
Algorithmica (1990) 5:11-42 Algorithmica
�9 1990 Springer-Verlag New York Inc.

Approximation Algorithms for Partitioning a
Rectangle with Interior Points t

Teofilo Gonzalez 2 and Si-Qing Zheng 2'3

Abstract. Let R be a rectangle and let P be a set of points located inside R. Our problem consists
of introducing a set of line segments of least total length to partition the interior of R into rectangles.
Each rectangle in a valid partition must not contain points from P as interior points. Since this
partitioning problem is computationally intractable (NP-hard), we present efficient approximation
algorithms for its solution. The solutions generated by our algorithms are guaranteed to be within
three times the optimal solution value. Our algorithm also generates solutions within four times the
optimal solution value when R is a rectilinear polygon. Our algorithm can be generalized to generate
good approximation solutions for the case when R is a rectilinear polygon, there are rectilinear
polygonal holes, and the sum of the length of the boundaries is not more than the sum of the length
of the edges in an optimal solution.

Key Words. Approximation algorithms, Partition of rectilinear polygons, Polynomial-time com-
plexity.

1. Introduction. Partitioning a polygon is one of the fundamental problems in
computational geometry. Traditionally the objective is finding a convex partition
with a minimum number of components, and fortunately polynomial-time algo-
rithms for these problems exist [CD], [GJPT], [LLMP], [LLMPL], [S]. Lingas
et al. [LPRS] investigated the problem of partitioning a rectilinear polygon into
rectangles by introducing a set of line segments (edges) of least total length. In
VLSI design, the problem of dividing routing regions into channels can be reduced
to this new partition problem [R]. Several variations of this partition problem
were shown to be NP-hard, but the computational complexity of some other
related problems remains unknown [LPRS]. In this paper we present efficient
approximation algorithms to solve restricted versions of this partitioning problem.
Let us now formally define several variations of the partitioning problem and
review some previous results.

A rectilinear boundary is a simple polygon with the additional constraint that
all of its sides are either parallel or perpendicular to each other. A hole is a
simple rectilinear polygon located inside the rectilinear boundary whose sides
are parallel or perpendicular to the sides of the rectilinear boundary. There can
be no holes inside a hole. A single point inside the boundary is called a degenerate

A preliminary version of this paper appeared in the Proceedings of the Symposium on Computational
Geometry, June 1985, pp. 281-287. This research was supported in part by the National Science
Foundation under Grant DCR-8503163.
2 Department of Computer Science, University of California, Santa Barbara, CA 93106, USA.
3 Professor Si-Qing Zheng is now with the Computer Science Department, Louisiana State University,
Baton Rouge, LA 70803-4020, USA.

Received March 10, 1986; revised May 11, 1988. Communicated by David Dobkin.

12 T. Gonzalez and Si-Qing Zheng

Table 1.1

Problem Boundary Points and holes Complexity

RP-HF Rectilinear polygon Hole Free O(n 4)
RG-NLP Rectangle Non-corectilinear points I NP
RP-NLP Rectilinear polygon Non-corectilinear points I NP
RG-P Rectangle Points NP-complete
RP-P Rectilinear polygon Points NP-complete
RG-RP Rectangle Rectilinear polygons NP-complete
RP-RP Rectilinear polygon Rectilinear polygons NP-complete
RG-RPP Rectangle Rectilinear polygons and points NP-complete
RP-RPP Rectilinear polygons Rectilinear polygons and points NP-complete

1 A set of points is said to be non-corectilinear if no two points in the set are located along the same vertical or
horizontal line.

hole. A figure is a rectilinear boundary which may contain an arbitrary number
of nonoverlapping holes. A rectangular partition of a figure is a set of line segments
lying within its boundary and not crossing any nondegenerate hole so that when
added to the figure, the area not enclosed by holes is partitioned into rectangles
that do not contain as interior points any of the degenerate holes. The partitioning
line segments are called edges. For every problem instance I and every set of
edges E(I) in a feasible solution we use the function L(E(I)) to represent the
sum of the length of the edges in E(I). For problem instance I, the rectangular
partition E(I) is said to be a minimum edge length partition if L(E(I))<_
L(W(I)), where W(I) is any rectangular partition.

Known results about the computational complexity of the decision problem
corresponding to our minimum edge rectangular partitioning of rectilinear poly-
gons is displayed in Table 1.1.

Our notation is as follows: by RP-NLP we mean "minimum edge length
rectangular partitioning of a Rectilinear Polygon with Non-corectiLinear Points."
The other abbreviations in Table 1.1 are self-explanatory. The computational
complexity of the problems in the above table is displayed in Figure 1.1, where
"problem A~ problem B" means that problem A is polynomially reducible to
problem B, i.e., problem A is not computationally "harder" than problem B.

The computational complexity of the RG-NLP and RP-NLP has not yet been
determined. Since an optimal solution for a given problem instance of RG-NLP

RP-NLP - - " RP-P ~ RP-RP - - * RP-RPP

RG-NLP ' - ~ RG-P ~ RG-RP ---*RG-RPP

RP-I-IF

Fig. 1.1

Approximation Algorithms for Partitioning a Rectangle with Interior Points 13

Fig. 1.2. Near-optimal solution.

could be very complex (see Figure 1.2 for an example of a near-optimal solution)
and it seems that there is no way to obtain an optimal solution without exhaustive
search, we conjecture that both of these problems are NP-complete.

A problem instance is formally defined as I=(B,P,H), where B =
(qo, ql, �9 �9 �9 qm-1) is a sequence of corner points (in clockwise order) that defines
a rectilinear polygonal boundary, P = {Pl, P 2 , . . . , Pn } is a set of points (degener-
ate holes) inside the boundary, and H={hl, h2,..., hr} is a set of rectilinear
holes inside the boundary. Each of these holes is defined by a sequence of points.
We shall refer to the polygon defined by B as the global boundary and to each
of the polygons that defines a hole as the hole boundary. Certainly B, P, and H
must satisfy a set of constrains so that " I " is a valid problem instance. A line
segment is represented by its two endpoints, i.e., [(xi, yi), (xj, yj)] represents the
!ine segment with endpoints (xi, yi) and (xj, yj). Let B(I) represent the set of
edges that defines the boundary for problem instance I and let H(I) represent
the set of edges that defines the boundary of the holes in problem instance L
L(B(I)) and L(H(I)) represent the sum of the length of the edges in B(I) and
H (I) , respectively.

Lingas [L] developed a polynomial-time approximation algorithm for all of
these partitioning problems, however, this algorithm may generate a solution
with an objective function value far from the optimal one. Levcopoulos [Levl]

14 T. Gonzalez and Si-Qing Zheng

i I i i

I I I I

I I I I
- - - - t - - - t t ' - ! 1 -

I I I I

I I I I

- - - - - 4 - - - - - - I - l k " ;

I I I 1

I I l I

_ _ . L _ _ . ~ t i

I I t I

I I t I

I t t 1

Fig. 1.3. Grid lines (dashed lines are grid lines).

developed an algorithm to solve this problem by using the "thickest-first" heuris-
tic. He claims that his algorithm has an approximation bound of 5 and time
complexity O(n2). Recently, Levcopoulos [Lev2] presented an O (n l o g n)
algorithm that guarantees a solution with objective function value within a
constant times the optimal-solution value. His algorithm uses a fast implementa-
tion of the algorithm given by Gonzalez and Zheng [GZ1] for the RG-P problem.
Gonzalez and Zheng's algorithm generates solutions within 3 + ~ of the optimal.
In this paper we present an algorithm that generates solutions for the RG-P
problem that are within three times of the optimal.

In the next section we present an approximation algorithm for the RG-P
problem. We show that our algorithm generates solutions such that L(Eapx(I)) <-
3L(Eopt(I)). We also show that the approximation bound for this algorithm is
best possible in the sense that for every e > 0 there are problem instances such
that L(Eapx(1)) > 3L(Eopt(I)) - e. This approximation algorithm together with the
techniques in [GZ1] can be used to obtain an approximation algorithm for the
RP-P problem.

We define the grid induced by a problem instance as the set of horizontal and
vertical line segments introduced by extending all sides of the figure and the
holes in both directions until either the line segment reaches the outside of the
figure or the interior of a hole. Figure 1.3 illustrates the grid induced (by dashed
lines) for a problem instance. It can be easily shown that in any optimal solution
for the RP-RPP problem, all partitioning edges lie on the induced grid [LPRS].
The solutions generated by our algorithms have this property.

2. A p p r o x i m a t i o n A l g o r i t h m s for the R G - P P r o b l e m . In this section we present
our approximation algorithm for the RG-P problem. Our approach consists of
transforming the instance of the RG-P problem into an instance of a generalized
RP-HF problem (JRP-HF) for which we can find an optimal rectangular partition
in polynomial time. Such a partition is our solution to the original problem. We
assume that the rectangular boundary is located in the first quadrant of the
xy-coordinate system whose origin is the lower left corner of the rectangular
boundary. The first step of our procedure, the scanning algorithm, consists of
scanning the points and introducing jogging lines to connect these points directly
or indirectly to the boundary. Let p~ = (x,, y~), P2 = (X2, Y2) , . . . , P. = (x., y.) be

Approximation Algorithms for Partitioning a Rectangle with Interior Points 15

the points inside the rectangle and assume that they have been reordered in such
a way that

(1) x~<<-x~ for l<-i<j<-n; and
(2) if x~=xj then yi>yj, for l<-i<j<-n.

Our algorithm traverses the points in the order p~, P 2 , . . . , P,-

Let (X, Y)~={(x ,y) l ((x ,y) is a point on the boundary or a point in
one of the line segments introduced during the previous
iterations) and x <<- xi }.

During the ith iteration point Pi is connected directly or indirectly to the boundary.
Let (x, y) ~ (X, Y)i be a closest point (with respect to the L~ metric) to Pi. Point
Pi is connected to (x, y) by a shortest path (L 1 metric). The path consists of at
most one vertical line segment and at most one horizontal line segment. If y -> y~,
then the horizontal line segment (if present) must include p~ ; otherwise the vertical
line segment (if present) must include pi. At the end of this section we explain
why it is important for our algorithm to connect points this way. Let C(I) be
the set of line segments introduced by the above scanning algorithm. Figure 2.1
shows the set C(1) for a problem instance with an optimal solution of the form
given in Figure 1.2. The algorithm introduces at each iteration either a vertical

t_ L.

T
_J

T

l
J

I

Fig. 2.1. C(l).

16 T. Gonzalez and Si-Qing Zheng

line segment (if x = xi and y ~ yi), a horizontal line segment (if x ~ xl and y = y~),
a right corner segment (if x ~ x~ and y ~ y~-), a left corner segment (if x ~ x: and
y ~ yi), or an empty segment (if x = x~ and y = y~). The corner point in a right
corner segment or in a left corner segment is the point located at the intersection
of the line segments that form the corner segment.

The problem instance displayed in Figure 2.1 is an instance of the JRP-HF
problem. In such a problem we do not have holes nor points. We only have a
rectangular boundary with jogging lines connected to it. These jogging lines
should be viewed as boundaries. Each "side" of a jogging line is part of the
boundary. The O(n 4) algorithm for the RP-HF problem given in [LPRS] can be
trivially modified to find an optimal partition for the JRP-HF problem. The main
idea behind the modification is to treat the internal line segments as two sided
boundaries.

Algorithm TRANS
Step 1: Perform the scanning procedure to construct an instance, I ' ,

of the JRP-HF problem.
Step 2: Use a modified version of the O(n 4) algorithm, for the RP-HF

problem, that appears in [LPRS] to find an optimal solution
to I'.

End of algorithm TRANS

THEOREM 2.1. The time complexity for algorithm TRANS is O(n4).

PROOF. First let us show that step 1 of algorithm TRANS takes O(n 2) time.
Clearly, the scanning procedure introduces at most two line segments for each
point pj. Hence, when computing the closest point to pi we only need to find a
shortest path (L1 metric) from Pi to at most 2 (i - 1) + 3 different line segments
(at most 2(i - 1) line segments from the previous i - 1 points and three other line
segments for the boundaries) and then finding the smallest of these distances.
Finding the closest point (L 1 metric) from Pi to a line segment can be easily
performed in constant time, and finding the smallest of these distances can be
done in O(n) time. Hence, the overall time complexity for step 1 is O(n2). After
modifying the algorithm in [LPRS] for step 2, its time complexity remains the
same O(m4), where m is the number of sides of the "generalized" rectilinear
polygon. The "generalized" rectilinear polygon that we construct has O(n) sides,
since the line segments connected to boundaries of the rectangle are treated as
sides of the "generalized" rectilinear polygon. Hence, the overall time complexity
for the algorithm is O(n4). []

Let Eapx(I) = C(I) u Eopt(l ') be the solution generated by algorithm TRANS.
Let E(I) = C(I) w Eopt(I) ~ D(I) , where Eopt(I) is an optimal solution for I, C (I)
is the set of line segments introduced by the scanning algorithm, and D(I) (to
be defined later) is a set of line segments that transforms C(I) u Eopt(I) into a
rectangular partition. Since (Eopt(I)t,-)D(I))-C(I) is a solution to the JRP-
HF problem and Eopt(/') is an optimal solution to the JRP-HF problem, we

Approximation Algorithms for Partitioning a Rectangle with Interior Points 17

I
I

Fig. 2.2. Eopt(1) u C(I).

know that L(E(I))>_ L(Eapx(I)). If we show that L(E(I))<-3L(Eopt(I)), then
L(Eap• <-3L(Eopt(I)). Therefore, to prove our claim we need to show that
there exists a D(I) such that E(I)=C(I)uEopt(I)~2D(I) is a rectangular
partition and L(E(I)) <- 3L(Eopt(I)).

Let Eopt(I) be any optimal rectangular partition and let R be any rectangle in
Eopt(I). In what follows we define the names for the different line segments from
C(I) that may appear in R and then we characterize the interior of R in terms
of the different components that appear inside them. A left joint (L J) is obtained
by introducing a left corner segment (including its corner point) inside R that
intersects the left and top sides of R (see Figure 2.3(c)). A right joint (RJ) is
obtained by introducing a right corner segment (including its corner point) inside
R that intersects the right and top sides of R (see Figure 2.3(b)). If there is a
left joint there could also be a right semijoint (Figure 2.3(i)). A right sere(joint
(RS) is obtained by introducing a right corner segment (including its corner
point) inside R that intersects the corner point of the left joint and the right side
of R. We say that a line segment is inside the right joint if it is located inside the
rectangle formed by the right joint and the sides of R. We say that a line segment
is inside the right semijoint if it is located inside the rectangle formed by the right
semijoint, the vertical portion of the left joint, and the sides of R. A vertical cut
(VC) is obtained by introducing a vertical line segment that intersects the top
and bottom sides of R and does not overlap with the left nor the right sides of

18 T. Gonzalez and Si-Qing Zheng

a

e

b

d f g h

k 1 ra n o

Fn n
$ t U v

N
Y

Fig. 2.3

n
C

?:
i

P q

An
W X

A
z

n
J

1"

R (see Figure 2.3(a)). A partial vertical cut (PVC) is a vertical line segment that
intersects the bottom side of R and the corner point of the left joint (see Figure
2.3(f)). A horizontal cut (HC) is a horizontal line segment that intersects the left
and the right sides of R and does not overlap with the top nor the bot tom sides
of R (see Figure 2.4A). A partial horizontal cut (PHC) is a horizontal line segment
that intersects the right side of R and either a partial vertical cut, a vertical cut,
the vertical portion of the left joint, the vertical portion of the right semijoint,
or the vertical portion of the right joint; and does not overlap with the horizontal
portion of the right joint, the horizontal portion of the right semijoint, the top

Approximation Algorithms for Partitioning a Rectangle with Interior Points 19

A

B C A

D E F G H I

K L M N O P Q

S T U V W X

M
Y Z

Fig. 2.4

N
! I

J

R
R

side of R, or the bot tom side of R. A partial horizontal cut that intersects the
vertical portion of the right joint is called a Partial Horizontal Cut located inside
the Right Joint (PHC-RJ). Figure 2.3(e) shows a rectangle with a right joint and
with partial horizontal cuts inside the right joint. The remaining partial horizontal
cuts, those not inside the right joint, will be named differently depending on the
existence of a PVC and / o r VC segments. In rectangles with a partial vertical cut
and /o r vertical cuts, a partial horizontal cut that intersects the left joint, the
partial vertical cut, or a vertical cut is called a PHC-NRJV (see Figure 2.4(F)).
In rectangles without a partial vertical cut nor a vertical cut, a partial horizontal

20 T. Gonzalez and Si-Qing Zheng

Table 2.1

Type (type) LJ PVC VC RS PHC-NRJNV ILl PHC-RJ PHC-NRJV HC

a (a)
a (A) * (*)
b (B)
c (C) * (*)
d (D) * (*)
e (E)
r(F) *(*) *(*)
g(G) *(*) *(*)
h (H) * (*)
i (I) * (*)
j (J) * (*)
k(K) *(*)
I(L) *(*) *(*) *(*)

m(M) *(*) *(*)
n(N) *(*) *(*)
o (0) * (*)
p (P) �9 (,)
q(Q) *(*)
r(R) *(*)
s(S) * (*) * (*) * (*)
t(T) *(*) *(*)

u (U) * (*) * (*)
v (v) * (*)
w (w) * (*)
x(X) *(*)
Y(Y) *(*) *(*) *(*)
z (z) * (*)

�9 (,)

(*)
(*)

�9 (,) (*)
(*)

�9 (,) (*)
�9 (,) �9 (,) (*)

(*)
(*)

, (,)
()
(,) , (,) ()

(*)
() (*)
() (*)

, (,) , (,)
, (,) �9 (,)

, (,) �9 (,)
, (,) , (,)

() (,)
, (,) �9 (,) (*)
, (,) , (,) (*)

, (,) , (,) , (,)
, (,) �9 (,) �9 (,)
, (,) , (,) �9 (,)

, (,) �9 (,) (*)
, (,) �9 (,) �9 (,) �9 (,)

(*)
(*)
(*)

(*)
(*)
(*)
(*)

(*)
(*)
(*)

(*)

cut that intersects the left joint or the right semijoint is called a P H C - N R J N V
(see Figure 2.3(o) and (h)). Rectangle R may contain in it any of the following
components: LJ, PVC, VC, RS, P H C - N R J N V , RJ, PHC-RJ , PHC-NRJV, or HC.

We shall identify 54 different types of rectangles (6, a-z, A, A - Z) depending
on their components . The components in each type o f rectangle are given in
Table 2.1. Figures 2.3 and 2.4 depict these rectangles. Table 2.1 should be
interpreted as follows: a "*" in entry i,j indicates that rectangle type i contains
componen t j and a " (*)" in entry (i) , j indicates that rectangle type i contains
componen t j. We say that a rectangle is in canonical form if it is a rectangle o f
type 3, a-z, A, or A-Z. In Lemma 2.1 we show that each rectangle in the rectangular
p a r t i t i o n Eopt(I) after adding the line segments in C (I) is in canonical form.

Let W ~ = { e [e c C (I) and e is a line segment in t roduced by the scanning
algori thm before the (i + 1)st iteration}. Clearly Wn = C(I) . Let R1, R2 , Rq
be the set o f rectangles in Eopt(I). For all i,j, let Ri.j = Rj u {segments f rom W~
inside Rj }. In what follows we prove by induct ion on i that rectangle Rij is in
canonical form. In the remaining part o f this paper we say that p = (x ,y) is
located to the right (left) of the vertical line segment I = [(x ' , y ') , (x', y")] if

Approximation Algorithms for Partitioning a Rectangle with Interior Points 21

x > x ' (x < x ') . Similarly, we say that p = (x ,y) is located above (below) the
horizontal line segment l = [(x', y'), (x", y')] if y > y ' (y < y').

LEMMA 2.1. For all i and j, rectangle R~,j is in canonical form.

PROOF. The proof is by induction on the number of iterations (i) performed
by the scanning algorithm.

Basis. For all j, Ro.j is in canonical form.
Since W0 = ~ , it must be that R0.j = Rj. Since each rectangle Rj is in canonical

form (type 6), we know that Ro.j is in canonical form.

Induction Hypothesis. Assume that Rid is in canonical form.

Induction Step. R~+I.j is in canonical form.
By the induction hypothesis we know that R~,j is in canonical form. If the

algorithm introduces no line segment inside of Rid during the (i + 1)st iteration,
then R~+~,j--Ri,j is in canonical form. So, let us assume that the algorithm
introduces some line segments inside Rg, j during the (i + 1)st iteration. It is simple
to verify that pg+~ must be located to the right of the left side of R~ d and since
Eopt(I) is a rectangular partition we know that p~§ cannot be located inside
rectangle R~,j. There are three cases depending on the type of rectangle Rg d.

Case 1. Rectangle Ri.j has no interior line segments (type 6).
There are three subcases depending on the type of segment introduced inside

R~,j during the (i+ 1)st iteration.

Subcase 1.1. The scanning algorithm introduces either a horizontal or a vertical
line segment.

Clearly, after introducing either of these line segments we obtain a rectangle
of type a or A. Hence, Rj+~.j is in canonical form.

Subcase 1.2. The scanning algorithm introduces a right corner segment.
Clearly, introducing a right corner inside Ri.j transforms it into a rectangle of

type A, a, or b, depending on which section of the right corner segment is
introduced inside R~.j. Hence, Ri+l,j is in canonical form.

Subcase 1.3. The scanning algorithm introduces a left corner segment.
Clearly, introducing a left corner inside Ri, j transforms it into a rectangle of

type A, a, or c, depending on which section of the left corner segment is introduced
inside R,j. Hence, Ri+l.j is in canonical form.

This completes the proof of Case 1.

Case 2. Rectangle Rij contains only interior line segments that do not intersect
the right side of Ri.j (type a, c, f, g, and 1).

It is simple to prove that if point Pi+l is not located below the bottom side of
Rij , then it must be located to the right of the rightmost point of any line segment

22 T. Gonzalez and Si-Qing Zheng

inside R~,j; and if p~+l is located below the bot tom side of Rij , then it must be
located not to the left of the rightmost point of any line segment inside R~.j.
There are four cases depending on the type of segment introduced by the
algorithm.

Subcase 2.1. The algorithm introduces a vertical line segment.
Introduction of a vertical line segment inside Ri.j results in the following set

of rectangles R;+~j. Let us explain our notation by example. By " c ~ f l g " we
mean that introducing a segment (vertical line segment in this case) in a rectangle
type c results in either a rectangle of type f or type g.

a ~ a ,

c--' fig,

f ~ l ,

g ~ g ,

1~1.

Hence, R~+~,j is in canonical form.

Subcase 2.2. The algorithm introduces a horizontal line segment.
For this case it is simple to verify that point Pi+l must be located above the

bot tom side of Ri,j and below the top side of Ri.~. Therefore the rectangles are
transformed as follows:

a->A,

c - , h [C ,

f-~F,

g-~G,

I ~ L .

Hence, in all cases we obtain a rectangle Ri+tj in canonical form.

Subcase 2.3. The algorithm introduces a left corner segment.
Clearly, in order to introduce some segment inside Ri.j, point Pi+l must be

located above the bottom side of Ri,j. I f point pi+l is not to the left of the right
side of Ri,j, then only a horizontal line segment is introduced inside R~ d and the
proof follows the same lines as the one for subcase 2.2. On the other hand if
point P~+I is to the left of the right side of R~.j, then we claim that the algorithm
will not introduce the corner point of the left corner inside R~.~ during the (i + 1)st
iteration, i.e., only the vertical portion of a left corner segment can be introduced
inside Ri.j. We prove this by contradiction. Suppose the algorithm introduces
the corner point inside R~.j during the ith iteration. We know from the above

Approximation Algorithms for Partitioning a Rectangle with Interior Points 23

restrictions on the location of point p~§ and the scanning algorithm, that point
p~+~ must be located above the top side of R~ d, to the right of any line segment
inside R~j, and to the left of the right side of R~j. Therefore, the left corner
segment enters the rectangle on the top side of Ri, j and ends on some existing
internal line segment or on the left side of R~.j. But this is not a minimum length
path to a previously introduced line segment (L~ metric). This contradicts our
scanning algorithm. Hence, the corner point of a left corner segment cannot be
introduced inside R~j. So the only remaining case is when a portion of the vertical
section of the left corner is the only segment introduced inside R~j. The proof
now follows the same arguments as the ones for subcase 2.1.

Subcase 2.4. The algorithm introduces a right corner segment.
In order to introduce some segment inside Rij point Pi+l must be located below

the top side of Ri, j. I f point pi+l is not located above the bottom side of R~,~,
only a vertical line segment is introduced inside R~,j. Such a vertical line segment
cannot be to the left of any line segment inside R~j. The remaining part of the
proof for this case follows the same lines as the one for subcase 2.1. On the other
hand, if point pi+l is located above the bot tom side of R~,j then either only a
horizontal line segment or the corner point of the right corner segment is intro-
duced inside Ri, j. The former case is identical to subcase 2.2. In the latter case
we know from the scanning algorithm that the right corner segment must intersect
the top side of R at a point located to the right of the rightmost segment inside
Rid, or it must intersect the corner point of the left joint. The possible transforma-
tions are given below:

a ~ d,

c ~ i [j ,

f ~ m ,

g ~ n,

l ~ s .

Hence, in all cases we obtain a rectangle R~+I,j in canonical form.

Case 3. One of the line segments inside R~,j intersects the right side of R o (type
b, d, e, h-k, m-z, A, A-Z) .

For this case we know that point pi+~ must not be located to the left of the
right side ofR~,j. There are four cases depending on the type of segment introduced
by the algorithm.

Subcase 3.1. The algorithm introduces a vertical line segment.
Since Pi§ is not located to the left side of Rij , we know that Ri+~,j = R~,j and

by the induction hypothesis it is in canonical form.

24 T. Gonzalez and Si-Qing Zheng

Subcase 3.2. The algorithm introduces a horizontal line segment.
Introduction of a horizontal line segment inside Rid results in the following

set of rectangles:

A 4 A ,

A4A,

B4EIB, b4elB,

C4HIC,

D4K[D, d4k[D,

E4E, e4e[E,

F4F,

G~G,

H-~H, h4hlH,

14011 , i4olI,

J4O[plJ, j4qlp[J,

K4K, k4klK,

L4 L,

M4TIM, m4t[M,

N4UIN, n~u[N,

0 4 0 , 04010,

P4VIP, p4v[plP,

Q~QIV, q~qlvlQ,

R4XIWIR, r4xlwlR,

S4YIS , s4ylS,

T4T, t4tlT,

U4U, u4uIU,

V4V, v4v[V,

w4zlw, w4zlwlW,

x4xlz, x4xlzlx,

X4Y, y~y[Y,

Z4Z, z~zlZ.

Hence, we obtain a rectangle Ri+~j in canonical form.

Approximation Algorithms for Partitioning a Rectangle with Interior Points 25

Subcase 3.3. The algorithm introduces a right corner segment.
If the corner point of the right corner segment is not introduced inside R~.j,

but a horizontal line segment is introduced in R~j, the proof is similar to the one
for Subcase 3.1. On the other hand, if only the vertical portion is introduced we
can prove that rectangle Rij is type h, j , p, q, or v. In each of these cases the
transformations are given below:

h ~ F,

j -'~ m ,

p-~M,

q-~t,

v-~T.

We prove the following claim to eliminate the set of rectangles on which the
scanning algorithm cannot introduce inside Rij the corner point of a right corner
segment.

CLAIM. I f there is a right joint inside R~j, the scanning algorithm cannot introduce
the corner point of a right corner segment inside Ri.j unless the right corner segment
intersects the corner point of the left joint in a rectangle without a right semijoint,
a partial vertical cut, or a vertical cut.

PROOF. We prove this claim by contradiction. Suppose that there is a right joint
inside Ri,j and the algorithm introduces inside Ri.j the corner point of a right
corner segment that does not intersect the corner point of the left joint. From
the scanning algorithm we know that it is not possible for the right corner segment
to include all of the right joint nor can it intersect the right joint. So it must be
that the right corner segment is introduced inside the right joint.

. .~ q

Y2

Y1
e

XI X2 X3

We know from the scanning algorithm that when the new right corner segment
is introduced, it must be that Y2+ Y3 ~ X, and it must be that q is either the
corner point of a left corner segment or one of the points in p , , . . . , Pi. Therefore,
point q c C (I) when the right joint was introduced. Because of this, we know
that when the scanning algorithm introduced the existing right joint, it must have
been that X, + Y~ + Y2-< Y, + Y2 + Y3. Combining both inequalities we know that
Y2 + Y3 -< X, -< I:3. A contradiction since Y2 is greater than zero. This completes
the proof of the claim. []

26 T. Gonzalez and Si-Qing Zheng

From the above claim it is simple to verify that the corner point of a right
corner segment can only be introduced in rectangles of type A, A, C, F-J, L, O-
Q, V, h-j, o-q, and v. Introducing the corner point of the right corner segment
in Rid results in the following set of rectangles:

A-* B,

A ~ D,

C-~J[I,

F-~M,

G-*N,

H ~ P [O , h-~p[o,

I ~ R , i ~ r ,

J-~R, j ~ r ,

L ~ S,

O ~ W , o-~w,

P ~ W , p ~ w ,

Q ~ X , q ~ x ,

V ~ Z , v ~ z .

Hence, rectangle R~+1.j is in canonical form.

Subcase 3.4. The algorithm introduces a left corner segment.
Since point Pi+l is not located to the left of the right side of Ri, j , it must be

that the corner point of the left corner segment is not introduced inside Ri,j.
Hence, only a horizontal line segment can be introduced inside Ri, j at this iteration.
The proof for this case is similar to the one in Subcase 3.2.

This completes the proof for this case and the lemma. []

In what follows when we refer to rectangle R we mean any rectangle in set
{Rn,j}. To obtain a rectangular partition from Eopt(I) ~ C(I) , we must eliminate
the "effects" (nonrectangular partition) of the joints and the semi joint by introduc-
ing a set of line segments. All of the line segments that we introduce form the
set D(I) . Each of the sides of rectangle R is either a part of the boundary or a
line segment from Eopt. Note that some line segments in C(I) may overlap with
the sides of R. The line segments in C (I) - Eopt(I) are labeled A. To prove that
L(E(I)) <- 3L(Eopt(I)) we show that L(D(I) ~ (C(I) - Eopt(I))) -< 2L(Eop~(I)).
We prove this bound by showing that for each rectangle R, LEN(R) -< OPT(R),
where LEN(R) is the sum of the length of the edges from D(I) inside rectangle
R plus the length of the line segments labeled A inside rectangle R; and OPT(R)
is the sum of the length of the edges from Eopt(I) that are sides of R.

Approximation Algorithms for Partitioning a Rectangle with Interior Points 27

We say that component C ~ R if component C is inside R. When we refer to
rectangle R, we ust X as its width and Y as its height. We also use the symbols
defined below to refer to the length of the different parts of the rectangle.

J~t--L, = length of the vertical portion of the left joint,
if LJ c R; and 0 otherwise.

Jh~ = T~ = B~ = length of the horizontal portion of the left joint,
if LJ ~ R; and 0 otherwise.

J~r = R, = length of the vertical portion of the right joint,
if RJ c R; and 0 otherwise.

Jhr = T r = B r = length of the horizontal portion of the right joint,
if RJ c R; and 0 otherwise.

Sh = length of the horizontal portion of the right semijoint,
if RS e R; and 0 otherwise.

S~ = distance from the horizontal portion of the right semijoint
to the top side of R, if RS ~ R; and 0 otherwise.

T,.=

R m "=

r v --~ n v ~- ,

n h =

Bm= X - T t , if LJ~ R; and 0 otherwise.

/ 'S~,

distance from the lowest partial
horizontal cut to the top side of R,

R , ,
'distance from the left side of R to

the rightmost vertical cut,

i distance from the left side of R to

1 the vertical portion of the left joint,

~0,

'distance from the rightmost vertical
cut to the right side of R, if

distance from the vertical portion of
the left joint to the right side of R,

x,

if R S ~ R ;

if LJ, PHC-N1LINV~ R
and RS, PVC, VC ~ R;

otherwise.

if V C 6 R ;

if PVC ~ R
and VC~ R ;

otherwise.

VCc R;

if P V C~R and V C ~ R ;

if HC~ R
and VC, PVC~ R;

otherwise.

distance from the topmost horizontal cut
/ to the bottom side of R,

Rh = Lh = ~distance from the topmost partial horizontal
cut (PHC-NRJV) to the bottom side of R,

10,

Lb = Y - L, - Lh.

if HC~ R;

if PHC-NRJV~ R;

otherwise.

R b = Y - R , . - R h .

28 T. Gonzalez and Si-Qing Zheng

1",
_ T~I

Lt-L j~i t

Lb

Lh

Bt l
B~

[~r I_

[B,
Bh

Lt

Lb

Lh

Jhz J'h~
Rb

Rh

Bt] Br
B,,,

Bh

Fig. 2.5

L, : , , ~j R,
- - - �9 S,,, Jhr Rra Yh~

Lb Sh
Rb

Zh Rh

BI I Br
B,,,

Bh

Before proving our approximation bound, we prove some useful properties
that are satisfied by every rectangle R ~ {R,,j}. At each iteration of the scanning
algorithm a new set of line segments is introduced and one point in these line
segments intersects either a line segment introduced during a previous iteration
or the boundary (which cannot be the right-hand side boundary). Hence,

(1) there cannot be a path, all of it labeled A, that joins two boundaries; and
(2) if the right side of R is part of the boundary then no line segment labeled

A can intersect it.

It is simple to prove that

(3) each of the joints is introduced by one iteration of the scanning algorithm
and the segments that form the right semijoint are introduced by one iteration
of the scanning algorithm.

It is simple to prove that when a point is connected directly to the boundary, it
is connected by a straight line segment. Therefore,

(4) if there is a left joint, then neither the left side nor the top side of rectangle
R is a part of the boundary;

(5) if there is a right joint, then neither the right side nor the top side of rectangle
R is a part of the boundary; and

(6) if there is a right semijoint, then neither the left, top, nor right side of R is
a part of the boundary.

Let us now establish a bound on the length of the partial horizontal cuts located
inside the right joint (PHC-RJ). It is simple to prove that every pair of these cut
lines must be at least Tr units apart and all of such cut segments must be at least
Tr units from the horizontal portion of the right joint. Hence,

(7) if there is a right joint and it includes partial horizontal cuts (PHC-RJ), the
total length of these cut segments is at most R,.

Approximation Algorithms for Partitioning a Rectangle with Interior Points 29

Let us now consider rectangles with the left joint and without the right semijoint,
a partial vertical cut, and vertical cuts (LJ ~ R and RS, PVC, VC ~ R). It is simple
to prove that the horizontal cut lines that intersect the left joint (PHC-NRJNV)
must be at least Tm units apart. Hence, if there is no right joint, the sum of the
length of all the PHC-NRJNV segments is at most Tm+ Rm. On the other hand,
if there is a right joint, we know from the scanning algorithm that the distance
between the horizontal portion of the right joint and the topmost PHC-NRJNV
segment is at least J~r+Jhr. From the above observations and (7) it is simple to
show that

(8) if there are no partial vertical cuts, verticals cuts, or a right semijoint, and
there is a left joint (LJc R and PVC, VC, RS~ R), then all the line segments
to the right of the left joint (PHC-NRJNV, R J, and PHC-RJ) have length
<-T,,+Rm.

Using similar observations, it is simple to show that

(9) if there is a left joint and a right semijoint (LJ, RS c R), then all the line
segments inside the right semijoint (PHC-NRJNV, RJ, and PHC-RJ) have
length -< Rm.

Since all the PHC-NRJV cuts and all the horizontal cuts must be at least Bh units
apart and since any of these line segments must be at least Bh units from the
bottom side of the rectangle when such a side is part of the boundary, we know
that

(10) if the bottom side of R is not part of the boundary, the length of all the
PHC-NRJV cuts or the horizontal cuts is at most Bh + Rh. If the bottom
side of R is part of the boundary, the length of all the PHC-NRJV cuts or
the horizontal cuts is at most Rh.

From the scanning algorithm it is simple to verify that every pair of vertical cuts
and the partial vertical cut must be at least Y units apart and any of these lines
must be at least Y units from the left side of the rectangle when such a side is
part of the boundary. Hence,

(11) if the left side of R is not part of the boundary then the length of the line
segments composing the left joint (L J) plus the length of the partial vertical
cut (PVC) plus the length of all vertical cuts (VC) is at most Y + B~. If the
left side of R is part of the boundary then the length of all the vertical cuts
(VC) is at most By.

Our notation for the figures in this section is defined as follows: thin line
segments denote line segments labeled A; dotted line segments denote line
segments from D(I) in R; thick line segments with slashes (/) indicate the
segment is part of the boundary; thick line segments with • indicate that the
line segment is either in Eopt(I) or is part of the boundary; and thick line segments
(without any symbol) indicate line segments from Eopt(I). In the proof of Lemma
2.2 we use D(R) to denote the line segments from D(I) in R and L(D(R)) to
denote the total length of the edges in D(R).

30 T. Gonzalez and Si-Qing Zheng

LEMMA 2.2. For all R, LEN(R)-<OPT(R) .

PROOF. There are two cases.

Case 1. VC, PVC~ R (rectangle is of type ~, A, b, c, B, C, e, E, h-j, H-J, o-r,
O-R, v-x, V-X, z, and Z).

There are two cases depending on whether or not there are horizontal cuts.

Subcase 1.1. HC, PHC-NRJV~ R (rectangle is type ~,b, c, e ,h- j , o - r ,v -x ,
and z).

We only consider the case when there are line segments inside R, as otherwise
we know that LEN(R) = 0 and LEN(R) -< OPT(R). There are five cases depending
on which components are located inside R.

Subcase 1.I.I . LJ 6 R and RJ, RS, PHC-RJ, PHC-NRJNV~ R (type c).
Since there is a left joint, the left and the top sides cannot be boundaries (4).

Clearly, Jhl = 7"1, Jvt = L,, and L (D (R)) = Lb. Hence, LEN(R) -< OPT(R). This
completes the proof for this subcase.

__3
Subcase 1.1.2. RJ c R and LJ, RS, PHC-NRJNV~ R (type b and e).

Since there is a right joint, we know from (5) that the right and top sides of
R are in Eopt(/). We know from (7) that the sum of the length of all the partial
horizontal cuts inside the right joint is less than or equal to R,. There are three
cases depending on whether or not the other sides of R are part of the boundary.

Subcase 1.1.2.1. The left side of R is part of the boundary.

L}
Since the left side of R is part of the boundary and since the right joint is

introduced by one iteration of the scanning algorithm (3), we know that Jhr+
Jor<--X. Clearly, L (D (R)) = Rb. Hence LEN(R)-<OPT(R) . This completes the
proof of this subcase.

Approximation Algorithms for Partitioning a Rectangle with Interior Points 31

Subcase 1.1.2.2. The left side of R is in Eopt(I) and the bottom side of R is
part of the boundary.

k}
Since the bottom side of R is part of the boundary and since the right joint is

introduced by one step of the scanning algorithm (3), we know that Jhr + J,~r <- Rb.
Clearly, L (D (R)) = X - Tr. Hence LEN(R)-< OPT(R). This completes the proof
for this subcase.

Subcase 1.1.2.3. The left side and the bottom side of R are in Eopt(I).

Clearly, the four sides of R belong to Eopt(I) , Jhr = T,., Jvr = R,, and L (D (R)) =
X - Tr. Hence LEN(R) -< OFT(R). This completes the proof for this subcase and
Subcase 1.1.2.

Subcase 1.1.3. LJ, PHC-NRJNV6 R and RS~ R (type h, p, and v).
We know from (2) and (4) that the left, top, and right sides of R are in Eopt

and we know from (8) that the length of all the line segments introduced by the
scanning algorithm to the right of the left joint is -< Tm+ Rm. Clearly, Jh~ = T~ and
Jv~ = Lt. There are two cases depending on whether or not the bottom side of R
is part of the boundary.

Subcase 1.1.3.1. The bottom side of R is part of the boundary.
Since there are partial horizontal cuts that intersect the left joint, we know

from the scanning algorithm that Tm <- Rb. Therefore, L(D(R)) < Lb + Rb. Hence,
LEN(R)-< OPT(R). This completes the proof for Subcase 1.1.3.1.

/ / / / / / / / / /

32 T. Gonzalez and Si-Qing Zheng

Subcase 1.1.3.2. The bottom side of R is in Eopt(/).
Clearly, L (D (R)) < Lb + Tin. Hence, LEN(R)_< OPT(R). This completes the

proof for Subcase 1.1.3.

Subcase 1.1.4. LJ, RJ 6 R and RS, PHC-NRJNV~ R (type j and q).
Since the two joints are present we know from (4) and (5) that the left, top,

and right sides of R are in Eopt(I). We know from (7) that the sum of the length
of all the partial horizontal cuts inside the right joint is less than or equal to R,.
Clearly Jhl = TI and J~l = L,. There are two cases depending on the relative values
of J~l and J~r-

Subcase 1.1.4.1. J,~t> J,~r.

Clearly, L (D (R)) = L b 2r R b. Since both of the joints are introduced by a single
step of the scanning algorithm (3) and the right joint appears to the right of the
left joint, it must have been that the scanning algorithm introduced the right joint
after the left joint and J~,,. + Jh,. <- (X - 7"1). Hence, LEN(R) -< OPT(R). This com-
pletes the proof for this subcase.

Subcase 1.1.4.2. Jvt<-J~r.
There are two caases depending on whether or not the bottom side of R is

part of the boundary.

Subcase 1.1.4.2.1. The bottom side of R is part of the boundary.

/ / / / / / / / / / / / / / / /

Approximation Algorithms for Partitioning a Rectangle with Interior Points 33

Clearly, L(D (R)) = Lb + (X - Tr - Tt). Since the bottom side of R is part of
the boundary and since the right joint is introduced by one step of the scanning
algorithm (3), we know that Jvr + Jhr <- Rb. Hence, LEN(R) -< OPT(R). This com-
pletes the proof for this subcase.

Subcase 1.1.4.2.2. The bottom side of R belongs to Eopt(/).

.......................... r~ ~
Clearly, the four sides of R belong to Eopt(I) and L (D (R)) = (X - TI - Tr) + Rb.

Since both of the joints are introduced by a single step of the scanning algorithm
(3) and the right joint appears to the right of the left joint, it must have been
that the scanning algorithm introduced the right joint after the left joint and
J h r + J v r < - (X - T t) + (J , r - J , , i) . Hence, LEN(R)-<OPT(R). This completes the
proof of this subcase and Subcase 1.1.4.

Subcase 1.1.5. LJ, R S c R (type i ,o , r ,w,x , and z).
Since there is a right semijoint, we know from (6) that the left, top, and right

sides of R are in Eopt(I). Clearly, Jhl = Tt and J.t = Lt. We know from (9) that
the length of all the line segments introduced by the scanning algorithm inside
the right semijoint is <-Rm. There are two cases depending on whether or not the
bottom side of R is part of the boundary.

Subcase 1.1.5.1. The bottom side of R is part of the boundary.
Since RS ~ R and the bottom side of R is part of the boundary we know from

the scanning algorithm that the two segments forming the right semijoint have
length ~ R b. Clearly, L (D (R)) < L b q-Tin. Hence, L E N (R) - OPT(R). This com-
pletes the proof for Subcase 1.1.5.1.

.... t--

i
i i

/ / / / / / / / / /

Subcase 1.1.5.2. The bottom side of R is in Eopt(/).
The length of the segments that form the right semijoint is Tm+ (Rm- L,).

Clearly, L(D (R)) < (Lb - (R,,, - Lt)) + Bin. Hence, LEN(R) -< OPT(R). This com-
pletes the proof for this subcase and Subcase 1.1.

34 T. Gonzalez and Si-Qing Zheng

.... I-

Subcase 1.2. HC c R (type A, B, C, E, H-J, O-R, V-X, and Z).
Since there are horizontal cuts, we know from (2) that the right side of R is

not part of the boundary. We know from (10) that the length of all the horizontal
cuts is at most Bh + Rh if the bottom side of R is not part of the boundary and
it is at most Rh if the bottom side of R is part of the boundary. Hence, if there
are no line segments inside R other than the horizontal cuts L E N (R) - O P T (R) .
For simplicity, all the figures in this subcase will be drawn including only the
topmost horizontal cut. The remaining cases are treated separately.

Subcase 1.2.1. LJ6 R and RJ, RS, PHC-RJ, PHC-NRJNV~ R (type C).
Since there is a left joint, we know from (4) that the left and top sides of R

cannot be part of the boundary. Clearly, L (D (R)) = Lb, Jhl = TI, and Jvl = L,.
Hence, LEN(R)-< OPT(R). This completes the proof for this subcase.

Subcase 1.2.2. RJ ~ R and LJ, RS, PHC-NRJNV~ R (type B and E).
Since there is a right joint, we know from (5) that the right and top sides of

R cannot be part of the boundary. We know from (7) that the length of the
partial horizontal cuts inside the right joint have length -<R,. There are two cases
depending on whether or not the left side R is part of the boundary.

Subcase 1.2.2.1. The left side of R is part of the boundary.
Since the left side is part of the boundary and the right joint is introduced by

a single step of the scanning algorithm (3), we know that J~r+J~r<-X. Clearly,
L (D (R)) = R b . Hence, LEN(R)~<OPT(R). This completes the proof for this
subcase.

/

Approximation Algorithms for Partitioning a Rectangle with Interior Points 35

Subcase 1.2.2.2. The left side of R is not part of the boundary.
Clearly, L(D(R)) = g b , Jvr = R,, and Jhr = Tr. Hence, LEN(R) -< OPT(R). This

completes the proof for this subcase and Subcase 1.2.2.

Subcase 1.2.3. LJ, PHC-NRJNV~ R and RS~ R (type H, P, and V).
Since there is a left joint and there are partial horizontal cuts, we know from

(2) and (4) that the left, top, and right sides of R belong to Eopt(/) . Clearly,
Jh~ = 7"1 and J~ = L,. Since there are partial horizontal cuts that intersect the left
joint, we know that Bm <-Rb. Therefore, L (D (R)) < Lb + Rb. We know from (8)
that the length of all the line segments to the right of the left joint and above the
topmost horizontal cut is at most Tm+Rm. Hence, LEN(R)-<OPT(R). This
completes the proof for this subcase.

Subcase 1.2.4. LJ, RJ~ R and RS, PHC-NRJNVr R (type J and Q).
Since both joints are present, we know from (4) and (5) that the left, top, and

right sides of R are in Eopt(I). Clearly, Jht = T~, Jo~ = L,, and we know from (7)
that the sum of the length of all the partial horizontal cuts inside the right joint
is less than or equal to R,. There are two cases depending on the relative values
of Jvl and Jvr-

Subcase 1.2.4.1. J~> Jvr.

i !

36 T. Gonzalez and Si-Qing Zheng

Clearly, L (D (R)) = Lb + Rb. Since both of the joints are introduced by a single
step of the scanning algorithm (3) and the right joint appears to the right of the
left joint, it must have been that the scanning algorithm introduced the right joint
after the left joint and Jr,. + Jhr <-- (X - 7"1). Hence LEN(R) --- OPT(R). This com-
pletes the proof for this subcase.

Subcase 1.2.4.2. Jr1 <- J,~r .
There are two cases depending on whether or not the topmost horizontal cut

was introduced by the scanning algorithm before the right joint.

Subcase 1.2.4.2.1. The topmost horizontal cut in R was introduced by the
scanning algorithm before the right joint.

Clearly, L(D (R)) = Lb + (X - T~ - Tr). Since the topmost horizontal line seg-
ment was introduced before the right joint and since the right joint is introduced
by a single step of the scanning algorithm, we know that J~,r+ Jh; <- Rb. Hence
LEN(R)-< OPT(R). This completes the proof for this subcase.

Subcase 1.2.4.2.2. The topmost horizontal cut in R was introduced by the
scanning algorithm after the right joint.

I

Since the topmost horizontal cut in R was introduced by one iteration of the
scanning algorithm after the right joint, we know that X -< Rb. Hence, L (D (R)) <
2Rb. Since both of the joints are introduced by a single step of the scanning
algorithm (3) and the right joint appears to the right of the left joint, it must
have been that the scanning algorithm introduced the right joint after the left
joint and Jhr+Jvr<--(X - T I) + (R , - L ,) . Hence, LEN(R)<-OPT(R). This com-
pletes the proof of this subcase and Subcase 1.2.4.

Approximation Algorithms for Partitioning a Rectangle with Interior Points 37

Subcase 1.2.5. LJ, RS ~ R (type I, O, R, W, X, and Z).
Since RS ~ R, we know from (6) that the left, top, and right side of R belong

to Eopt(I). Clearly, L(D (R)) = Rb + (X - Tt - Tr), Jht = Tt, Jr, = L,, and the length
of the vertical portion of the right semijoint is equal to Lb --Rb. Since RS ~ R
and there are horizontal cuts, we know from the scanning algorithm that Sh < Rb.
We know from (9) that the length of all the line segments introduced by the
algorithm that are located inside the right semijoint is at most Rm. Hence,
LEN(R) --- OPT(R). This completes the proof for this subcase.

..... t-

Case 2. V C ~ R and /o r P V C 6 R (rectangle is of type a , A , d , D , f , g , F , G ,
k-n, K-N, s-u, S-U, y, and Y).

For simplicity, all the figures in this case will be drawn including only the
topmost partial horizontal cut (PHC-NRJV) and either the rightmost vertical cut
or the partial vertical cut. The latter case is when VC~ R. We know from (11)
that if the left side of R is not part of the boundary then the length of the line
segments composing the left joint plus the length of the partial vertical cut plus
the length of all the vertical cuts is at most Y +Bv ; otherwise it is at most
By. There are two cases depending on whether or not there are PHC-NRJV
cuts.

Subcase 2.1. PHC-NRJV~ R (rectangles types a, d, f, g, k-n, s-u, and y).
If there is no right joint inside R, it is simple to see that LEN(R)<-OPT(R) .

So let us assume that there is a right joint inside R. For this case, it is simple to
prove that Jhr + J~r <<-(X- Tv). The sum of the length of all the partial horizontal
cuts inside the right joint is less than or equal to R, [see (3)]. Clearly, L (D (R)) =
Rb. Hence, LEN(R)<-OPT(R) . This completes the proof for this subcase.

Subcase 2.2. PHC-NRJV~ R (rectangle types A, D, F, G, K-N, S-U, and Y).
We know from (10) that if the bottom side of R is not part of the boundary,

the length of all the PHC-NRJV cuts is at most Bh + Rh ; and if the bottom side

38 T. Gonzalez and Si-Qing Zheng

of R is part of the boundary, the length of all the PHC-NRJV cuts is at most
Bh. If there is no right joint then it is simple to verify that LEN(R)-< OPT(R).
So let us assume that RJ ~ R. For this case it is simple to prove that Jvr + Jhr <-
(X - Tv). We know from (7) that the length of all partial horizontal cuts inside
the right joint is <-R,. By construction, L(D(R)) = Rb. Hence, LEN(R)-< OPT(R).
This completes the proof for this subcase, Case 2, and the lemma.

[]

THEOREM 2.2. For any instance I for the RG-P problem, algorithm TRANS
generates a solution Eapx(I) such that L(Eaox(I)) <- 3L(Eopt(I)).

PROOF. Follows from Lemma 2.2 and the discussion preceding Lemma 2.1.
[]

The tightness of the approximation bound 3 for our algorithm TRANS is
established by the following theorem.

THEOREM 2.3. For any small e > 0, there exists an RG-P problem instance for
which L(Eapx(I)) > 3L(Eopt(I)) - e.

PROOF. Let e = 2 -k and let e' = e / (k + 2) = 2 -k / (k + 2). The origin (lower-left
corner of the rectangle) is (0, 0), X - - 1 , and Y = k (l + e) . The set P contains
k (k + 2) - 1 points defined as follows:

p u = (x , , , , y , , ,) = (1 - e , i (l + e)) , 1 - < i - < k - 1 ;

~ (1 - e + e,', 1) for i = 1 ;
P2"i=(Xz ' i 'Y2" i)=[(1-e+e,y2 . i - l+l+e) for l < i _ < k ;

and, for l<-i<-k,

J (x2., + e', y2.i - 1/2) for j = 1;
P3,i,.j (X3,i,j,) Y3,i,j

[(x2j+je' ,y3.~j_l-2 -j) for l <j<-k.

It is easy to see that all these points are located in a belt area close to the right
boundary of the rectangle and the distance between any two points is greater
than e. It is simple to show that for any small e,

L (E o p t (I)) = k (l + e) + k (k + l) e = k + k (k + 2) * 2 k,

Approximation Algorithms for Partitioning a Rectangle with Interior Points 39

and

L(E~px(I)) = [3/2 + k(e - e') + e] + (k - 2)[2 + (k + 1)e]

+ [3/2 + e + 2e + (k - 1)(e - 2e')] + (k - 1)[1 - e]

= 3 k - 2 + (k 2 + 2) e - (3 k - 2) e '

= 3 k - 2 + (k 2 + 2) ' 2 -k _ ((3k - 2) / (k + 2)) ' 2 -k

= 3k - 2 + (k 2 - (k - 6) / (k + 2)) * 2 -k.

Figure 2.6 shows C (I) , Eap• and Eopt(I) for the case when k = 3. Combining
these bounds we obtain

lim (L(Eapx(I)) / L(Eopt(I)))
k ~ o o

= lim { [3 k - 2 + (k 2 - (k - 6) / (k + 2)) * 2 - k] / [k + (k 2 + 2 k) * 2 - k] }
k ~ o o

= 3 - lira {[2 k+~ + 2 k 2 + 6 k + 1 - 8 / (k + 2)] / [k 2 k + k2+ 2k]}

=3.

This completes the proof of the theorem. []

We defined our algorithm in such a way that when a point (dot) is connected
to another point (• the lines introduced are defined in Figure 2.7(a). As a result
of this operation joints are only introduced on the top side of R (Figure 2.7(a)).
We could also define algorithms in which the connections are defined in Figure
2.7(b)-(d). In each of these cases the joints will appear only on the right, left,
and bot tom side of R. It is interesting to note that if the line segments introduced
by the scanning algorithm are such that the joints appear only on the right side
of R, then LEN(R) is sometimes greater than OPT(R). A rectangle for which
this holds true is given in Figure 2.8(a). I f the joints are only introduced on the
left side of R, it seems that we can also prove the approximation bound of 3.
However, by using analysis similar to the one in this section we cannot prove
any approximation bound smaller than 3. A rectangle R for which LEN(R) is
almost equal to OPT(R) is given in Figure 2.8(b). In this case it is much harder
to characterize the different types of rectangles formed by Eopt(I) u C (I) . The
main difficulty is that there might be a straight line segment inside the rectangle
that was introduced by several steps of the scanning algorithm. When the joints
only appear on the bot tom side of R, we obtain a set of rectangles similar to the
ones in Figures 2.3 and 2.4. The analysis in this case is similar to the one in this
section.

3. Discussion. Our algorithm has an approximation bound that is not so small,
however, we believe that the solutions generated by our algorithms are usually

8

It
t

T'
lt

t

T'
~

t
T

H

C~

O

C
a.

N

Approximation Algorithms for Partitioning a Rectangle with Interior Points 41

5/2

(a)

I-E

11:
5/2

~ 1/2
1/2
1/2
1/2

(1/2)-E

H

. . ~

H
1/2 (1/2)-~

~)

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Fig. 2.8

very close to the optimal-solution value. Simple heuristics can be used to obtain
a better solution most of the time. One of these heuristics consists of executing
our algorithm after rotating the figure 90 ~ 180 ~ and 270 ~ The best of the partitions
constructed is usually close to optimal. We believe that the techniques used in
this paper can be modified to generate good approximate solutions to the RP-RPP
problem.

Our algorithm has a large time complexity bound. The main bottleneck is the
time required to solve the JRP-HF problem. To obtain a faster algorithm, we
must first find a faster algorithm for the RP-HF problem. Several researchers
have been working on this problem.

Gonzalez and Zheng [GZ1] show how to adapt any approximation algorithm
for the RG-P problem to solve the RP-P problem. Their technique consists of
using the algorithm given in [LPRS] to partition the rectilinear polygon into
rectangles, then each (component) rectangle along with the points inside it
becomes an RG-P problem instance. Then they use any algorithm that generates
approximation solutions for the RG-P problem to solve each of these RG-P
subproblems. This technique together with our algorithm TRANS can be used
to generate solutions for the RP-P problem such that L(Eapx(l))<-4L(Eopt(I)).

42 T. Gonzalez and Si-Qing Zheng

Our algorithm TRANS can also be generalized to solve the RP-RPP problem
in which L(B(I))+L(H(I))<-L(Eopt(I)). Our modified algorithm generates a
solution Eapx(I) such that L(Eapx(I))<-4L(Eopt(I)). The best previously known
approximation algorithm for this restricted version of the RP-RPP problem has
an approximation bound of 4.5 [L]. Interested readers may refer to [GZ2] for
more details.

[AHU]

[AT]

[CD]

[GJPT]

[GZI]

[GZ2]

[Levl]

[Lev2]

ILl

[LPRS]

[LLMP]

[LLMPL]

[R]

[S]

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.
Avis, D., and G. T. Toussaint, An Efficient Algorithm for Decomposing a Polygon into
Star-shaped Polygons, Pattern Recognition, Vol. 13, 1981.
Chazelle, B., and D. Dobkin, Decomposing a Polygon into Its Convex Parts, Proceedings
of the 11th ACM Symposium on Theory of Computing, 1979.
Garey, M. R., D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a Simple
Polygon, Information Processing Letters, Vol. 7, No. 4, 1978.
Gonzalez, T., and S. Zheng, Bounds for Partitioning Rectilinear Polygons, Proceedings
of the 1st ACM Symposium on Computational Geometry,. June 1985, pp. 281-287.
Gonzalez, T., and S. Zheng, Approximation Algorithms for Partitioning Rectilinear
Polygons, Technical Report 85-22, Computer Science Department, University of Califor-
nia, Santa Barbara, CA, 1985.
Levcopoulos, C., Minimum Length and Thickest-First Rectangular Partitions of Poly-
gons, Proceedings of the 23rd Allerton Conference on Communications, Control, and
Computing, University of Illinois, Oct. 1985.
Levcopoulos, C., Fast Heuristics for Minimum Length Rectangular Partitions of Poly-
gons, Proceedings of the 2nd Computational Geometry Conference, June 1986.
Lingas, A., Heuristics for Minimum Edge Length Rectangular Partitions of Rectilinear
Figures, Proceedings of the 6th GI Conference, Dortmund, 1983, Lecture Notes in
Computer Science, Vol. 195, Springer-Verlag, Berlin.
Lingas, A., R. Y. Pinter, R. L. Rivest, and A. Shamir, Minimum Edge Length Partitioning
of Rectilinear Polygons, Proceedings of the 20th Annual Allerton Conference on Communi-
cation, Control, and Computing, University of Illinois, Oct. 1982.
Lodi, E., F. Luccio, C. Mugnai, and L. Pagli, On Two-Dimensional Data Organization,
I, Fundamenta lnformaticae, Vol. 2, No. 2, 1979.
Lodi, E., F. Luccio, C. Mugnai, L. Pagli, and W. Lipski, Jr., On Two-Dimensional Data
Organization, If, Fundamenta Informaticae, Vol. 2, No. 3, 1979.
Rivest, R. L., The "PI" (Placement and Interconnect) System, Proceedings of the 19th
Design Automation Conference, June 1982.
Sack, J. R., An O(n log n). Algorithm for Decomposing Simple Rectilinear Polygons
into Convex Quadrilaterals, Proceedings of the 20th Annual Allerton Conference on
Communication, Control and Computing, Oct: 1982.

