the maximum number of
messages that any processor sends or receives. Consider the following example.

EXAMPLE 1.1. There are nine processors (n = 9). ProcessorsP1, P2, and P3 send
messages only, and the remaining six processors receive messages only.2 The messages
each processor holds and needs are given in Table 1. For this example the densityd is 3.

One may visualize problem instances by directed multigraphs. Each processorPi is
represented by the vertex labeledi , and there is a directed edge (or branch) from vertexi

Table 1.Hold and need vectors for Example 1.1.

h1 h2 h3 h4 h5 h6 h7 h8 h9

{a,b} {c,d} {e, f } ∅ ∅ ∅ ∅ ∅ ∅
n1 n2 n3 n4 n5 n6 n7 n8 n9

∅ ∅ ∅ {a, c,e} {a,d, f } {b, c,e} {b,d, f } {c,d,e} {c,d, f }

2 Note that in general processors may send and receive messages.
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Fig. 1. (a) Directed multigraph representation, and (b) directed biparite multigraph representation for Exam-
ple 1.1. The thick line joins all the edges (branches) in the same bundle.

to vertex j for each message that processorPi needs to transmit to processorPj . The
set of directed edges or branches associated with each message arebundledtogether.
The problem instance given in Example 1.1 is depicted in Figure 1(a) as a directed
multigraph with additional thick lines that identify all edges or branches in each bundle.
It is also interesting to visualize problem instances as directed bipartite multigraphs.
Each processorPi is represented by two vertices, one is thesourceand the other thesink
for all the messages associated with processorPi . There is a directed edge (or branch)
from source vertexi to sink vertexj for each message that processorPi needs to transmit
to processorPj . The set of directed edges or branches associated with each message are
bundledtogether. The problem instance given in Example 1.1 is depicted in Figure 1(b)
as a directed bipartite multigraph with additional thick lines that identify all edges or
branches in each bundle.

The communications allowed in our complete network must satisfy the following two
restrictions:

1. During each time unit each processorPi may transmit one of the messages it holds
(i.e., a message in its hold sethi at the beginning of the time unit), but such message
can be multicasted to a set of processors. The message also remains in the hold sethi .

2. During each time unit each processor may receive at most one message. The message
that processorPi receives (if any) is added to its hold sethi at the end of the time
unit.

The communication process ends when each processor hasni ⊆ hi , i.e., each pro-
cessor holds all the messages it needs. Our communication model allows us to transmit
any of the messages in one or more stages, i.e., any given message may be transmitted
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Table 2.Hold vector after stepsS1, S2, S3, andS4.

h1 h2 h3 h4 h5 h6 h7 h8 h9

S1 {a,b} {c,d} {e, f } {c} {a} {c} { f } {c} {c}
S2 {a,b} {c,d} {e, f } {a, c} {a,d} {c,e} {d, f } {c,d} {c,d}
S3 {a,b} {c,d} {e, f } {a, c,e} {a,d} {b, c,e} {b,d, f } {c,d,e} {c,d}
S4 {a,b} {c,d} {e, f } {a, c,e} {a,d, f } {b, c,e} {b,d, f } {c,d,e} {c,d, f }

at different times. This added routing flexibility reduces the total communication time.
In many cases it is a considerably reduction. We now give a problem instance such that
the total communication time can be reduced by allowing this type of message routing.
The problem instance given in Example 1.1 requires six communication steps if one
restricts each message to be transmitted only at a single time unit. The reason for this
is that no two of the six messages can be transmitted concurrently because every pair of
messages either originate at the same processor or have a common destination proces-
sor. However, by allowing messages to be transmitted at different times one can perform
all communications in four steps. We now explain how this can be accomplished. In
stepS1 processorP1 sends messagea to processorP5; processorP2 sends messagec
to processorsP4, P6, P8, andP9; and processorP3 sends messagef to processorP7. In
stepS2 processorP1 sends messagea to processorP4; processorP2 sends messaged
to processorsP5, P7, P8, and P9; and processorP3 sends messagee to processorP6.
In stepS3 processorP1 sends messageb to processorsP6 and P7; and processorP3

sends messagee to processorsP4 and P8. In stepS4 processorP3 sends messagef to
processorsP5 andP9. Table 2 shows the hold vector at the end of each of these four steps.

To establish that forwarding reduces the total communication time we show that when
forwarding is not allowed all the communication schedules for the problem instance
given in Example 1.1 require at least four communication steps, but when forwarding is
allowed all the communications can be performed in three steps.

We now prove that without forwarding the problem instance given in Example 1.1
requires at least four communication steps. The proof is by contradiction. Suppose
that all the communications can be carried in three steps. Since there are only three
communication steps, and messagesc andd originate at the same processor, then at
least one of the messages{c,d} must be transmitted to all its recipients during a single
time unit. The same holds for messages{a,b}, and messages{e, f }. So assume without
loss of generality that at timet messagec is transmitted to all its recipients. The only
other messages that can be sent at timet concurrently with messagec are: messagea
or messagef to processorP5, and/or messageb or messagef to processorP7. Since
processorsP4, P5, . . . , P9 must receive three messages, it must be that at each step each
of these processors must receive one of the messages it needs. Therefore, at timet none
of the processors may receive messagee, and messagef cannot be transmitted to all
its recipients. This together with the fact that messagese and f originate at the same
processor implies that messagee must be sent to all its recipients at the same time. We
say that this event occurs at timet ′ 6= t . However, then processorsP4 and P6 receive
messagec at timet , and messageeat timet ′. So in the remaining time unit processorP6

must receive messageb from P1, and processorP4 must receive messagea from P1, but,
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Table 3.Hold vector after stepsT1, T2, andT3.

h1 h2 h3 h4 h5 h6 h7 h8 h9

T1 {a,b} {c,d} {e, f } {a} {a} {c} { f } {c} {c}
T2 {a,b} {c,d} {e, f } {a,e} {a,d} {b, c} {b, f } {c,d} {c,d}
T3 {a,b} {c,d} {e, f } {a, c,e} {a,d, f } {b, c,e} {b,d, f } {c,d,e} {c,d, f }

every processor (includingP1) may only send one message at a time. A contradiction.
Therefore, when forwarding is not allowed the problem instance given in Example 1.1
requires at least four time units to perform all its communications.

We now show that when forwarding is allowed all the communications in the problem
instance given in Example 1.1 can be performed in three steps. In stepT1 processorP1

sends messagea to processorsP4 and P5; processorP2 sends messagec to processors
P6, P8, andP9; and processorP3 sends messagef to processorP7. In stepT2 processor
P1 sends messageb to processorsP6 andP7; processorP2 sends messaged to processors
P5, P8, andP9; and processorP3 sends messagee to processorP4. In stepT3 processor
P2 sends messagec to processorP4; processorP3 sends messagef to processorsP5

andP9; processorP4 sends messagee to processorsP6 andP8; and processorP5 sends
messaged to processorP7. The last two messages were sent indirectly from their original
location. Table 3 shows the hold vector at the end of each of these three steps.

A communication mode Cis a set of tuples of the form(m, l , D), wherel is a processor
index (1≤ l ≤ n), and messagem ∈ hl is to be multicasted from processorPl to the set
of processors with indices inD. In addition the set of tuples in a communication mode
C must obey the following communications rules imposed by our network:

1. All the indicesl in C are distinct, i.e., each processor sends at most one message.
2. Every pair ofD sets inC are disjoint, i.e., every processor receives at most one

message.

A communication schedule Sfor a problem instanceI is a sequence of communication
modes such that after performing all of these communicationsni ⊆ hi for 1 ≤ i ≤ n,
i.e., every processor holds all the messages it needs. Thetotal communication timeis
the number of communication modes in scheduleS, which is identical to the latest
time there is a communication. Our problem consists of constructing a communication
schedule with least total communication time. From the communication rules we know
that every degreed problem instance has at least one processor that requiresd time units
to send, and/or receive all its messages. Therefore,d is a trivial lower bound for the total
communication time. To simplify the analysis of our approximation algorithm we use
this lower bound as the objective function value of an optimal solution. Another reason
for using this lower bound is that load and communication balancing (placement) and
multimessage multicasting (routing) are normally separate procedures, and the load and
communication balancing problem must have a simple objective function in terms of the
problem instance it generates that somehow represents the total communication time for
the placement and a reasonable routing procedure. In other words this allows us to define
an optimal placement as one that generates a problem instance with minimum density,
i.e., minimum value ofd.
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A communication schedule for theMMC problem under the directed multigraph and
the directed bipartite multigraph representation corresponds to coloring the edges of the
multigraphs in such a way that every two edges emanating from the same vertex but
belonging to different bundles are colored differently, and every two edges ending at the
same vertex are colored differently. Each color corresponds to a communication mode.
For theMMFC problem this correspondence is not that simple because when a message
is forwarded this means the edge is replaced by a set of two or more edges, or an edge
is assigned several different colors. However, our algorithm in Section 2 can be easily
expressed as a double coloration and a partition of the edges in the directed bipartite
multigraph.

1.2. Previous Work, New Results, and Applications. Thebasic multicasting problem,
BMC, consists of all the degreed = 1 MMC problem instances, and can be trivially
solved by sending all the messages at time zero. There are no conflicts becaused = 1,
i.e., each processor sends at most one message and receives at most one message. The
communication schedule has only one communication mode. When the processors are
connected via a pr-dynamic network a communication mode can be performed in two
stages: the data replication step followed by the data distribution step [17], [18], [21].
This two stage process can be used in the MEIKO CS-2 machine [9]. An important
subproblem of the basic multicasting problem is when every message is to be sent to
adjacent numbered processors. This restricted multicast operation can be performed in
one step in pr-dynamic networks [17], and in the MEIKO CS-2 machine.

Gonzalez [9] also considered the case when each message has fixedfan-out k(maxi-
mum number of processors that may receive a given message). Whenk = 1 (multimes-
sage unicasting problemMUC), the problem reduces to coloring the edges of a directed
bipartite multigraph so that no two edges incident upon the same vertex, and no two
edges incident from the same vertex, are assigned the same color. It is well known that
this problem can be solved in polynomial time and that it can be colored withd colors,
whered is the degree of the graph. Currently, the fastest way to solve this problem is
to reduce it to the Makespan Openshop Preemptive Scheduling problem [12], which
is a generalization of this multigraph coloring problem. Every degreed multimessage
unicasting problem instance has a communication schedule with total communication
time equal tod. The interesting point is that each communication mode translates into a
single communication step for processors interconnected via permutation networks (e.g.,
Benes Network, Meiko CS-2, etc.), because in these networks all possible one-to-one
communications can be performed in a single communication step.

It is not surprising that several authors have studied theMUC problem as well as
several interesting variations for which NP-completeness has been established, subprob-
lems have been shown to be polynomially solvable, and approximation algorithms and
heuristics have been developed. Coffman et al. [5] studied a version of the multimessage
unicasting problem when messages have different lengths, each processor hasγ (Pi )

ports each of which can be used to send or receive messages, and messages are trans-
mitted without interruption (non-preemptive mode). Whitehead [22] considered the case
when messages can be sent indirectly. The preemptive version of these problems as well
as other generalizations were studied by Choi and Hakimi [2]–[4], Hajek and Sasaki
[14], Gopal et al. [13]. Some of these papers considered the case when the ports are not
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interchangeable, i.e., it is either an output port or an input port. Rivera-Vega et al. [19]
studied the file transferring problem, a version of the multimessage unicasting problem
for the complete network when every vertex can send (receive) as many messages as
the number of outgoing (incoming) links. With the exception of the work in [7]–[11]
and [20], research has been limited to unicasting, and all known results about multi-
casting are limited to single messages. Shen [20] studied multimessage multicasting
for hypercube connected processors. His algorithms are heuristic and try to minimize
the maximum number of hops, amount of traffic, and degree of message multiplexing.
Since hypercubes are static networks, there is no direct comparison to our work. The
MMC problem involves multicasting of any number of messages, and its communication
model is similar in nature to the one in the Meiko CS-2 machine, after solving some
basic synchronization problems.

The MMC problem is significantly harder than theMUC problem. Gonzalez [9]
showed that even whenk = 2 the decision version of theMMC problem is NP-complete.
Gonzalez [7] developed an efficient algorithm to construct for any degreed problem
instance a communication schedule with total communication time at mostd2, and pre-
sented problem instances for which this upper bound on the communication time is best
possible, i.e., the upper bound is also a lower bound. The lower bound holds when there
is a huge number of processors and the fan-out is also huge. Since this situation is not
likely to arise in the near future, theMMC problem with restricted fan-out has been
studied [7], [8].

Gonzalez [9] developed an algorithm to construct a communication schedule with
total communication time 2d − 1 for the case when the fan-out is two, i.e.,k = 2. An
O(q · d · e) time algorithm, wheree ≤ nd (the input size) is given in [9], to construct
for degreed problem instances a communication schedule with total communication
time qd + k1/q(d − 1), whereq is the maximum number of different time periods
where each message can be sent andk > q ≥ 2. Gonzalez [7], [8] also developed
several fast approximation algorithms with improved approximation bounds for problems
instances with any arbitrary degreed, but small fan-out. The approximation bound for
these methods is about(

√
k+ 1)d, wherek is the fan-out.

It is simple to show that the NP-completeness reduction for theMMC problem given
in [9] can be easily modified to establish the NP-completeness for theMMFC problem.
All the approximation results for theMMC problem also hold for theMMFC problem.
However, ford > 2 it is impossible to prove that there is an instance of theMMFC

problem that requiresd2 communication steps.
In this paper we present an efficient algorithm to construct for every degreed problem

instance a communication schedule with total communication time at most 2d, where
d is the maximum number of messages that each processor may send (or receive). Our
procedure is a simplified version of Gonzalez’ algorithm [11]. We should point out that
the previous approximation algorithms [7], [8] are faster than the one presented in this
paper. However, our new algorithm generates communication schedules with signifi-
cantly smaller total communication time. Our new algorithm consists of two phases. In
the first phase a set of communications are scheduled to be carried out ind time peri-
ods, and when these communications are performed the resulting problem is a degree
d multimessage unicasting problem. In the second phase we generate a communica-
tion schedule for this problem by reducing it to the Makespan Openshop Preemptive
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Scheduling problem which can be solved in polynomial time. The solution is the con-
catenation of the communication schedules for each of these two phases. For 2≤ l ≤ d,
we define thel -MMFC problem as theMMFC problem in which each processor has at
mostld edges emanating from it. We also present an algorithm to generate a commu-
nication schedule with total communication time at mostb(2 − 1/ l )dc + 1 for the
l -MMFC problem.

Our multimessage multicasting problems arise when solving sparse systems of lin-
ear equations via iterative methods (e.g., a Jacobi-like procedure), and most dynamic
programming procedures in a parallel computing environment. We now discuss the ap-
plication involving linear equations in more detail. We are given the vectorX(0) and
we need to evaluateX(t) for t = 1,2, . . . , using the iterationxi (t + 1) = fi (X(t)).
However, since the system is sparse everyfi depends on very few terms. A placement
procedure assigns eachxi to a processor where it will be computed at each iteration
by evaluatingfi ( ). Good placement procedures assign a large number offi ( )’s to the
processor where the vector components it requires are being computed, and therefore
can be computed locally. However, the remainingfi ( )’s need vector components com-
puted by other processors. So at each iteration these components have to be multicasted
(transmitted) to the set of processors that need them. The strategy is to computeX(1)
and perform multimessage multicasting, then computeX(2) and perform multicasting,
and so on. The same communication schedule is used at each iteration, and it can also be
used to solve other systems with the same structure, but different coefficients. Speedups
of n for n processor systems may be achieved when the processing and communication
load is balanced, by overlapping the computation and communication time. This may
be achieved by executing two concurrent tasks at each processor. One computes thexi s,
beginning with the ones that need to be multicasted first, and the other deals with the
multicasting of thexi values when they become available. If all the transmissions can be
carried out by the time the computation of all thexi s is finished, then we have achieved
optimal performance. However, if the communication takes too long compared with the
computation, then one must try other placements or alternate approaches. Our algorithm
generates a schedule with total communication time at most twice of optimal (or 2d) for
any given placement.

2. Approximation Algorithm for the MMF C Problem. In this section we show that
for every degreed instance of theMMFC problem one can construct in polynomial
time, with respect to the input length, a schedule with total communication time 2d.
The main idea is to forward all messages ind time units (i.e., usingd communication
modes) in such a way that the resulting problem is a degreed multimessage unicasting
problem. A communication schedule with total communication timed for the multi-
message unicasting problem can be generated in polynomial time [12]. Therefore, the
concatenation of both communication schedules is a schedule for theMMFC problem
instance. Our algorithm can be viewed as an edge multicoloring procedure, or a problem
transformation procedure. The former one is concise and transparent, but the latter one
can be easily used for variations of the problem (e.g., Section 3). First we present the
edge multicoloring version, and then the problem transformation one. We only prove
correctness and give an example for the second version.
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2.1. Edge Multicoloring. Our algorithm can be viewed as finding two colorings and a
partition of the edges in the bipartite multigraph representation. That is, find a partition
{z1, z2, . . . , zn} such that eachzi has at mostd edges and two coloringsC1 and C2

using at mostd colors each, whered is the degree of the problem instance, such that the
following four conditions are satisfied:

1. Every two edges belonging to different bundles emanating from the same source
vertex cannot be assigned the same color inC1.

2. Every two edges belonging to different bundles in the same setzi cannot be assigned
the same color inC1.

3. Every two edges in the same setzi cannot be assigned the same color inC2.
4. Every two edges incident to the same sink vertex cannot be assigned the same color

in C2.

The sets{z1, z2, . . . , zn} correspond to the index of the processor where the edges
will be forwarded. Thed-coloringC1 corresponds to the time period where the edges
(messages) will be forwarded. Condition 1 guarantees that no two different messages
emanating from the same processor will be forwarded at the same time, and condition 2
ensures that no processor will receive more than one forwarded message at a time. The
d-coloring C2 corresponds to the time periods when the forwarded messages will be
sent to their final destination. Condition 3 guarantees that no two messages that were
forwarded to the same processor will be sent to their final destination at the same time.
Condition 4 ensures that no two messages are received at their final destination at the
same time.

ColorationC2 is just a coloring of the edges in the bipartite multigraph induced by the
zi s and the sinks. Since the induced multigraph has degreed we know it can be colored
with d colors in polynomial time using classical techniques. Clearly, such coloration
satisfies conditions 3 and 4.

What remains to be done is to find the sets{z1, z2, . . . , zn} and the colorationC1.
The forwarding (or colorationC1) can be performed as follows. Number the bundles
B1, B2, . . . with all bundles originating at a common source vertex having consecutive
indices. Number all edgese1,e2, . . . with all edges inBi getting indices larger than
edges inBj for j < i . In the coloringC1, assign all edges in bundleBi the color
((i − 1)mod(d))+ 1. The partition of the set of edges is generated by assigning edgeei

to setzj , wheredi /de. It is simple to show that each setzj has at mostd edges, and that
conditions 1 and 2 are satisfied.

2.2. Problem Transformation. Before we present our algorithm we define additional
terms. One of the disadvantages of the notation given in Section 1 for theMMFC problem
is that after the transmission of the messages in the first communication mode, several
processors will be holding the same message and it becomes difficult to decide which
of these processors should be the one to transmit the message at subsequent steps. To
minimize the time required to make this decision our algorithm will at all times keep
a list of the messages that each processor will be transmitting to other processors at a
later time. This information is represented by a directed multigraph (see Figure 1)G that
changes after each communication mode. We also use the notationI = (P, H, N,d),
and a problem instance is represented by the tuple(I ,G).
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Our algorithm consists of the following three basic steps, which we define precisely
and motivate in the following subsections:

1. Transform to the multimessage unicasting problem:Transform problem instance
(I ,G) to the instance (̂I , Ĝ) of the MUC problem withn̂ = n processors and de-
greed̂ = d. This transformation requires that a set of communications take place.
We construct the communication scheduleX with total communication timêd for
the transmission of these messages. The final communication schedule isX plus a
communication schedule for (Î , Ĝ).

2. Construct a communication schedule for the multimessage unicasting problem
instance:Apply the reduction in [9] to problem instance (Î , Ĝ) of theMUC problem
to generate the instanceR of the openshop problem. Solve the openshop problemR
by using Gonzalez and Sahni’s algorithm [12] and construct from it a communication
schedule (X′) for problem instance (̂I , Ĝ) with total communication time equal tôd.

3. Construct the final communication schedule:Concatenate the communication
schedulesX andX′. The resulting communication schedule has total communication
time at most 2d, and is the output generated by our algorithm.

In the following subsections we show how to implement the above three steps of our
algorithm, and then establish correctness. As we describe our algorithm, we illustrate
its operations by applying it to the problem instance given in Figure 2. The problem
instance consists of 12 processors, 11 messages, and its degree isd = 2.

2.2.1. Transform to the multimessage unicasting problem. This is the most involved
step of our algorithm, where we transform problem instance (I ,G) to the instance (̂I , Ĝ)
of theMUC problem withn̂ = n processors and degreed̂ = d. This transformation re-
quires that a set of communications take place. We construct the communication schedule
X with total communication timêd for these message transmissions. The final communi-
cation schedule isX plus a communication schedule for (Î , Ĝ) with total communication
time equal tod̂. Procedure FORWARD, given below, constructs the instance (Î , Ĝ) from

Fig. 2.MMC problem instance (I , G).
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(I ,G). The idea is to forward all messages so that each processor ends up with at most
d unicasting messages it needs to transmit. The forwarding is such that at each time
unit each processor sends at most one message and receives at most one message, i.e.,
it obeys our communication rules. Our algorithm generates the specific operations to
accomplish this based on two labelings and two functions (one indicates the time when
the message will be forwarded, and the other the processor where it will be forwarded).

Procedure FORWARD (I ,G)
Label Bi the i th bundle visited while traversing the bundles emanating

from P1, then the ones emanating fromP2, and so on;
Define the functiont (i ) as(i − 1)mod(d)+ 1;
/* The message associated with bundleBi will be forwarded at time

t (i ). */
Label ei the i th edge visited while traversing the edges inB1, then the

ones inB2, and so on;
Define the functiong(i ) asdi /de;
/* Edgeei will be forwarded to processorPg(i ) */
Let ( Î , Ĝ)← (I ,G) except thatĜ does not have edges;
/* The edges inĜ will be added to reflect the forwarding operation. */
for every processorPj in G do

for every bundleBi emanating out ofPj in G do
Let S= {g(l )|el ∈ Bi };
Schedule inX at timet (i ) the multicasting of the message associated

with bundleBi from processorPj to the set of processorsS (if
|S| = 1, the operation is unicasting);

for every edgeel ∈ Bi do
Add to the hold set of processorg(l ) (i.e., H(g(l )), in Ĝ mes-

sageBi ;
Add the edge fromPg(l ) to Pq in Ĝ, whereq is the processor where

edgeel ends inG;
endfor

endfor
endfor

end of Procedure

In Figure 3 we show all the labelings performed by procedure FORWARD. The
top number just below each of the vertices is the index ofBi , the next line shows the

Fig. 3.Labeling performed by procedure FORWARD.
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Fig. 4.ScheduleX at time 1 (T1) and time 2 (T2).

message name, and then the valuet (i ). The line just above the bottom one has the index
of the ej , and the bottom number is the processor index to where that edge is to be
forwarded.

All the communications in scheduleX at time 1 and 2 are given in Figure 4. These
communications are as follows. At time 1 messagea is multicasted from processorP1

to processorsP1 and P2. Obviously one does not actually need to send the message to
processorP1, sinceP1 holds that message. Our algorithm could be modified to detect
cases like this one, but in general the total time complexity will not be reduced and the
communication schedules will have the same total communication time. At time 1 mes-
sagec is multicasted from processorP2 to processorsP4 andP5; messagee is multicasted
from processorP3 to processorsP6 andP7; messageg is multicasted from processorP4

to processorsP8 andP9; messagei is unicasted from processorP8 to processorP10; and
messagek is unicasted from processorP12 to processorP12 (superfluous operation). All
of these communications are represented by the forest labeled T1 in Figure 4. The spe-
cific communication operations for time 2 in scheduleX are given in the forest labeled
T2 in Figure 4.

The resulting unicasting problem (Î , Ĝ) of degreed̂ is given in Figure 5 (all objects).
Since the leftmost two edges in the bundleB1 were forwarded to processorP1 (super-
fluous operation), then messagea is to be sent from processorP1 to processorsP5 and
P6 in ( Î , Ĝ); the rightmost edge in bundleB1 was forwarded to processorP2, therefore
messagea needs to be sent to processorP7 from P2; the leftmost edge in bundleB2 was
forwarded to processorP2, therefore messageb needs to be sent to processorP8 from P2;
the rightmost two edges in bundleB2 were forwarded to processorP3, therefore message
b needs to be sent to processorsP9 and P2 from P3; the leftmost two edges in bundle
B3 were forwarded to processorP4, therefore messagec needs to be sent to processors
P5 and P6 from P4; the rightmost edge in bundleB3 was forwarded to processorP5,
therefore messagec needs to be sent to processorP7 from P5; the two edges in bundle
B4 were forwarded to processorsP5 and P6, therefore messaged needs to be sent to
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Fig. 5.MUC problem instance (̂I , Ĝ) constructed from(I ,G) in Figure 2.

processorsP8 and P9 from P6; and so on. The resulting unicasting problem (Î , Ĝ) of
degreed is given in Figure 5.

THEOREM2.1. Problem instance( Î , Ĝ), an instance of the MUC problem, and com-
munication schedule X with total communication time d constructed by procedure FOR-
WARD plus any communication schedule for( Î , Ĝ) is a communication schedule for
(I ,G).

PROOF. First we show that scheduleX is a feasible schedule. From thet ( ) labels and
procedure FORWARD, we know that for each processor the messages (if any) to be
forwarded to other processors are multicasted at different times. From theg( ) labels
and procedure FORWARD we know that each processor will receive messages from
at mostd bundles and from thet ( ) labelings we know the messages associated with
these bundles are transmitted at different times, thus all the messages forwarded to each
processor are received at different times. From the functionst ( ) andg( ), and procedure
FORWARD, we know that all the forwarding operations take placed during thed time
periods. Therefore,X is a feasible communication schedule with total communication
timed.

From the functiong( ) and procedure FORWARD we note that each message is
forwarded to the appropriate processor so that if we carry out all the communications
given by the resulting problem instance (Î , Ĝ), we also solve problem instance (I ,G).
ThereforeX plus any communication schedule for (Î , Ĝ) is a communication schedule
for (I ,G).

LEMMA 2.1. The time complexity for procedure FORWARD is O(n+e), where e is the
total number of edges in(I ,G).

PROOF. The steps before the first loop takeO(n+e) time. Overall, the innermost loop
is executed once for each edge, the middle loop is executed once for each bundle, and the
outermost loop is executed once for each processor. Therefore, the total time complexity
is O(n+ e).
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2.2.2. Construct a communication schedule for the multimessage unicasting problem
instance. The multimessage unicasting problemMUC reduces to coloring the edges
of a directed bipartite multigraph so that no two edges incident upon or incident from
the same vertex are assigned the same color. It is well known that this problem can
be solved in polynomial time and that it can be colored withd edges, whered is the
degree of the graph. Currently, the fastest way to solve this problem is to reduce it to the
Makespan Openshop Preemptive Scheduling problem [12], which is a generalization of
this bipartite multigraph coloring problem. Therefore, communication scheduleX′ for
the instance( Î , Ĝ) of the MUC problem of degreêd with total communication timêd
can be constructed via the above procedures.

LEMMA 2.2 [9]. The above informal procedure constructs communication schedule X′

with total communication time equal tôd for any multimessage unicasting problem
( Î , Ĝ) of degreed̂ with n̂ processors. The procedure takes O(r (min{r, n̂2} + n̂ log n̂))
time, where r is the number of messages(r ≤ d̂n̂).

PROOF. The specifics of the reduction appear in [9].

Problem instance (̂I , Ĝ) is given in Figure 5. Two communications modes generated for
it are given in Figure 6 (T3) and (T4). Note that sending messageb from processorP3

to P2 is not actually needed because processorP2 already has it. This is a superfluous
operation which can be deleted.

2.2.3. Construct the final communication schedule. Concatenate the communication
scheduleX with X′. In our example, communication scheduleX is given in Figure 4
(T1) and (T2), and communication scheduleX

′
is given in Figure 6 (T3) and (T4). The

resulting communication schedule has total communication time at most 2d and it is the
output generated by our procedure.

THEOREM2.2. Communication schedule X generated by procedure FORWARD plus
the communication schedule X′ generated by the procedure in Section2.2.2 is a

Fig. 6.Two communication modes for problem instance (Î , Ĝ).
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communication schedule for(I ,G) with total communication time2d. The overall
time complexity for our procedure is O(r (min{r,n2} + n logn)), where r is the total
number of messages(r ≤ dn).

PROOF. The proof follows from Lemmas 2.1 and 2.2 and Theorem 2.1 together with
the fact thatn = n̂ andd = d̂.

It is important to note that all the multicasting operations are to adjacent numbered
processors. This is important since each communication mode composed of only those
type of multicasting operations can be translated to a single communication mode for
pr-dynamic networks. This guarantees that the same schedule can be used for pr-dynamic
networks.

THEOREM2.3. Communication schedule X plus X′ is a communication schedule with
total communication time2d for any pr-dynamic network.

PROOF. By the above discussion.

In Section 5 we discuss ways to decrease the total number of messages that need to
be transmitted following the ideas behind the approximation algorithm given in [11].

3. Approximation Algorithm for the l-MMF C Problem. We present in this section
our algorithm to generate a communication schedule with total communication time
at mostb(2− 1/ l )dc + 1 for thel -MMFC problem, for 2≤ l ≤ d. Our procedure is
identical to the one in the previous section, except that procedure FORWARD is replaced
by l -FORWARD. The main difference between these two procedures is that only those
processors that initially had more thand edges may forward messages, and a subset of
processors, including those with at mostd + 1 outgoing edges, will receive messages
to be forwarded. After this forwarding operation we have reduced our problem to a
multimessage unicasting problem which is reduced to the openshop problem and then
solved as in the previous section. The openshop problem has degreed, and thus one can
construct for it a schedule with total communication time at mostd. The main difference
in the final schedule is that the forwarding portion has a total communication time at most
d−bd/ lc+1, and therefore the resulting schedule has total communication time at most
b(2−1/ l )dc+1. It is important to point out we do not allow processors to forward only
one edge, because forwarding would be impossible within the above communication
time bound when we haved of these processors and only one processor receiving all the
forwarded messages.

Procedurel -FORWARD (I ,G) /* Remember that 2≤ l ≤ d */
for i =1 to n do

while Pi has fewer thand bundles and at least one multi-edge bundle
do
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delete an edge from a multi-edge bundle and add it as a single-edge
bundle;

endwhile
endfor
Let Gi be the number of edges emanating out ofPi in G;
The tentative number of edges to be forwarded fromPi is

Fi =
0 if Gi ≤ d,

2 if Gi = d + 1,
Gi − d if Gi ≥ d + 2.

Traverse the bundles emanating out ofPi in nondecreasing order with
respect to the number of edges in the bundle, and visit all the edges in
each bundle in any order.

Mark the first Fi edges emanating out ofPi visited during the above
traversal, and also mark all the bundles emanating out ofPi with at
least one marked edge.

Now traverse all the marked bundles and visit ALL their edges in the
same order they were visited by the above traversal. The bundles visited
are labeledB1, B2, . . . , and the edges are labelede1, e2, . . . .

The number of edges to be forwarded fromPi is

F̂i = the total number of edges in marked bundles emanating out ofPi ;

Define the functiont (i ) as(i − 1)mod(d − bd/ lc + 1)+ 1;
/* The message associated with bundleBi will be forwarded at time

t (i ). */
Let ri = d − (Gi − F̂i ), the maximum number of edges that may be

forwarded toPi ;
DefineRi =

∑i−1
j=1 r j ;

for i =1 to n do
if Ri−1 6= Ri then defineg(h) = i for each edge labeledeh, and

Ri−1+ 1≤ h ≤ Ri ;
endfor
/* Edgeei will be forwarded to processorg(i ) */
( Î , Ĝ)← (I ,G) minus all the edges in marked bundles ofG;
/* The edges inĜ will be added to reflect the forwarding operation. */
for every processorPj in G do

for every marked bundleBi emanating out ofPj in G do
Let S= {g(l )|el ∈ Bi (note that each edgeej is in a marked bundle)};
Schedule inX at timet (i ) the multicasting of the message associated

with bundleBi from processorPj to the set of processorsS (if
|S| = 1, the operation is unicasting);

for every edgeel ∈ Bi that is in a marked bundledo
Add to the hold set of processorg(l ) (i.e., H(g(l )), in Ĝ mes-

sageBi ;
Add the edge fromPg(l ) to Pq in Ĝ, whereq is the processor

where edgeel ends inG;
endfor
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Fig. 7. l -MMC problem instance (I , G).

endfor
endfor
Split every multi-edge bundle in( Î , Ĝ) into single-edge bundles;

end of Procedure

We now apply our algorithm to the problem instance given in Figure 7. The first loop
transforms the problem to the problem instance given in Figure 8. The bundles that are
split are the ones emanating out of processorsP3, P8, andP9.

In Figure 9 we show all the labelings performed by procedurel -FORWARD. The
F̂i andri values computed by the procedure are the numbers that appear on top of the
vertices in Figure 9. The top number just below each of the vertices is the index ofBi ,

Fig. 8.Problem instance (I , G) after the first loop transformation.
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Fig. 9.Labeling performed by procedurel -FORWARD.

the next line shows the message name, and then the valuet (i ). The line just above the
bottom one has theej index, and the bottom number is the processor index to where that
edge is to be forwarded.

The forwarding is: messagea is multicasted to processorsP3 and P5; messagec
is unicasted to processorP6; messagee is multicasted to processorsP7 and P10; and
messagef is unicasted to processorP11. The resulting problem,( Î , Ĝ), is given in
Figure 10. The difference now is that messagea is to be transmitted from processorP3

to P2, and fromP5 to P7; messagec is to be multicasted fromP6 to P9 andP10; messagee
is to be unicasted fromP7 to P8 and multicasted fromP10 to P11 andP12; and messagef
is to be multicasted fromP11 to P2 andP3. In the final transformation all the multi-edge
bundles are replaced by single-edge bundles. In our examples the bundles for messages
b, c, e, f , andg are replaced by two single-edge bundles.

We should point out that all thet () values could be set to 1 in the above example
and there would not be any conflicts and the total communication time needed byl -
FORWARD would be decreased from 2 to 1. In general this is not always possible. For
example if processorP10 had one edge emanating out of it, then processorP3 would only
forward one edge there and the other one would be forwarded to processorP11. Processor
P4 would also need to forward an edge to processorP11. Therefore, the two messages
to be received by processorP11 would need to be sent at different times, so the above
reduction in total communication time is not possible in this other problem instance.

Fig. 10.Resulting problem instance( Î , Ĝ) just before last transformation (last line).
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THEOREM3.1. Problem instance( Î , Ĝ), an instance of the MUC problem, and com-
munication schedule X with total communication time d− bd/ lc + 1 constructed by
procedure FORWARD plus any communication schedule for( Î , Ĝ) is a communication
schedule for(I ,G).

PROOF. First we show that scheduleX is a feasible schedule. From the definition ofFi

and F̂i we know that only those processors with more thand edges will be forwarding
edges to other processors, and the tentative number of such edges isGi − d. Since the
edges to be forwarded are the ones from the bundles with the largest number of edges,
it then follows that all the edges to be forwarded belong to at mostd − bd/ lc of the
bundles emanating out of the processor. From the definition oft ( ) we know that these
messages will be multicasted at different times. Letα be the total number of edges
emanating out of processorPi and letk be the number of single-edge bundles emanating
out of processorPi . The total number of edges in multi-edge bundles isα − k, and this
value is greater than or equal toα − d (the tentative number of edges to be forwarded)
sincek ≤ d. This together with the way we definêFi implies that all the edges to be
forwarded belong to multi-edge bundles and all the edges in these multi-edge bundles
will be forwarded. From theg( ) labels and procedurel -FORWARD we know that each
processor will receive at mostd edges to be forwarded. Since the messages forwarded
consist of at least two edges, except possibly for the one forwarded to the previous and
to the next processor, it follows that at mostbd/2c+1 messages will be received by each
processor. Sincebd/2c + 1 ≤ d − bd/ lc + 1, these messages are labeled sequentially.
Therefore, all of these messages arrive at different times and there are no conflicts. Note
that because of this last discussion the total communication time is one unit more than
what was expected.

From the functiong() and procedurel -FORWARD we note that each message is
forwarded to the appropriate processor so that if we carry out all the communications
given by the resulting problem instance (Î , Ĝ), we also solve problem instance (I ,G).
Furthermore, the resulting problem is of degreed. Therefore, scheduleX plus any
communication schedule for (Î , Ĝ) is a communication schedule for (I ,G).

LEMMA 3.1. The time complexity for procedure l-FORWARD is O(n+ e), where e is
the total number of edges in(I ,G).

PROOF. Since the proof is similar to Lemma 2.1 it is omitted.

THEOREM3.2. Communication schedule X generated by procedure l-FORWARD plus
the communication schedule X′ generated by the procedure in Section2.2.2 is a com-
munication schedule for(I ,G) with total communication time2d − bd/ lc + 1. The
overall time complexity for our procedure is O(r (min{r,n2}+n logn)), r is the number
of messages(r ≤ dn).

PROOF. The proof is omitted since it is similar to the one of Theorem 2.2.
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In order for the communication schedule to be executable by pr-dynamic networks
one needs to perform all the multicasting operations to adjacent numbered processors.
In Figure 9 we see that messagea will be multicasted to processorsP3 and P5, and
messagee to processorsP7 andP10. Since no other processor will transmit at the same
time to processorsP4, P8, andP9, then messagea can be multicasted to processorsP3,
P4, andP5, and messagee to processorsP7, P8, P9, andP10. By applying this type of
transformation we can establish the following result.

THEOREM3.3. Communication schedule X plus X′ is a communication schedule with
total communication time2d for any pr-dynamic network.

PROOF. As in the previous section, the proof of this theorem follows from the fact that
all multicasting messages can be sent to a set of adjacent processors.

4. MultiSource MMF C. We now discuss our approximation algorithm for a gener-
alization of theMMFC problem that we refer to as the MultiSourceMMFC problem.
The main difference is that initially messages may be present at several processors. Our
algorithm reduces this problem to theMMFC problem by selecting a unique origin for
each message and ignoring the remaining processors, where the message is located in
such a way that we minimize the degree of the resulting problem instance. Our algorithm
is similar to a subalgorithm for an approximation algorithm for the MultiVia Assignment
problem given by Gonzalez [6].

The idea is to select an origin for each message in such a way that the resulting problem
instance has least degree. Construct the following bipartite graphG = (S∪T, E), where
S is the set of messages,T is the set of processors, andE is the set of edges defined as
follows: there is an edge from vertexs ∈ Sto vertexp ∈ T if messages is in processorp.
Figure 11(a) shows five processors together with the set of messages each one holds at
time 0. The bipartite graphG constructed from it is given in Figure 11(b) (all edges).

An s-matchingin G is a subset of edges no two of which are adjacent to the same vertex
in S (for example{{a,4}, {b,2}, { f,4}} is an s-matching). Acomplete s-matchingin G
is an s-matching with cardinality|S|, i.e., each vertex inS has an edge in the complete
s-matching associated with it. The set of dotted edges is a complete s-matching, but the
set of solid edges in not a complete s-matching. For each complete s-matchingI , we
defineM(I ) as the maximum number of edges inI incident to any node inT . We say
that I is anoptimal complete s-matchingfor G if it is a complete s-matching with least
M(I ). The set of dotted edges is an optimal complete s-matching withM(I ) = 2. It is
simple to show that in this case there is more than one optimal complete s-matching.
A polynomial time algorithm for finding an optimal complete s-matching is given by
Gonzalez [6] which is based on the algorithm in [16]. The algorithm finds a maximum
matching in a set of bipartite graphs. The time complexity isO(es1.5t0.5 logs), wheree
is the number of edges,s= |S|, andt = |T |.

Our algorithm constructs the graphG and then finds an optimal complete s-matching
I in it. Now the origin of each message that we have selected for each message is given
by I as follows: each edge(s, p) ∈ I indicates that messages will originate at processor
p. The resulting problem is an instance of theMMFC problem because every message
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Fig. 11.(a) MultiSourceMMFC problem instance. (b) Bipartite graph constructed from (a).

originates at a single processor. Furthermore, it has the least possible degree, becauseI
is an optimal complete s-matching.

THEOREM4.1. Our informal algorithm given above generates, for any MultiSource
MMFC problem instance, an equivalent instance of the MMFC problem with least pos-
sible degree. The time complexity for this algorithm is O(em1.5n0.5 logm), where e is the
number of edges(≤ nm), n is the number processors, and m is the number of messages.

PROOF. The proof follows from the above discussion.

5. Discussion. The approximation algorithm in this paper generates a communication
schedule with total communication time at most 2d. This is significantly better than
the one of previous algorithms [7], [8]. However, those algorithms are faster and were
designed for the case when forwarding was not allowed. Our algorithm is a simplified
version of the one in [11]. The approach we have taken can be shown to require in the worst
case 2d communication steps. The reason for this is that when one processor contains
d multi-edge bundles, then it requiresd communication steps (modes) to transform the
problem to a multimessage unicasting problem, and since the multimessage unicasting
problem has degreed it also requiresd communication steps (modes).

The messages that need to be transmitted may be reduced as follows: processors in
(I ,G) with more thand emanating edges will keepd of their edges and forward the
remaining ones, and processors with at mostd emanating edges will keep all their edges.
In our example only 10 edges are forwarded, rather than 23. We should point out that the
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new algorithm is more complex, but has the same approximation and time complexity
bounds. This is the approach used by procedurel -FORWARD, and it results in a schedule
with total communication time at mostb(2− 1/ l )dc+ 1, for thel -MMFC problem. For
brevity we did not discuss the conditions under which one can delete the+1 from this
bound.

Acknowledgments. We thank an anonymous referee for suggesting the presentation
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