
Algorithmica (1990) 5:11-42 Algorithmica 
�9 1990 Springer-Verlag New York Inc. 

Approximation Algorithms for Partitioning a 
Rectangle with Interior Points t 

Teofilo Gonzalez 2 and Si-Qing Zheng 2'3 

Abstract. Let R be a rectangle and let P be a set of points located inside R. Our problem consists 
of introducing a set of line segments of least total length to partition the interior of R into rectangles. 
Each rectangle in a valid partition must not contain points from P as interior points. Since this 
partitioning problem is computationally intractable (NP-hard),  we present efficient approximation 
algorithms for its solution. The solutions generated by our algorithms are guaranteed to be within 
three times the optimal solution value. Our algorithm also generates solutions within four times the 
optimal solution value when R is a rectilinear polygon. Our algorithm can be generalized to generate 
good approximation solutions for the case when R is a rectilinear polygon, there are rectilinear 
polygonal holes, and the sum of the length of  the boundaries is not more than the sum of the length 
of  the edges in an optimal solution. 

Key Words. Approximation algorithms, Partition of  rectilinear polygons, Polynomial-time com- 
plexity. 

1. Introduction. Partitioning a polygon is one of the fundamental problems in 
computational geometry. Traditionally the objective is finding a convex partition 
with a minimum number of components, and fortunately polynomial-time algo- 
rithms for these problems exist [CD], [GJPT], [LLMP], [LLMPL], [S]. Lingas 
et al. [LPRS] investigated the problem of partitioning a rectilinear polygon into 
rectangles by introducing a set of line segments (edges) of least total length. In 
VLSI design, the problem of dividing routing regions into channels can be reduced 
to this new partition problem [R]. Several variations of this partition problem 
were shown to be NP-hard, but the computational complexity of some other 
related problems remains unknown [LPRS]. In this paper we present efficient 
approximation algorithms to solve restricted versions of this partitioning problem. 
Let us now formally define several variations of the partitioning problem and 
review some previous results. 

A rectilinear boundary is a simple polygon with the additional constraint that 
all of its sides are either parallel or perpendicular to each other. A hole is a 
simple rectilinear polygon located inside the rectilinear boundary whose sides 
are parallel or perpendicular to the sides of the rectilinear boundary. There can 
be no holes inside a hole. A single point inside the boundary is called a degenerate 
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Table 1.1 

Problem Boundary Points and holes Complexity 

RP-HF Rectilinear polygon Hole Free O(n 4) 
RG-NLP Rectangle Non-corectilinear points I NP 
RP-NLP Rectilinear polygon Non-corectilinear points I NP 
RG-P Rectangle Points NP-complete 
RP-P Rectilinear polygon Points NP-complete 
RG-RP Rectangle Rectilinear polygons NP-complete 
RP-RP Rectilinear polygon Rectilinear polygons NP-complete 
RG-RPP Rectangle Rectilinear polygons and points NP-complete 
RP-RPP Rectilinear polygons Rectilinear polygons and points NP-complete 

1 A set of points is said to be non-corectilinear if no two points in the set are located along the same vertical or 
horizontal line. 

hole. A figure is a rectilinear boundary which may contain an arbitrary number 
of nonoverlapping holes. A rectangular partition of a figure is a set of line segments 
lying within its boundary and not crossing any nondegenerate hole so that when 
added to the figure, the area not enclosed by holes is partitioned into rectangles 
that do not contain as interior points any of the degenerate holes. The partitioning 
line segments are called edges. For every problem instance I and every set of 
edges E(I) in a feasible solution we use the function L(E(I)) to represent the 
sum of the length of the edges in E(I). For problem instance I, the rectangular 
partition E(I) is said to be a minimum edge length partition if L(E(I))<_ 
L(W(I)), where W(I) is any rectangular partition. 

Known results about the computational complexity of the decision problem 
corresponding to our minimum edge rectangular partitioning of rectilinear poly- 
gons is displayed in Table 1.1. 

Our notation is as follows: by RP-NLP we mean "minimum edge length 
rectangular partitioning of a Rectilinear Polygon with Non-corectiLinear Points." 
The other abbreviations in Table 1.1 are self-explanatory. The computational 
complexity of the problems in the above table is displayed in Figure 1.1, where 
"problem A~ problem B" means that problem A is polynomially reducible to 
problem B, i.e., problem A is not computationally "harder" than problem B. 

The computational complexity of the RG-NLP and RP-NLP has not yet been 
determined. Since an optimal solution for a given problem instance of RG-NLP 

RP-NLP - - "  RP-P ~ RP-RP - - *  RP-RPP 

RG-NLP ' - ~  RG-P ~ RG-RP ---*RG-RPP 

RP-I-IF 

Fig. 1.1 
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Fig. 1.2. Near-optimal solution. 

could be very complex (see Figure 1.2 for an example of a near-optimal solution) 
and it seems that there is no way to obtain an optimal solution without exhaustive 
search, we conjecture that both of these problems are NP-complete. 

A problem instance is formally defined as I=(B,P,H), where B =  
(qo, ql, �9 �9 �9 qm-1 ) is a sequence of  corner points (in clockwise order) that defines 
a rectilinear polygonal boundary, P = {Pl, P 2 , . . . ,  Pn } is a set of points (degener- 
ate holes) inside the boundary, and H={hl, h2,..., hr} is a set of rectilinear 
holes inside the boundary. Each of these holes is defined by a sequence of points. 
We shall refer to the polygon defined by B as the global boundary and to each 
of  the polygons that defines a hole as the hole boundary. Certainly B, P, and H 
must satisfy a set of constrains so that " I "  is a valid problem instance. A line 
segment is represented by its two endpoints, i.e., [(xi, yi ), (xj, yj )] represents the 
!ine segment with endpoints (xi, yi) and (xj, yj). Let B(I) represent the set of 
edges that defines the boundary for problem instance I and let H(I) represent 
the set of edges that defines the boundary of the holes in problem instance L 
L(B(I)) and L(H(I)) represent the sum of  the length of the edges in B(I) and 
H ( I ) ,  respectively. 

Lingas [L] developed a polynomial-time approximation algorithm for all of  
these partitioning problems, however, this algorithm may generate a solution 
with an objective function value far from the optimal one. Levcopoulos [Levl] 
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Fig. 1.3. Grid lines (dashed lines are grid lines). 

developed an algorithm to solve this problem by using the "thickest-first" heuris- 
tic. He claims that his algorithm has an approximation bound of 5 and time 
complexity O(n2). Recently, Levcopoulos [Lev2] presented an O ( n l o g n )  
algorithm that guarantees a solution with objective function value within a 
constant times the optimal-solution value. His algorithm uses a fast implementa- 
tion of the algorithm given by Gonzalez and Zheng [GZ1] for the RG-P problem. 
Gonzalez and Zheng's algorithm generates solutions within 3 + ~ of the optimal. 
In this paper we present an algorithm that generates solutions for the RG-P 
problem that are within three times of the optimal. 

In the next section we present an approximation algorithm for the RG-P 
problem. We show that our algorithm generates solutions such that L(Eapx(I)) <- 
3L(Eopt(I)). We also show that the approximation bound for this algorithm is 
best possible in the sense that for every e > 0 there are problem instances such 
that L(Eapx(1)) > 3L(Eopt(I)) - e. This approximation algorithm together with the 
techniques in [GZ1] can be used to obtain an approximation algorithm for the 
RP-P problem. 

We define the grid induced by a problem instance as the set of horizontal and 
vertical line segments introduced by extending all sides of the figure and the 
holes in both directions until either the line segment reaches the outside of the 
figure or the interior of a hole. Figure 1.3 illustrates the grid induced (by dashed 
lines) for a problem instance. It can be easily shown that in any optimal solution 
for the RP-RPP problem, all partitioning edges lie on the induced grid [LPRS]. 
The solutions generated by our algorithms have this property. 

2. A p p r o x i m a t i o n  A l g o r i t h m s  for the R G - P  P r o b l e m .  In this section we present 
our approximation algorithm for the RG-P problem. Our approach consists of 
transforming the instance of the RG-P problem into an instance of a generalized 
RP-HF problem (JRP-HF) for which we can find an optimal rectangular partition 
in polynomial time. Such a partition is our solution to the original problem. We 
assume that the rectangular boundary is located in the first quadrant of the 
xy-coordinate system whose origin is the lower left corner of the rectangular 
boundary. The first step of our procedure, the scanning algorithm, consists of 
scanning the points and introducing jogging lines to connect these points directly 
or indirectly to the boundary. Let p~ = (x,, y~ ), P2 = (X2, Y2 ) , . . . ,  P. = (x., y. ) be 
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the points inside the rectangle and assume that they have been reordered in such 
a way that 

(1) x~<<-x~ for l<-i<j<-n;  and 
(2) if x~=xj then yi>yj, for l<-i<j<-n. 

Our algorithm traverses the points in the order p~, P 2 , . . . ,  P,- 

Let (X, Y)~={(x ,y) l ( (x ,y)  is a point on the boundary or a point in 
one of  the line segments introduced during the previous 
iterations) and x <<- xi }. 

During the ith iteration point Pi is connected directly or indirectly to the boundary. 
Let (x, y) ~ (X, Y)i be a closest point (with respect to the L~ metric) to Pi. Point 
Pi is connected to (x, y) by a shortest path (L 1 metric). The path consists of at 
most one vertical line segment and at most one horizontal line segment. If y -> y~, 
then the horizontal line segment (if present) must include p~ ; otherwise the vertical 
line segment (if present) must include pi. At the end of this section we explain 
why it is important for our algorithm to connect points this way. Let C(I)  be 
the set of line segments introduced by the above scanning algorithm. Figure 2.1 
shows the set C(1) for a problem instance with an optimal solution of  the form 
given in Figure 1.2. The algorithm introduces at each iteration either a vertical 
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Fig. 2.1. C(l). 
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line segment (if x = xi and y ~ yi ), a horizontal line segment (if x ~ xl and y = y~ ), 
a right corner segment (if x ~ x~ and y ~ y~- ), a left corner segment (if x ~ x: and 
y ~ yi ), or an empty segment (if x = x~ and y = y~ ). The corner point in a right 
corner segment or in a left corner segment is the point located at the intersection 
of  the line segments that form the corner segment. 

The problem instance displayed in Figure 2.1 is an instance of  the JRP-HF 
problem. In such a problem we do not have holes nor points. We only have a 
rectangular boundary with jogging lines connected to it. These jogging lines 
should be viewed as boundaries. Each "side" of a jogging line is part of the 
boundary. The O(n 4) algorithm for the RP-HF problem given in [LPRS] can be 
trivially modified to find an optimal partition for the JRP-HF problem. The main 
idea behind the modification is to treat the internal line segments as two sided 
boundaries. 

Algorithm TRANS 
Step 1: Perform the scanning procedure to construct an instance, I ' ,  

of  the JRP-HF problem. 
Step 2: Use a modified version of the O(n 4) algorithm, for the RP-HF 

problem, that appears in [LPRS] to find an optimal solution 
to I'. 

End of algorithm TRANS 

THEOREM 2.1. The time complexity for algorithm TRANS is O(n4). 

PROOF. First let us show that step 1 of algorithm TRANS takes O(n 2) time. 
Clearly, the scanning procedure introduces at most two line segments for each 
point pj. Hence, when computing the closest point to pi we only need to find a 
shortest path (L1 metric) from Pi to at most 2 ( i - 1 ) + 3  different line segments 
(at most 2(i - 1) line segments from the previous i - 1 points and three other line 
segments for the boundaries) and then finding the smallest of these distances. 
Finding the closest point (L 1 metric) from Pi to a line segment can be easily 
performed in constant time, and finding the smallest of these distances can be 
done in O(n) time. Hence, the overall time complexity for step 1 is O(n2). After 
modifying the algorithm in [LPRS] for step 2, its time complexity remains the 
same O(m4), where m is the number of sides of the "generalized" rectilinear 
polygon. The "generalized" rectilinear polygon that we construct has O(n) sides, 
since the line segments connected to boundaries of the rectangle are treated as 
sides of the "generalized" rectilinear polygon. Hence, the overall time complexity 
for the algorithm is O(n4). [] 

Let Eapx(I) = C(I )  u Eopt( l '  ) be the solution generated by algorithm TRANS. 
Let E( I )  = C( I )  w Eopt(I) ~ D(I ) ,  where Eopt(I) is an optimal solution for I, C ( I )  
is the set of line segments introduced by the scanning algorithm, and D(I )  (to 
be defined later) is a set of line segments that transforms C(I )  u Eopt(I) into a 
rectangular partition. Since (Eopt(I)t,-)D(I))-C(I) is a solution to the JRP- 
HF problem and Eopt(/' ) is an optimal solution to the JRP-HF problem, we 
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I 
I 

Fig. 2.2. Eopt(1) u C(I). 

know that L(E(I))>_ L( Eapx( I) ). If we show that L(E(I))<-3L(Eopt(I)), then 
L(Eap• <-3L(Eopt(I)). Therefore, to prove our claim we need to show that 
there exists a D(I) such that E(I)=C(I)uEopt(I)~2D(I)  is a rectangular 
partition and L(E(I)) <- 3L(Eopt(I)). 

Let Eopt(I ) be any optimal rectangular partition and let R be any rectangle in 
Eopt(I ). In what follows we define the names for the different line segments from 
C(I) that may appear in R and then we characterize the interior of R in terms 
of  the different components that appear inside them. A left joint (L J) is obtained 
by introducing a left corner segment (including its corner point) inside R that 
intersects the left and top sides of R (see Figure 2.3(c)). A right joint (RJ) is 
obtained by introducing a right corner segment (including its corner point) inside 
R that intersects the right and top sides of R (see Figure 2.3(b)). If there is a 
left joint there could also be a right semijoint (Figure 2.3(i)). A right sere(joint 
(RS) is obtained by introducing a right corner segment (including its corner 
point) inside R that intersects the corner point of  the left joint and the right side 
of  R. We say that a line segment is inside the right joint if it is located inside the 
rectangle formed by the right joint and the sides of R. We say that a line segment 
is inside the right semijoint if it is located inside the rectangle formed by the right 
semijoint, the vertical portion of the left joint, and the sides of R. A vertical cut 
(VC) is obtained by introducing a vertical line segment that intersects the top 
and bottom sides of R and does not overlap with the left nor the right sides of  
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R (see Figure 2.3(a)). A partial vertical cut (PVC) is a vertical line segment that 
intersects the bottom side of R and the corner point of  the left joint (see Figure 
2.3(f)). A horizontal cut (HC) is a horizontal line segment that intersects the left 
and the right sides of  R and does not overlap with the top nor the bot tom sides 
of  R (see Figure 2.4A). A partial horizontal cut (PHC) is a horizontal line segment 
that intersects the right side of  R and either a partial vertical cut, a vertical cut, 
the vertical portion of the left joint, the vertical portion of the right semijoint, 
or the vertical portion of  the right joint; and does not overlap with the horizontal 
portion of  the right joint, the horizontal portion of the right semijoint, the top 
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side of  R, or the bot tom side of R. A partial horizontal cut that intersects the 
vertical portion of  the right joint is called a Partial Horizontal Cut located inside 
the Right Joint (PHC-RJ).  Figure 2.3(e) shows a rectangle with a right joint and 
with partial horizontal cuts inside the right joint. The remaining partial horizontal 
cuts, those not inside the right joint, will be named differently depending on the 
existence of  a PVC and / o r  VC segments. In rectangles with a partial vertical cut 
and /o r  vertical cuts, a partial horizontal cut that intersects the left joint, the 
partial vertical cut, or a vertical cut is called a PHC-NRJV (see Figure 2.4(F)). 
In rectangles without a partial vertical cut nor a vertical cut, a partial horizontal 
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Table 2.1 

Type (type) LJ PVC VC RS PHC-NRJNV ILl PHC-RJ PHC-NRJV HC 

a (a) 
a (A) * (*) 
b (B) 
c (C) * (*) 
d (D) * (*) 
e (E) 
r(F) *(*) *(*) 
g(G) *(*) *(*) 
h (H) * (*) 
i (I) * (*) 
j (J) * (*) 
k(K) *(*) 
I(L) *(*) *(*) *(*) 

m(M) *(*) *(*) 
n(N) *(*) *(*) 
o (0)  * (*) 
p (P) �9 ( , )  
q(Q) *(*) 
r(R) *(*) 
s(S) * ( * )  * ( * )  * ( * )  
t(T) *(*) *(*) 

u ( U )  * (*) * (*) 
v (v) * (*) 
w (w) * (*) 
x(X) *(*) 
Y(Y) *(*) *(*) *(*) 
z (z) * (*) 

�9 (,) 

(*) 
(*) 

�9 (,) (*) 
(*) 

�9 (,) (*) 
�9 (,) �9 (,) (*) 

(*) 
(*) 

, ( , )  
*(*) 
*(,) , ( , )  (*) 

(*) 
*(*) (*) 
*(*) (*) 

, (,) , (,) 
, (,) �9 (,) 

, (,) �9 (,) 
, ( , )  , ( , )  

*(*) (,) 
, (,) �9 (,) (*) 
, ( , )  , ( , )  (*) 

, ( , )  , ( , )  , ( , )  
, (,) �9 (,) �9 (,) 
, (,) , (,) �9 (,) 

, (,) �9 (,) (*) 
, (,) �9 (,) �9 (,) �9 (,) 

(*) 
(*) 
(*) 

(*) 
(*) 
(*) 
(*) 

(*) 
(*) 
(*) 

(*) 

cut that  intersects the left joint  or the right semijoint is called a P H C - N R J N V  
(see Figure 2.3(o) and (h)). Rectangle R may contain in it any of  the following 
components: LJ, PVC, VC, RS, P H C - N R J N V ,  RJ, PHC-RJ ,  PHC-NRJV,  or HC. 

We shall identify 54 different types of  rectangles (6, a-z,  A, A - Z )  depending  
on their components .  The components  in each type o f  rectangle are given in 
Table 2.1. Figures 2.3 and 2.4 depict these rectangles. Table 2.1 should be 
interpreted as follows: a "*"  in entry i,j indicates that rectangle type i contains 
componen t  j and a " (* )"  in entry ( i ) , j  indicates that rectangle type i contains 
componen t  j. We say that a rectangle is in canonical form if it is a rectangle o f  
type 3, a-z,  A, or A-Z.  In Lemma 2.1 we show that each rectangle in the rectangular  
p a r t i t i o n  Eopt(I  ) after adding  the line segments in C ( I )  is in canonical  form. 

Let W ~ = { e [ e c  C ( I )  and e is a line segment in t roduced by the scanning 
algori thm before the ( i +  1)st iteration}. Clearly Wn = C(I ) .  Let R1, R2 . . . .  , Rq 
be the set o f  rectangles in Eopt(I). For  all i,j, let Ri.j = Rj u {segments f rom W~ 
inside Rj }. In what  follows we prove by induct ion on i that  rectangle Rij is in 
canonical  form. In the remaining part  o f  this paper  we say that p = (x ,y )  is 
located to the right (left) of  the vertical line segment I =  [(x ' ,  y ' ) ,  (x',  y")] if 
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x > x '  ( x < x ' ) .  Similarly, we say that p =  (x ,y)  is located above (below) the 
horizontal line segment l = [(x', y'), (x", y')] if y > y '  (y < y'). 

LEMMA 2.1. For all i and j, rectangle R~,j is in canonical form. 

PROOF. The proof  is by induction on the number of iterations (i) performed 
by the scanning algorithm. 

Basis. For all j, Ro.j is in canonical form. 
Since W0 = ~ ,  it must be that R0.j = Rj. Since each rectangle Rj is in canonical 

form (type 6), we know that Ro.j is in canonical form. 

Induction Hypothesis. Assume that Rid is in canonical form. 

Induction Step. R~+I.j is in canonical form. 
By the induction hypothesis we know that R~,j is in canonical form. If the 

algorithm introduces no line segment inside of Rid during the (i + 1)st iteration, 
then R~+~,j--Ri,j is in canonical form. So, let us assume that the algorithm 
introduces some line segments inside Rg, j during the (i + 1)st iteration. It is simple 
to verify that pg+~ must be located to the right of the left side of R~ d and since 
Eopt(I ) is a rectangular partition we know that p~§ cannot be located inside 
rectangle R~,j. There are three cases depending on the type of  rectangle Rg d. 

Case 1. Rectangle Ri.j has no interior line segments (type 6). 
There are three subcases depending on the type of segment introduced inside 

R~,j during the ( i+  1)st iteration. 

Subcase 1.1. The scanning algorithm introduces either a horizontal or a vertical 
line segment. 

Clearly, after introducing either of these line segments we obtain a rectangle 
of  type a or A. Hence, Rj+~.j is in canonical form. 

Subcase 1.2. The scanning algorithm introduces a right corner segment. 
Clearly, introducing a right corner inside Ri.j transforms it into a rectangle of 

type A, a, or b, depending on which section of  the right corner segment is 
introduced inside R~.j. Hence, Ri+l,j is in canonical form. 

Subcase 1.3. The scanning algorithm introduces a left corner segment. 
Clearly, introducing a left corner inside Ri, j transforms it into a rectangle of 

type A, a, or c, depending on which section of  the left corner segment is introduced 
inside R,j.  Hence, Ri+l.j is in canonical form. 

This completes the proof  of Case 1. 

Case 2. Rectangle Rij contains only interior line segments that do not intersect 
the right side of Ri.j (type a, c, f, g, and 1). 

It is simple to prove that if point Pi+l is not located below the bottom side of 
Rij ,  then it must be located to the right of the rightmost point of any line segment 
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inside R~,j; and if p~+l is located below the bot tom side of Rij ,  then it must be 
located not to the left of  the rightmost point of  any line segment inside R~.j. 
There are four cases depending on the type of segment introduced by the 
algorithm. 

Subcase 2.1. The algorithm introduces a vertical line segment. 
Introduction of a vertical line segment inside Ri.j results in the following set 

of  rectangles R;+~j. Let us explain our notation by example. By " c ~ f l g "  we 
mean that introducing a segment (vertical line segment in this case) in a rectangle 
type c results in either a rectangle of type f or type g. 

a ~ a ,  

c--' fig, 

f ~ l ,  

g ~ g ,  

1~1. 

Hence, R~+~,j is in canonical form. 

Subcase 2.2. The algorithm introduces a horizontal line segment. 
For this case it is simple to verify that point Pi+l must be located above the 

bot tom side of  Ri,j and below the top side of  Ri.~. Therefore the rectangles are 
transformed as follows: 

a->A, 

c - , h [ C ,  

f-~F, 

g-~G,  

I ~ L .  

Hence, in all cases we obtain a rectangle Ri+tj in canonical form. 

Subcase 2.3. The algorithm introduces a left corner segment. 
Clearly, in order to introduce some segment inside Ri.j, point Pi+l must be 

located above the bottom side of Ri,j. I f  point pi+l is not to the left of  the right 
side of  Ri,j, then only a horizontal line segment is introduced inside R~ d and the 
proof  follows the same lines as the one for subcase 2.2. On the other hand if 
point P~+I is to the left of  the right side of  R~.j, then we claim that the algorithm 
will not introduce the corner point of  the left corner inside R~.~ during the (i + 1)st 
iteration, i.e., only the vertical portion of a left corner segment can be introduced 
inside Ri.j. We prove this by contradiction. Suppose the algorithm introduces 
the corner point inside R~.j during the ith iteration. We know from the above 
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restrictions on the location of point p~§ and the scanning algorithm, that point 
p~+~ must be located above the top side of  R~ d, to the right of  any line segment 
inside R~j, and to the left of  the right side of  R~j. Therefore, the left corner 
segment enters the rectangle on the top side of  Ri, j and ends on some existing 
internal line segment or on the left side of  R~.j. But this is not a minimum length 
path to a previously introduced line segment (L~ metric). This contradicts our 
scanning algorithm. Hence, the corner point of  a left corner segment cannot be 
introduced inside R~j. So the only remaining case is when a portion of the vertical 
section of the left corner is the only segment introduced inside R~j. The proof  
now follows the same arguments as the ones for subcase 2.1. 

Subcase 2.4. The algorithm introduces a right corner segment. 
In order to introduce some segment inside Rij  point Pi+l must be located below 

the top side of  Ri, j. I f  point pi+l is not located above the bottom side of R~,~, 
only a vertical line segment is introduced inside R~,j. Such a vertical line segment 
cannot be to the left of  any line segment inside R~j. The remaining part  of  the 
proof  for this case follows the same lines as the one for subcase 2.1. On the other 
hand, if point pi+l is located above the bot tom side of R~,j then either only a 
horizontal line segment or the corner point of  the right corner segment is intro- 
duced inside Ri, j. The former case is identical to subcase 2.2. In the latter case 
we know from the scanning algorithm that the right corner segment must intersect 
the top side of  R at a point located to the right of the rightmost segment inside 
Rid, or it must intersect the corner point of  the left joint. The possible transforma- 
tions are given below: 

a ~  d, 

c ~ i [ j ,  

f ~ m ,  

g ~  n, 

l ~ s .  

Hence, in all cases we obtain a rectangle R~+I,j in canonical form. 

Case 3. One of the line segments inside R~,j intersects the right side of  R o (type 
b, d, e, h-k,  m-z,  A, A-Z) .  

For this case we know that point pi+~ must not be located to the left of the 
right side ofR~,j. There are four cases depending on the type of segment introduced 
by the algorithm. 

Subcase 3.1. The algorithm introduces a vertical line segment. 
Since Pi§ is not located to the left side of  Rij ,  we know that Ri+~,j = R~,j and 

by the induction hypothesis it is in canonical form. 
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Subcase 3.2. The algorithm introduces a horizontal line segment. 
Introduction of a horizontal line segment inside Rid results in the following 

set of rectangles: 

A 4 A ,  

A4A, 

B4EIB, b4elB, 

C4HIC, 

D4K[D, d4k[D, 

E4E, e4e[E, 

F4F, 

G~G, 

H-~H, h4hlH, 

14011 , i4olI,  

J4O[plJ, j4qlp[J, 

K4K, k4klK, 

L4 L, 

M4TIM, m4t[M, 

N4UIN, n~u[N, 

0 4 0 ,  04010, 

P4VIP, p4v[plP, 

Q~QIV, q~qlvlQ, 

R4XIWIR, r4xlwlR, 

S4YIS , s4ylS, 

T4T, t4tlT, 

U4U, u4uIU, 

V4V, v4v[V, 

w4zlw, w4zlwlW, 

x4xlz, x4xlzlx, 

X4Y, y~y[Y, 

Z4Z, z~zlZ. 

Hence, we obtain a rectangle Ri+~j in canonical form. 
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Subcase 3.3. The algorithm introduces a right corner segment. 
If  the corner point of  the right corner segment is not introduced inside R~.j, 

but a horizontal line segment is introduced in R~j, the proof  is similar to the one 
for Subcase 3.1. On the other hand, if only the vertical portion is introduced we 
can prove that rectangle Rij is type h, j ,  p, q, or v. In each of these cases the 
transformations are given below: 

h ~  F, 

j -'~ m ,  

p-~M, 

q-~t, 

v-~T. 

We prove the following claim to eliminate the set of  rectangles on which the 
scanning algorithm cannot introduce inside Rij the corner point of a right corner 
segment. 

CLAIM. I f  there is a right joint inside R~j, the scanning algorithm cannot introduce 
the corner point of  a right corner segment inside Ri.j unless the right corner segment 
intersects the corner point of  the left joint in a rectangle without a right semijoint, 
a partial vertical cut, or a vertical cut. 

PROOF. We prove this claim by contradiction. Suppose that there is a right joint 
inside Ri,j and the algorithm introduces inside Ri.j the corner point of a right 
corner segment that does not intersect the corner point of the left joint. From 
the scanning algorithm we know that it is not possible for the right corner segment 
to include all of the right joint nor can it intersect the right joint. So it must be 
that the right corner segment is introduced inside the right joint. 

. .~  . . . . . .  q 

Y2 

Y1 
e 

XI X2 X3 

We know from the scanning algorithm that when the new right corner segment 
is introduced, it must be that Y2+ Y3 ~ X, and it must be that q is either the 
corner point of a left corner segment or one of  the points in p , , . . . ,  Pi. Therefore, 
point q c C ( I )  when the right joint was introduced. Because of this, we know 
that when the scanning algorithm introduced the existing right joint, it must have 
been that X, + Y~ + Y2-< Y, + Y2 + Y3. Combining both inequalities we know that 
Y2 + Y3 -< X, -< I:3. A contradiction since Y2 is greater than zero. This completes 
the proof  of  the claim. [] 
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From the above claim it is simple to verify that the corner point of a right 
corner segment can only be introduced in rectangles of type A, A, C, F-J, L, O- 
Q, V, h-j, o-q, and v. Introducing the corner point of the right corner segment 
in Rid results in the following set of rectangles: 

A-* B, 

A ~  D, 

C-~J[I,  

F-~M, 

G-*N,  

H ~ P [ O ,  h-~p[o,  

I ~ R ,  i ~ r ,  

J-~R, j ~ r ,  

L ~  S, 

O ~ W ,  o-~w, 

P ~ W ,  p ~ w ,  

Q ~ X ,  q ~ x ,  

V ~ Z ,  v ~ z .  

Hence, rectangle R~+1.j is in canonical form. 

Subcase 3.4. The algorithm introduces a left corner segment. 
Since point Pi+l is not located to the left of the right side of Ri, j ,  it must be 

that the corner point of the left corner segment is not introduced inside Ri,j. 
Hence, only a horizontal line segment can be introduced inside Ri, j at this iteration. 
The proof  for this case is similar to the one in Subcase 3.2. 

This completes the proof  for this case and the lemma. [] 

In what follows when we refer to rectangle R we mean any rectangle in set 
{Rn,j}. To obtain a rectangular partition from Eopt(I) ~ C( I ) ,  we must eliminate 
the "effects" (nonrectangular partition) of the joints and the semi joint by introduc- 
ing a set of line segments. All of the line segments that we introduce form the 
set D(I) .  Each of the sides of rectangle R is either a part of the boundary or a 
line segment from Eopt. Note that some line segments in C(I )  may overlap with 
the sides of R. The line segments in C ( I ) -  Eopt(I) are labeled A. To prove that 
L(E( I ) )  <- 3L(Eopt(I)) we show that L(D( I )  ~ (C( I )  - Eopt(I))) -< 2L(Eop~(I)). 
We prove this bound by showing that for each rectangle R, LEN(R)  -< OPT(R),  
where LEN(R)  is the sum of the length of the edges from D(I)  inside rectangle 
R plus the length of the line segments labeled A inside rectangle R; and OPT(R) 
is the sum of the length of  the edges from Eopt(I) that are sides of R. 
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We say that component  C ~ R if component  C is inside R. When we refer to 
rectangle R, we ust X as its width and Y as its height. We also use the symbols 
defined below to refer to the length of the different parts of the rectangle. 

J~t--L, = length of the vertical portion of the left joint, 
if LJ c R; and 0 otherwise. 

Jh~ = T~ = B~ = length of the horizontal portion of the left joint, 
if LJ ~ R; and 0 otherwise. 

J~r = R, = length of the vertical portion of the right joint, 
if  RJ c R; and 0 otherwise. 

Jhr  = T r  = B r  = length of the horizontal portion of the right joint, 
if  RJ c R; and 0 otherwise. 

Sh = length of  the horizontal portion of the right semijoint, 
if RS e R; and 0 otherwise. 

S~ = distance from the horizontal portion of the right semijoint 
to the top side of R,  if RS ~ R; and 0 otherwise. 

T,.= 

R m  "= 

r v  --~ n v  ~- , 

n h = 

Bm= X - T t ,  if LJ~ R; and 0 otherwise. 

/ 'S~, 

distance from the lowest partial 
horizontal cut to the top side of R, 

R , ,  
'distance from the left side of R to 

the rightmost vertical cut, 

i distance from the left side of R to 

1 the vertical portion of the left joint, 

~0, 

'distance from the rightmost vertical 
cut to the right side of R, if 

distance from the vertical portion of 
the left joint to the right side of R, 

x, 

if R S ~ R ;  

if LJ, PHC-N1LINV~ R 
and RS, PVC, VC ~ R; 

otherwise. 

if V C 6 R ;  

if PVC ~ R 
and VC~ R ;  

otherwise. 

VCc R; 

if P V C~R and V C ~ R ;  

if HC~ R 
and VC, PVC~ R; 

otherwise. 

distance from the topmost horizontal cut 
/ to the bottom side of R, 

Rh = Lh = ~distance from the topmost partial horizontal 
cut (PHC-NRJV) to the bottom side of  R, 

10, 

Lb = Y -  L, - Lh. 

if HC~ R; 

if PHC-NRJV~ R; 

otherwise. 

R b  = Y - R , .  - R h . 
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1", 
_ T~I  

Lt-L j~i t 

Lb 

Lh 

Bt l  
B~ 

[~r I_ 

[B, 
Bh 

Lt 

Lb 

Lh 

Jhz J'h~ 
Rb 

Rh 

Bt ] Br 
B,,, 

Bh 

Fig. 2.5 

L, : , ,  ~j R, 
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Lb Sh 
Rb 
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BI I Br 
B,,, 

Bh 

Before proving our approximation bound, we prove some useful properties 
that are satisfied by every rectangle R ~ {R,,j}. At each iteration of the scanning 
algorithm a new set of line segments is introduced and one point in these line 
segments intersects either a line segment introduced during a previous iteration 
or the boundary (which cannot be the right-hand side boundary).  Hence, 

(1) there cannot be a path, all of  it labeled A, that joins two boundaries; and 
(2) if the right side of R is part of the boundary then no line segment labeled 

A can intersect it. 

It is simple to prove that 

(3) each of the joints is introduced by one iteration of the scanning algorithm 
and the segments that form the right semijoint are introduced by one iteration 
of  the scanning algorithm. 

It is simple to prove that when a point is connected directly to the boundary, it 
is connected by a straight line segment. Therefore, 

(4) if there is a left joint, then neither the left side nor the top side of  rectangle 
R is a part of the boundary; 

(5) if there is a right joint, then neither the right side nor the top side of rectangle 
R is a part of the boundary; and 

(6) if there is a right semijoint, then neither the left, top, nor right side of R is 
a part of the boundary. 

Let us now establish a bound on the length of the partial horizontal cuts located 
inside the right joint (PHC-RJ). It is simple to prove that every pair of these cut 
lines must be at least Tr units apart and all of such cut segments must be at least 
Tr units from the horizontal portion of the right joint. Hence, 

(7) if there is a right joint and it includes partial horizontal cuts (PHC-RJ),  the 
total length of these cut segments is at most R,. 
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Let us now consider rectangles with the left joint and without the right semijoint, 
a partial vertical cut, and vertical cuts (LJ ~ R and RS, PVC, VC ~ R). It is simple 
to prove that the horizontal cut lines that intersect the left joint (PHC-NRJNV) 
must be at least Tm units apart. Hence, if there is no right joint, the sum of the 
length of all the PHC-NRJNV segments is at most Tm+ Rm. On the other hand, 
if there is a right joint, we know from the scanning algorithm that the distance 
between the horizontal portion of  the right joint and the topmost PHC-NRJNV 
segment is at least J~r+Jhr. From the above observations and (7) it is simple to 
show that 

(8) if there are no partial vertical cuts, verticals cuts, or a right semijoint, and 
there is a left joint (LJc  R and PVC, VC, RS~ R), then all the line segments 
to the right of the left joint (PHC-NRJNV, R J, and PHC-RJ) have length 
<-T,,+Rm. 

Using similar observations, it is simple to show that 

(9) if there is a left joint and a right semijoint (LJ, RS c R), then all the line 
segments inside the right semijoint (PHC-NRJNV, RJ, and PHC-RJ) have 
length -< Rm. 

Since all the PHC-NRJV cuts and all the horizontal cuts must be at least Bh units 
apart and since any of these line segments must be at least Bh units from the 
bottom side of the rectangle when such a side is part of the boundary, we know 
that 

(10) if the bottom side of  R is not part of the boundary, the length of all the 
PHC-NRJV cuts or the horizontal cuts is at most Bh + Rh. If  the bottom 
side of R is part of  the boundary, the length of all the PHC-NRJV cuts or 
the horizontal cuts is at most Rh. 

From the scanning algorithm it is simple to verify that every pair of vertical cuts 
and the partial vertical cut must be at least Y units apart and any of  these lines 
must be at least Y units from the left side of the rectangle when such a side is 
part of the boundary. Hence, 

(11) if the left side of R is not part of the boundary then the length of  the line 
segments composing the left joint (L J) plus the length of the partial vertical 
cut (PVC) plus the length of all vertical cuts (VC) is at most Y +  B~. If the 
left side of R is part of the boundary then the length of all the vertical cuts 
(VC) is at most By. 

Our notation for the figures in this section is defined as follows: thin line 
segments denote line segments labeled A; dotted line segments denote line 
segments from D(I) in R; thick line segments with slashes ( / )  indicate the 
segment is part of the boundary; thick line segments with • indicate that the 
line segment is either in Eopt(I) or is part of the boundary; and thick line segments 
(without any symbol) indicate line segments from Eopt(I). In the proof  of  Lemma 
2.2 we use D(R) to denote the line segments from D(I) in R and L(D(R)) to 
denote the total length of the edges in D(R). 
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LEMMA 2.2. For all R, LEN(R)-<OPT(R) .  

PROOF. There are two cases. 

Case 1. VC, PVC~ R (rectangle is of  type ~, A, b, c, B, C, e, E, h-j, H-J,  o-r,  
O-R, v-x, V-X, z, and Z). 

There are two cases depending on whether or not there are horizontal cuts. 

Subcase 1.1. HC, PHC-NRJV~ R (rectangle is type ~,b, c, e ,h- j ,  o - r ,v -x ,  
and z). 

We only consider the case when there are line segments inside R, as otherwise 
we know that LEN(R)  = 0 and LEN(R)  -< OPT(R).  There are five cases depending 
on which components are located inside R. 

Subcase 1.I.I .  LJ 6 R and RJ, RS, PHC-RJ, PHC-NRJNV~ R (type c). 
Since there is a left joint, the left and the top sides cannot be boundaries (4). 

Clearly, Jhl = 7"1, Jvt = L,, and L ( D ( R ) )  = Lb. Hence, LEN(R)  -< OPT(R).  This 
completes the proof  for this subcase. 

__3 
Subcase 1.1.2. RJ c R and LJ, RS, PHC-NRJNV~ R (type b and e). 

Since there is a right joint, we know from (5) that the right and top sides of 
R are in Eopt(/). We know from (7) that the sum of the length of all the partial 
horizontal cuts inside the right joint is less than or equal to R,. There are three 
cases depending on whether or not the other sides of R are part of the boundary. 

Subcase 1.1.2.1. The left side of R is part of the boundary. 

L} 
Since the left side of  R is part of the boundary and since the right joint is 

introduced by one iteration of  the scanning algorithm (3), we know that Jhr+ 
Jor<--X. Clearly, L ( D ( R ) ) =  Rb. Hence LEN(R)-<OPT(R) .  This completes the 
proof  of  this subcase. 
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Subcase 1.1.2.2. The left side of R is in Eopt(I ) and the bottom side of R is 
part of the boundary. 

k} 
Since the bottom side of R is part of the boundary and since the right joint is 

introduced by one step of the scanning algorithm (3), we know that Jhr + J,~r <- Rb. 
Clearly, L ( D ( R ) )  = X -  Tr. Hence LEN(R)-< OPT(R). This completes the proof 
for this subcase. 

Subcase 1.1.2.3. The left side and the bottom side of R are in Eopt(I ). 

Clearly, the four sides of R belong to Eopt(I) ,  Jhr = T,., Jvr = R,, and L ( D ( R ) )  = 
X - Tr. Hence LEN(R) -< OFT(R). This completes the proof for this subcase and 
Subcase 1.1.2. 

Subcase 1.1.3. LJ, PHC-NRJNV6 R and RS~ R (type h, p, and v). 
We know from (2) and (4) that the left, top, and right sides of R are in Eopt 

and we know from (8) that the length of all the line segments introduced by the 
scanning algorithm to the right of the left joint is -< Tm+ Rm. Clearly, Jh~ = T~ and 
Jv~ = Lt. There are two cases depending on whether or not the bottom side of R 
is part of the boundary. 

Subcase 1.1.3.1. The bottom side of R is part of the boundary. 
Since there are partial horizontal cuts that intersect the left joint, we know 

from the scanning algorithm that Tm <- Rb. Therefore, L( D(  R ) ) < Lb + Rb. Hence, 
LEN(R)-< OPT(R). This completes the proof for Subcase 1.1.3.1. 

/ / / / / / / / / /  
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Subcase 1.1.3.2. The bottom side of R is in Eopt(/). 
Clearly, L ( D ( R ) )  < Lb + Tin. Hence, LEN(R)_< OPT(R). This completes the 

proof for Subcase 1.1.3. 

Subcase 1.1.4. LJ, RJ 6 R and RS, PHC-NRJNV~ R (type j and q). 
Since the two joints are present we know from (4) and (5) that the left, top, 

and right sides of R are in Eopt(I ). We know from (7) that the sum of the length 
of all the partial horizontal cuts inside the right joint is less than or equal to R,. 
Clearly Jhl = TI and J~l = L,. There are two cases depending on the relative values 
of J~l and J~r- 

Subcase 1.1.4.1. J,~t> J,~r. 

Clearly, L ( D ( R ) )  = L b 2r R b. Since both of the joints are introduced by a single 
step of the scanning algorithm (3) and the right joint appears to the right of the 
left joint, it must have been that the scanning algorithm introduced the right joint 
after the left joint and J~,,. + Jh,. <- ( X  - 7"1 ). Hence, LEN(R) -< OPT(R). This com- 
pletes the proof for this subcase. 

Subcase 1.1.4.2. Jvt<-J~r. 
There are two caases depending on whether or not the bottom side of R is 

part of the boundary. 

Subcase 1.1.4.2.1. The bottom side of R is part of the boundary. 

/ / / / / / / / / / / / / / / /  
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Clearly, L(  D (  R ) ) = Lb + ( X - Tr - Tt ). Since the bottom side of R is part of 
the boundary and since the right joint is introduced by one step of the scanning 
algorithm (3), we know that Jvr + Jhr <- Rb. Hence, LEN(R) -< OPT(R). This com- 
pletes the proof for this subcase. 

Subcase  1.1.4.2.2. The bottom side of R belongs to Eopt(/). 

.......................... r~ ~ 
Clearly, the four sides of R belong to Eopt(I ) and L ( D ( R ) )  = ( X  - TI - Tr ) + Rb. 

Since both of the joints are introduced by a single step of the scanning algorithm 
(3) and the right joint appears to the right of the left joint, it must have been 
that the scanning algorithm introduced the right joint after the left joint and 
J h r + J v r < - ( X - T t ) + ( J , r - J , , i ) .  Hence, LEN(R)-<OPT(R). This completes the 
proof of this subcase and Subcase 1.1.4. 

Subcase  1.1.5. LJ, R S c R  (type i ,o , r ,w,x ,  and z). 
Since there is a right semijoint, we know from (6) that the left, top, and right 

sides of R are in Eopt(I). Clearly, Jhl = Tt and J.t = Lt. We know from (9) that 
the length of all the line segments introduced by the scanning algorithm inside 
the right semijoint is <-Rm. There are two cases depending on whether or not the 
bottom side of R is part of the boundary. 

Subcase  1.1.5.1. The bottom side of R is part of the boundary. 
Since RS ~ R and the bottom side of R is part of the boundary we know from 

the scanning algorithm that the two segments forming the right semijoint have 
length ~ R  b. Clearly, L ( D ( R ) ) <  L b q-Tin.  Hence, L E N ( R ) -  OPT(R). This com- 
pletes the proof for Subcase 1.1.5.1. 

.... t-- 

i 
i i 

/ / / / / / / / / /  

Subcase  1.1.5.2. The bottom side of R is in Eopt(/). 
The length of the segments that form the right semijoint is Tm+ (Rm- L,). 

Clearly, L(  D (  R ) ) < ( Lb - ( R,,, - Lt )) + Bin. Hence, LEN(R) -< OPT(R). This com- 
pletes the proof for this subcase and Subcase 1.1. 
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.... I- 

Subcase 1.2. HC c R (type A, B, C, E, H-J,  O-R, V-X, and Z). 
Since there are horizontal cuts, we know from (2) that the right side of R is 

not part of the boundary. We know from (10) that the length of  all the horizontal 
cuts is at most Bh + Rh if the bottom side of R is not part of the boundary and 
it is at most Rh if the bottom side of R is part of  the boundary. Hence, if there 
are no line segments inside R other than the horizontal cuts L E N ( R ) - O P T ( R ) .  
For simplicity, all the figures in this subcase will be drawn including only the 
topmost horizontal cut. The remaining cases are treated separately. 

Subcase 1.2.1. LJ6 R and RJ, RS, PHC-RJ, PHC-NRJNV~ R (type C). 
Since there is a left joint, we know from (4) that the left and top sides of R 

cannot be part of the boundary. Clearly, L ( D ( R ) ) =  Lb, Jhl = TI, and Jvl = L,. 
Hence, LEN(R)-< OPT(R).  This completes the proof  for this subcase. 

Subcase 1.2.2. RJ ~ R and LJ, RS, PHC-NRJNV~ R (type B and E). 
Since there is a right joint, we know from (5) that the right and top sides of 

R cannot be part of the boundary. We know from (7) that the length of the 
partial horizontal cuts inside the right joint have length -<R,. There are two cases 
depending on whether or not the left side R is part of the boundary. 

Subcase 1.2.2.1. The left side of R is part of the boundary. 
Since the left side is part of the boundary and the right joint is introduced by 

a single step of  the scanning algorithm (3), we know that J~r+J~r<-X. Clearly, 
L ( D ( R ) ) = R b .  Hence, LEN(R)~<OPT(R).  This completes the proof  for this 
subcase. 

/ 
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Subcase 1.2.2.2. The left side of R is not part of the boundary. 
Clearly, L( D(  R ) ) = g b ,  Jvr = R,, and Jhr = Tr. Hence, LEN(R) -< OPT(R). This 

completes the proof for this subcase and Subcase 1.2.2. 

Subcase 1.2.3. LJ, PHC-NRJNV~ R and RS~ R (type H, P, and V). 
Since there is a left joint and there are partial horizontal cuts, we know from 

(2) and (4) that the left, top, and right sides of R belong to Eopt( /) .  Clearly, 
Jh~ = 7"1 and J~ = L,. Since there are partial horizontal cuts that intersect the left 
joint, we know that Bm <-Rb. Therefore, L ( D ( R ) ) <  Lb + Rb. We know from (8) 
that the length of all the line segments to the right of the left joint and above the 
topmost horizontal cut is at most Tm+Rm. Hence, LEN(R)-<OPT(R).  This 
completes the proof for this subcase. 

Subcase 1.2.4. LJ, RJ~ R and RS, PHC-NRJNVr R (type J and Q). 
Since both joints are present, we know from (4) and (5) that the left, top, and 

right sides of R are in Eopt(I). Clearly, Jht = T~, Jo~ = L,, and we know from (7) 
that the sum of the length of all the partial horizontal cuts inside the right joint 
is less than or equal to R,. There are two cases depending on the relative values 
of Jvl and Jvr- 

Subcase 1.2.4.1. J~> Jvr. 

i ! 
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Clearly, L ( D ( R ) )  = Lb + Rb. Since both of the joints are introduced by a single 
step of the scanning algorithm (3) and the right joint appears to the right of the 
left joint, it must have been that the scanning algorithm introduced the right joint 
after the left joint and Jr,. + Jhr <-- ( X  - 7"1 ). Hence LEN(R) --- OPT(R). This com- 
pletes the proof for this subcase. 

Subcase  1.2.4.2. Jr1 <- J,~r . 
There are two cases depending on whether or not the topmost horizontal cut 

was introduced by the scanning algorithm before the right joint. 

Subcase  1.2.4.2.1. The topmost horizontal cut in R was introduced by the 
scanning algorithm before the right joint. 

Clearly, L(  D (  R ) ) = Lb + ( X - T~ - Tr ). Since the topmost horizontal line seg- 
ment was introduced before the right joint and since the right joint is introduced 
by a single step of the scanning algorithm, we know that J~,r+ Jh; <- Rb. Hence 
LEN(R)-< OPT(R). This completes the proof for this subcase. 

Subcase  1.2.4.2.2. The topmost horizontal cut in R was introduced by the 
scanning algorithm after the right joint. 

I .............................. 

Since the topmost horizontal cut in R was introduced by one iteration of the 
scanning algorithm after the right joint, we know that X -< Rb. Hence, L ( D ( R ) )  < 
2Rb. Since both of the joints are introduced by a single step of the scanning 
algorithm (3) and the right joint appears to the right of the left joint, it must 
have been that the scanning algorithm introduced the right joint after the left 
joint and Jhr+Jvr<--(X - T I ) + ( R , - L , ) .  Hence, LEN(R)<-OPT(R). This com- 
pletes the proof of this subcase and Subcase 1.2.4. 
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Subcase 1.2.5. LJ, RS ~ R (type I, O, R, W, X, and Z). 
Since RS ~ R, we know from (6) that the left, top, and right side of  R belong 

to Eopt(I). Clearly, L( D (  R ) ) = Rb + ( X - Tt - Tr ), Jht = Tt, Jr, = L,, and the length 
of the vertical portion of  the right semijoint is equal to Lb --Rb. Since RS ~ R 
and there are horizontal cuts, we know from the scanning algorithm that Sh < Rb. 
We know from (9) that the length of all the line segments introduced by the 
algorithm that are located inside the right semijoint is at most Rm. Hence, 
LEN(R)  --- OPT(R).  This completes the proof  for this subcase. 

..... t- 

Case 2. V C ~ R  and /o r  P V C 6 R  (rectangle is of type a , A , d , D , f , g , F , G ,  
k-n, K-N,  s-u, S-U, y, and Y). 

For simplicity, all the figures in this case will be drawn including only the 
topmost partial horizontal cut (PHC-NRJV) and either the rightmost vertical cut 
or the partial vertical cut. The latter case is when VC~ R. We know from (11) 
that if the left side of R is not part of the boundary then the length of  the line 
segments composing the left joint plus the length of the partial vertical cut plus 
the length of all the vertical cuts is at most Y +Bv ;  otherwise it is at most 
By. There are two cases depending on whether or not there are PHC-NRJV 
cuts. 

Subcase 2.1. PHC-NRJV~ R (rectangles types a, d, f, g, k-n, s-u, and y). 
If there is no right joint inside R, it is simple to see that LEN(R)<-OPT(R) .  

So let us assume that there is a right joint inside R. For this case, it is simple to 
prove that Jhr + J~r <<-(X- Tv ). The sum of the length of all the partial horizontal 
cuts inside the right joint is less than or equal to R, [see (3)]. Clearly, L ( D ( R ) )  = 
Rb. Hence, LEN(R)<-OPT(R) .  This completes the proof  for this subcase. 

Subcase 2.2. PHC-NRJV~ R (rectangle types A, D, F, G, K-N,  S-U, and Y). 
We know from (10) that if the bottom side of R is not part of the boundary, 

the length of all the PHC-NRJV cuts is at most Bh + Rh ; and if the bottom side 
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of R is part of the boundary, the length of all the PHC-NRJV cuts is at most 
Bh. If there is no right joint then it is simple to verify that LEN(R)-< OPT(R).  
So let us assume that RJ ~ R. For this case it is simple to prove that Jvr + Jhr <- 
(X - Tv ). We know from (7) that the length of  all partial horizontal cuts inside 
the right joint is <-R,. By construction, L(D(R) )  = Rb. Hence, LEN(R)-< OPT(R).  
This completes the proof  for this subcase, Case 2, and the lemma. 

[] 

THEOREM 2.2. For any instance I for the RG-P problem, algorithm TRANS 
generates a solution Eapx(I) such that L( Eaox( I) ) <- 3L( Eopt( I) ). 

PROOF. Follows from Lemma 2.2 and the discussion preceding Lemma 2.1. 
[] 

The tightness of the approximation bound 3 for our algorithm TRANS is 
established by the following theorem. 

THEOREM 2.3. For any small e > 0, there exists an RG-P problem instance for 
which L(Eapx(I)) > 3L(Eopt(I)) - e. 

PROOF. Let e = 2 -k and let e' = e / ( k  + 2) = 2 -k / (k  + 2). The origin (lower-left 
corner of the rectangle) is (0, 0), X - - 1 ,  and Y =  k ( l + e ) .  The set P contains 
k ( k + 2 ) - 1  points defined as follows: 

p u = ( x , , , , y , , , ) = ( 1 - e , i ( l + e ) ) ,  1 - < i - < k - 1 ;  

~ ( 1 -  e + e,', 1) for i = 1 ;  
P2"i=(Xz ' i 'Y2" i )=[(1-e+e,y2 . i - l+l+e)  for l < i _ < k ;  

and, for l<-i<-k, 

J (x2., + e', y2.i - 1/2) for j = 1; 
P3,i,.j (X3,i,j, ) Y3,i,j 

[(x2j+je' ,y3.~j_l-2 -j) for l <j<-k. 

It is easy to see that all these points are located in a belt area close to the right 
boundary of the rectangle and the distance between any two points is greater 
than e. It is simple to show that for any small e, 

L ( E o p t ( I ) ) = k ( l + e ) + k ( k + l ) e = k + k ( k + 2 ) * 2  k, 
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and 

L(E~px(I)) = [3/2 + k(e  - e') + e] + (k  - 2)[2 + (k + 1)e] 

+ [3/2 + e + 2e + ( k -  1)(e - 2e')]  + ( k -  1)[1 - e] 

= 3 k - 2 + ( k 2 + 2 ) e - ( 3 k - 2 ) e '  

= 3 k - 2 + (k 2 + 2 ) ' 2 -k  _ ((3k - 2 ) / (k  + 2 ) ) ' 2 -k  

= 3k - 2 +  (k 2 -  ( k - 6 ) / ( k + 2 ) ) * 2  -k. 

Figure 2.6 shows C ( I ) ,  Eap• and Eopt(I ) for the case when k = 3. Combining 
these bounds we obtain 

lim ( L( Eapx( I)  ) /  L( Eopt( I)  ) ) 
k ~ o o  

= lim { [ 3 k - 2 + ( k 2 - ( k - 6 ) / ( k + 2 ) ) * 2 - k ] / [ k + ( k 2 + 2 k ) * 2 - k ] }  
k ~ o o  

= 3 - lira {[2 k+~ + 2 k 2 +  6 k +  1 - 8 / ( k + 2 ) ] / [ k 2  k + k2+ 2k]} 

=3.  

This completes the proof  of  the theorem. [] 

We defined our algorithm in such a way that when a point (dot) is connected 
to another point (• the lines introduced are defined in Figure 2.7(a). As a result 
of  this operation joints are only introduced on the top side of  R (Figure 2.7(a)). 
We could also define algorithms in which the connections are defined in Figure 
2.7(b)-(d). In each of these cases the joints will appear  only on the right, left, 
and bot tom side of R. It is interesting to note that if the line segments introduced 
by the scanning algorithm are such that the joints appear  only on the right side 
of  R, then LEN(R )  is sometimes greater than OPT(R).  A rectangle for which 
this holds true is given in Figure 2.8(a). I f  the joints are only introduced on the 
left side of  R, it seems that we can also prove the approximation bound of 3. 
However,  by using analysis similar to the one in this section we cannot prove 
any approximation bound smaller than 3. A rectangle R for which LEN(R)  is 
almost equal to OPT(R)  is given in Figure 2.8(b). In this case it is much harder 
to characterize the different types of  rectangles formed by Eopt(I) u C ( I ) .  The 
main difficulty is that there might be a straight line segment inside the rectangle 
that was introduced by several steps of  the scanning algorithm. When the joints 
only appear  on the bot tom side of R, we obtain a set of  rectangles similar to the 
ones in Figures 2.3 and 2.4. The analysis in this case is similar to the one in this 
section. 

3. Discussion. Our algorithm has an approximation bound that is not so small, 
however, we believe that the solutions generated by our algorithms are usually 
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very close to the optimal-solution value. Simple heuristics can be used to obtain 
a better solution most of the time. One of these heuristics consists of  executing 
our algorithm after rotating the figure 90 ~ 180 ~ and 270 ~ The best of the partitions 
constructed is usually close to optimal. We believe that the techniques used in 
this paper can be modified to generate good approximate solutions to the RP-RPP 
problem. 

Our algorithm has a large time complexity bound. The main bottleneck is the 
time required to solve the JRP-HF problem. To obtain a faster algorithm, we 
must first find a faster algorithm for the RP-HF problem. Several researchers 
have been working on this problem. 

Gonzalez and Zheng [GZ1] show how to adapt any approximation algorithm 
for the RG-P problem to solve the RP-P problem. Their technique consists of 
using the algorithm given in [LPRS] to partition the rectilinear polygon into 
rectangles, then each (component) rectangle along with the points inside it 
becomes an RG-P problem instance. Then they use any algorithm that generates 
approximation solutions for the RG-P problem to solve each of these RG-P 
subproblems. This technique together with our algorithm TRANS can be used 
to generate solutions for the RP-P problem such that L(Eapx(l))<-4L(Eopt(I)). 
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Our algorithm TRANS can also be generalized to solve the RP-RPP problem 
in which L(B(I))+L(H(I))<-L(Eopt(I)). Our modified algorithm generates a 
solution Eapx(I) such that L(Eapx(I))<-4L(Eopt(I)). The best previously known 
approximation algorithm for this restricted version of the RP-RPP problem has 
an approximation bound of 4.5 [L]. Interested readers may refer to [GZ2] for 
more details. 
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