Bounds for Partitioning Rectilinear Polygons

Teofilo Gonzalez and Si-Qing Zheng
Department of Computer Science
The University of California
Santa Barbara, CA 93108

Abstract: We study the problem of partitioning a rectilinear
polygon with interior points into rectangles by introducing a
set of line segments. All points must be included in at least
one of the line segments introduced and the objective
function is to introduce a set of line segments such that the
sum of their lengths is minimal Since this problem is
computationally intractable, we present efficient
approximation algorithms for its solution. The solutions
generated by our algorithms are guaranteed to be within a
fixed constant of the optimal solution value. Even though
the constant approximation bound is not so small, we
conjecture that in general the solutions our algorithms

generate are close to optimal.

Keywords:

rectilinear polygons,

Approximation algorithms, partition of

polynomial time complexity.

Introduction.

Computational geometry is becoming more important
because new problems in areas like pattern recognition,
artificial intelligence, graphics, VLSI design and robotics are
being identified as inherently geometric. For many
geometric problems the salgorithmic method of solution
appropriate to a computer appears to be quite complex. Gne
of the fundamental problems in computational geometry is
to partition a polygon into parts. Traditionally the objective
function is to obtain a convex partition with minimal
number of components, and fortunately polynomial time

elgorithms for this problem exist ([CD}, [GIPT], [LLMP],

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-163-6/85/006/0281 $00.75

281

[LLMPL], [S]). Lingas e¢. al. ([LPRS]) investigated the par-
tition problem for rectilinear polygons, the goal was to
obtain a partition with minimum length of partitioning
edges. In VLS! design, the problem of dividing routing
regions into channels can be reduced to this new partition
problem ([R]). Some versions of this partition problem
were shown NP-comnplete, but the computational complexity
of some other related problems is not known ([LPRS]). In
this paper we investigate the problem of finding approxi-
mate solutions to some of these partition problemns. We
show that generating a solution within a "small” constant
factor of the optimal solution value is a polynomially solv-
able problem.

A rectilinear boundary is a simple polygon with the
additional constraint that all of its sides are either parallel
or perpendicular to each other. A holg is a simple rectil-
inear polygon whose sides are parallel or perpendicular to
the sides of the rectilinear boundary and located on the
inside of a rectilinear boundary. There can be no holes
inside a hole. A single point inside the boundary is called an
dagenerate hole. A figure is a rectilinear boundary which
may contain an arbitrary number of nonoverlapping holes.
A rectangular partition of a figure is a set of line segments
lying within its boundary and not crossing any non-
degenerate hole so that when drawn into the figure the area
not enclosed by holes is partitioned into rectangles which do
not contain degenerate holes. The partitioning line seg-
ments are called edges. A minimum edge length partition of
a figure is a rectangular partition such that the sum of the
length of its edges is the smallest among all feasible parti-
tions. For every set of edges, E(1), in a feasible solution for
problem instance 1 we use the function L{ E(1) } to
represent the sum of the length of the edges in E(1). For
more details about these definitions see [LPRS].

Known results about the computational complexity of
minimum edge rectangular partitioning of rectilinear
polygons is displayed in the following table.

Problem Boundary Points and Holes Complexity
RP-HF rectilinear polygon hole (ree ont)
RG-NLP rectangle non-corectilinesr points NP
RP-NLP | rectilinear polygon non-corectilinear points NP
RG-P rectangie points NP-complete
RP-P rectilinear polygon points NP-complete
RG-RP rectangle rectilinear polyg NP plet
RP-RP rectilinear polygon rectilinear polyg NP plete
RG-RPP rectangle rectilinear polygons and points | NP-complete
RP-RPP | rectilinear polygona | rectilinear polygons and points | NP-complete

In the above table the RP-NLP problem is interpreted as
“minimum edge length rectanguiar partitioning of a Rectil-
inear Polygon with Non-corectilLinear Points inside it”, and
similarly other abbreviations are self-explanatory. The com-
putational complexity of the problems in the above table is
displayed in figure 1.1, where " problem A —-> problem B "
means that problem A is polynomially reducible to problem
B, i.e. problem A is not computationally "harder” than prob-
lem B.

RP-NLY —— KPP -———3 KPR e i

RG-NLP — RC-P » RC-

RP-HF

figure 1.1

The computational complexity of the RG-NLP and RP-
NLP has not yet been established. Since an optimal solution
for a given problem instance of RG-NLP could be very com-
plex (see figure 1.2 for an example) and it seems that
there is no way to obtain an optimal solution without
exhaustive search, we strongly conjecture that both of these
problems are NP-complete.

figure 1.2

282

In this paper we present approximation algorithms for
all the problems included in the RP-P problem. Along with
presenting our algorithms, we show that the solutions gen-
erated by our algorithms are optimal to within a constant
factor. That is, if we denote the set of edges in an optimal
solution by Ep(1), then L{ Eqe(1)) = ¢ L{ Epn(1))
where c is a constant, and Egg{ 1) is the set of edges in the
solution generated by our algorithm. Although the approxi-
mation bounds we have obtained are not so small, we believe
that the actual performance of our algorithms is consider-
ably better than what we have been able to show.

II. Preliminariss.

A problem instance is formally definedas /= (B, P
, H), where B is a set of (corner) points which defines a
rectilinear polygonal boundary. P is a set of points as degen-
erate holes inside the boundary and H is a set of point sets,
each defines a rectilinear hole inside the boundary. In the
rest of this paper we call the polygon defined by B the global
boundary. Certainly B, P and H must satisty a set of con-
strains so that "I" is a valid problem instance. A polygon can
be represented by a list of corner points, po, pP1. ..., Pn-1s
such that the line segment from p; to P +1)md(n) is a side of
the boundary for 0 i< n- 1. Aline segment is represented
by the pair of end points of the segment, i.e. [(Z . %). (%
+ ¥;)] represent the line segment with end points (z; . %)
and (;. Y).

We define the grid induced by a problem instance as
the set of horizontal and vertical line segments introduced
by extending all sides of the figure and the holes in both
directions until either the line segment intersects the side
of a hole or the line segments intersects the boundary. Fig-

ures 2.1 and A.1 illustrate the grid induced (by broken lines
) tor two problem instances.

| I
Hl |
|
!

|
i

figure 2.1: { Non-solid lines are grid lines).

It can be easily shown that in any optimal solution
for the RP-RPP problem, all partitioning edges lie on the
induced grid. The proof of this fact uses arguments similar
to the ones in the proof of lemma 1 in [LPRS}. The solutions
that our algorithms generate also have this property.

III. Divide-and-Conquer Approximation Algorithm for the
RG-P Problem.

In section Il we mentioned that a problem instance is
defined as1 = (B, P, H). For the RG-P problem, H ia an
empty set and B contains four corner points defining a rec-
tangular global boundary. In our algorithm we use { Zo %o).
X, and Y to define the boundary, where { 2o . Yo) is the
bottom-teft corner of the boundary (origin of I), X and Y
are the width and height of the boundary.

We use Eg, to dencte the solution generated by our
algorithm. In the algorithm Egp, is a set of pairs of points,
each pair representing a line segment in the solution. Ini-
tially Egp; is empty.

procedure PARTITION(zp. yo. X. Y. P)

begin
Lat n be the cardinality of set P; if n = 0 then return;

Y X < Y then rotate the rectangle 90 degrees and let { z; , yo } be the bottom-left point;

Rearrange the points sothat 2o < 2, % ... € 2, Let X' = X/(14v3);
Letc =minf 1| (2 -%0)-X/2 = minf (%, -25) -X/2 [1sj<n]}
Letu=maxfi| |(% -2o)-X/2| = min{[(z;-20)-X/2{|15$n]}
case
:2 is located to tho left of the center of the rectangle, 2, - Zg%$ X' andu < n:
begin fcompound_put step)
B =B Vi[{2 ¥o+Y). (2 . ¥o) L. [{(2ar Vot Y) . (a1 ve)]}
Picim€Plandn < i Pa=ip |€Pandz > 2, |
Xy=2g -2z Xe=X-(Ze1-%0)i
PARTITION(z9. ¥o. X, , Y, P,); PARTITION(Zye1, ¥0.X2. Y. P2);
md

2, I8 located to the right of the center of the rectangle, X - {2, - 2o)< X' and e > 1t

begin fcompound _cut step]
Ege = B V(% wo v Y). (5 .ve) L I(Zer . wo+Y) (2. w0) 1)
Pi=ipIpmePand s <z i Pazips [Py €Pandz > 2,
Xy=zga-2aXa=X-(5, -2)
PARTITION(20, yo. Xy . Y. P,); PARTITION(Z, . 0. X3, Y, Py);
od
salse; | simple_gut step §
begin
%’%Ui[(%-Vo*Y)-(& -w)]f
Pizip|pePandn < i Aa=ipip €Panda >3 |
Xyzx, -2 Xy=X-(2-2);
PARTITION(2o, ¥o. X3, Y. P,); PARTITION(=, . ¥o. Xa2. Y, P)
end
ond
ond

Since the rules used to do the “horizontal cuts” are
the same as what we use to do the "vertical cuts”, we only
consider "horizontal cuts”, It is easy to see that figure 3.1
below includes all possible situations of one step in the

recursive process of our algorithm. A shadowed rectangle
represents a sub-instance without interior points from set

P.

283

VAN A A A / /7 7 717
/ /7 N 7 7
/S nh /N e/ h /h/ /]| N
/7 7 /N7 7/
/N vV / 7/ /1 /
X X
1 (l) 2 X z\;,) X3
h I
X, X
(3)
/7 y / /
/ 7/ / /7
5 / s/ n / I
/7
/7 / 7/
X, X X Xq
() (5)
/ /7
/!
nhy (st /\Is
//
/ /S
X X3 X
(e)
/
///////// 2 WA
IRV A YAV Iy /L Is
/7 s 7/
/1 /7
X X, X
X {_'l) X ' (ol)]
figure 3. 1:

In figure 3.1, (1), (3), (4) and (5) correspond the
"simple_cut step” in the algorithm, and the remaining ones
correspond the “compound_gut step” in the algorithm.

The basic idea behind recursive definition of our
lower bound function, LB, is to take a "portion" of edge
length from L{ Egs) in such a way that LB(1) = L{ E(1)
). Now with reference to figure 3.1 we define LB(1) recur-
sively as follows:

0 1is empty

Y (1

min} X. 2Y } @)

LB(1,)+ LB(Is))
LB(1)= LB(7,)+ LB(fg) + min{ X3, 2Y} (4)

LB(7,)+ min{ X;. Y} (s)

LB(7 Y+ min{ X,. Y} @

LB(7,) + min} Xy + X3. 2Y} (Y]

LB(Iy) + ming X, + Xz, 2Y | (8)

Lamma 3.1: For any instance I, LB(1) % L{ Egue(1)).
Proof: The proof appears in {GZ).

For any instance 1, we define the function USE(1) to
be the sum of the length of the edges introduced by the
algorithm when presented instance 1 and without including
the edges introduced in any of its recursive calls. For prob-

lem instance 1, let I, /g, ..., I,, be the subinstances which

were used when calling PARTITION(I). Then 1{ Egp) = 2
=
USE(I,).

For a problem instance I = (zg, ¥, X, Y, P), if max{
X Y] < (1+V3) min{ X, Y |, we call it a regular (R)
instance, otherwise we call it an irregular (IR) instance. We
define the CARRY function as follows:

0 it I is empty
X+Y if I is R and non —empty

{(2+V3) min{ X, Y | it I is /R and non—empty

CARRY(I) =

For non-empty instance 1, we have, equivalently, CARRY(1)
= min{ X + Y, (2+V3) min§ X, Y § }. Function CARRY(I) indi-
cates the maximumn amount of edge length introduced by
the algorithm in previous { ancestor) calls that have not yet
been accounted for by (3+V3) * lower bound. For any subin-
stance | we must show that L{ Eg,(1)) + CARRY(1) <
(3+V3) *LB(1) = (3+V3) * L{ Ee(1)).

Lemma 3.2: For any problem instance],

(i) L(Eqe(1)) + CARRY()= (3+V3) *LB(1)

(i) L{ Eqe(1)) + CARRY(1) < (3+V3) *L{ En(1)).
Proof: The proof appears in [GZ].

Theorem 3.1: For any instance of the RG-P probilem, algo-
rithm PARTITION generates a solution Eqe(1) such that L(
Fope(1))% (3+V3) L Eppe (1)).

Proaf: The proof follows from lemma 3.2.

Let us now determine the tightness of our approxi-
mation bound. In example 3.1 we give an instance such that
I Egy) =35 L(Eyt) - € for any small € > 0. Since we
could not find examples whose behavior is worse than this,
we conjectured that the analysis of our approximation
bound could be improved. However, this is not possible
unless one redefines the lower bound function. In example
3.2 we show that there are instances for which L{ Ege) =
{3+V3) LB(1) - € for any small € > 0.

Example 3.1:

The boundary is the rectangle with origin (0, 0), X =
2'. Y = 1. To ease the arguments we assume that there are
3m points inside the boundary, where m = 2%*3-1. The points
are defined as follows:

284

m=(i/81/2+€)1sism
P =(i/8, 1/2-€), 1si<m;
px=(i/8,1/2), 1<ism

For small € the solution generated by our algorithm and the
optimal solution are depicted in figure 3.2.

IRETRERRARERERER JERIRREN!

Ep

figure 3.2

Clearly.
L{Ege(l)) = 3X + (m + 1)/2- 1=32" + 2¢*8_ 1, and
WEp((D)=2X+2me=2" +(2***-2)e.

Thus, lim Lim L(Epe M)/ UEp(D) =35

Erample 3.2:

The boundary is a rectangular with origin {0, 0) and
X =Y = 2*. There are (22*-1) + 4*2%* points inside the boun-
dary. Among them 2%*-1 points are arranged in such a way
that the algorithm will partition the instance into 2* subin-
stances of size one by one. For k = 2 the partition gen-
erated by the algorithms is given in figure 3.3. Applying the
definition of our lower bound function, LB, we know that if
each of these subinstances is not empty none of the lengths
of these edges will be accounted for in LB. In other words,
the lower bound function for the problem is equal to the
sum of . the lower bounds for each of the squares.

tigure 3.3

The remaining 4*2%* points are distributed into 2%* subin-
stances each with four points. Each subinstance is such that
algorithm PARTITION perfortns a compound_cut followed by
two simple_cuts, in further recursive steps. This is illus-
trated in figure 3.4.

X, Xy

figure 3.4

Let X, = Xg = 1/(1+V3). Then by the definition of LB, it is
eesy to see that for each square I, LB(I) = 2%,
Clearly,
L{Eas (1)) = 2928 #(2%-1) + 2% %(2+2/(1+V3)).
Thus, lim W Egpe (1))/LB(1) = lim (4+2/(1+V3)-217*) = 3+V3,

In the above examples we only considered the RG-P
problem, if we relocate the points we can show that the

above bounds are satisfied by an instance of the RG-NLP
problem. Example 3.1 is also the worst case we could find

for the partition algorithm which only makes a simple-cut at
each recursive step. The above examples shows that the
bound we obtained is not so far away from the real bound.

¥ith respect to the time complexity bound for algo-
rithm PARTITION we have the following resuit.

Theorem 3.2: The time complexity of algorithm PARTITION is
o(n?),

Proof: The proof of this theorem is straight forward. For
brevity it will be omitted.

If compound cuts are not defined in algorithm PARTI-
TION, we obtain another algorithm which in some cases gen-
erates better solutions then the ones generated by algo-
rithm PARTITION. The new algorithm always makes a verti-
cal cut along z, and recursively solves the two remaining
problems. The approximation bound is 5 and the time com-
plexity is the same as before, O(n®). The proof for the
approximation bound is much more elaborate than the one
for PARTITION, but the constant associated with the time
complexity bound is smaller than the one for algorithm PAR-
TITION. We cannot claim that the solution generated by one
of these algorithms is always better than the solution gen-
erated by the other, because there are instances for which

285

any of these two algorithms outperforms (with respect to
the objective function value) the other. We can also show
that for some problem instances the solutions generated by
both of these algorithms is equally "bad” (see example 1).
In summary, the approximation algorithms discussed in this
section have approximation bounds that are large because
of the lower bound function. The main problem with the
lower bound function is that it only takes into account local
relationships between the points and ignores their global

relation.
problem.

In the next section we try to circumvent this

IV. Approzimation Algorithms Using Problem Transforma-
tion.

In this section we present another approximation algo-
rithm for the RG-P problem. This new algorithm tries to
avoid the drawback of the previous algorithms. The new
algorithm makes decisions based on the global relationship
between the points and the lower bound function used in
this case is closer to the optimal solution. Our approach
consists of transforming the instance of the RP-G problem
into an instance of a generalized RP-HF problem for which
we can find an optimal partition in polynomial time (see
appendix). Such a partition is our solution to the original
problem. The first transformation is performed by scanning
the points inside the boundary one by one and introducing
jogging lines to make them directly or indirectly connected
to the global boundary. Let p; = (2y, ¥,). P2 = (Z2. Y2).-ee
Pn = (Zn, Un) be the set of points inside the rectangle and
assume that they have been reordered in such a way that:

1)z;<zjfor1<i<j<n;and
R)ifzy =z theny >y for1si<jsn

The scanning traverses the points in the order p,, pa.
« Pp. During the ith iteration point p; is connected
directly or indirectly to the global boundary by a vertical
and a horizontal line. Point p; is connected to (xy), for
some x < z; and y = 3, by a shortest path. The path con-
sists of a most one vertical line segment and at most one
horizontal line segment. The vertical line segment (if
present) must be adjacent to p; and (x,y) must be a boun-
dary point, a line segment introduced before the ith itera-
tion or one of the first i - 1 points. Let C(1) be the set of
lines introduced by the above scanning rule. ﬁgu.re‘ 4.1
shows the lines iuiroduced for some instance 1.

1

figure 4.1

The instance displayed in figure 4.1 is an instance of
the generalized RP-HF problem. In such a problem we do
not have holes nor points. We only have a rectilinear boun-
dary with jogging lines connected to it. These jogging lines
should be viewed as boundaries. Each side of a line segment
is a boundary. Since the algorithm in [LPRS] can be trivially
modified to find an optimal solution to this problem we do
not include the result in the main text. An explanation on
how to generalize the resuits in {LPRS] is given in the appen-
dix.

Algorithm TRANS

Step 1: Construct an instance of the generalized RP-HF
problem by performing scanning procedure;

Step 2 Use the algorithm in the appendix to find an
optimal solution to the RP-HF problem constructed by step
1

end of algorithm

Theorem 4.1: The time complexity for algorithm TRANS is O(
nt),

Prooy: For brevity the proof is omitted.

Let Eope(l) be the solution generated by algorithm
TRANS. Let E(1)=C(1) U Egq(1) UD(1). where Ejp(1)is
an optimal solution for 1 and D(1) is a set of line segments
(to be defined beiow) needed to make C(1) U Eop(1) & rec-
tangular partition. Clearly L(E(1)) 2 L{ Ege(1)). If we
can show that I{ E (1))< 3L{ E,x(1)), then L{ Ege (1)) <
3 I{ Eyp(1)). Therefore, to prove our resuit it is only
required to show that E{(1) = C(1) v Egu(1)uD(1)isa
rectangular partition for the generalized RP-HF problem
constructed by step 1 in procedure TRANS and to prove that
L{E(1))<3L{ Eyp(1)). Before proving these results, we
make some definition and reduce further our proofs.

286

={1Yu®P /1)

T 1)V oepi

Tat P/ 1)
J

Let P(1
). Qearly E,x(1) is an rectangular partition. Every time
we add a path from C{ 1) to it we will partition some rectan-
gles and perhaps introduce a joint (see figure 4.2) in a rec-
tangle. After introducing all the lines in C(1), we can easily
partition P(1) into rectangles with and without joints (see
figure 4.2),

foar anrma ambional aaliidiae O 1
1 J IV BVIAW Vpviiiial aviuuwuvi Dm\ 3

B

figure 4.2

To produce a rectangular partition for P(1), we must elim-
inate the joints by introducing one line segment and thus
partition the rectangle with a joint into three rectangles. All
of these lines that we introduce are the elements of a set
that we define as D(1). Clearly all joints consist of only line
segments from Ege(1). Each of the sides of a rectangle is

either a boundery, a line segment from E,; or a line
segment from Ege. Note that in some situations a side of a

rectangle is a line segment from Ey and a line segment
from Egpe. The lines in C(1) - Egy(1) are labeled A. What
we will show is that L{ D(1) U (C(1) - B (1))) 52 L Eope(
1)). We prove this result by showing that for each rectangle
Rin P{1), LEN(R) < OPT(R), where LEN(R) is the sum of
the length of the edges from D(I) inside rectangle R plus
the sum of the length of the edges labeled A that belong to
the bottom and right sides of the rectangle plus the length
of the lines that form the joint (if present); and OPT(R } is
the sum of the length of the edges in Ey(1) that belong in
rectangle R Clearly, in order to complete the proof of our
approximation bound it is only required to show that LEN(R
Y<OPT(R) for all R For rectangle R, let X be its width and
Y be its height. Before proving our result we prove some
useful properties that are satisfied by every rectangle R.

Lemma 4.1: For every rectangle R,

(a) If the joint is present it can only be located on the bot-
tom left corner of R;

{b) If the joint is present then neither the left nor the bot-
tom side of R can be labeled A nor can they be boundaries;
(c) No side labeled A can be adjacent to a boundary located
on the right or the bottom side of R;

(d) It is impossible for both the bottom and right side of R to
be labeled A;

(e) There cannot be a path all of it labeled A that joins two
boundaries; and

(f) If the left and right side of R is labeled A, then X2 Y.

(g) If the top and bottom side of the rectangle is labeled A,
thenY = X.
Proof: For brevity the proof will be omitted.

Lemma 4.2: For all R, LEN(R) < OPT(R).
Proof: The proof appears in [GZ].

Note that if algorithm PARTITION is used then c is
{4+V3), and if algorithm TRANS is employed then c is only 4.

Theorem §.&: Algorithm REP has time complexity O(n*).
Proof: For brevity the proof is omitted.

V. Discussion.

Our algorithms have an approximation bound that is
far from optimal, however we believe that the solutions gen-
erated by our algorithms are usually very close from
optimal. Presently we are working on approximation algo-
rithms for the RP-RPP problem. We believe that the tech-
niques used by our algorithms can be generalized to solve
these other problem with an approximation bound which is
very close to the previous bounds. Note that this result
would imply the solution of all the partition problems given
in figure 1.

VI. References.
[aHU] Aho, A. V., J. E. Hopcroft and J. D. Ullman, The
Design end Analysis of Computer Algorithms,
Addison-Wesley, 1874.

Avis, D. and G. T. Toussaint, An Efficient Algo-
rithm for Decomposing a Polygon into Star-
shaped Polygons, Pattern Recognition, Vol. 13,
1981.

Chazelle, B. and D. Dobkin, Decomposing a
Polygon into its Convex Parts; Proc. 11th ACM
Symp. on Theory of Comput., 1879.

Garey, M. R, D. S. Johnson, F. P. Preparata and
R. E. Tarjan, Triangulating a Simple Polygon;
Information Processing Letters, Vol. 7, No. 4,
{(June 1978).

Gonzalez, T. and S-Q. Zheng, Approximation Algo-
rithms for Partitioning Rectilinear Polygons,
Technical Report, University of California, Santa
Barbara, March 1585,

Lodi, E., F. Luccio, C. Mugnai, and L. Pagli, On
Two-dimensional Data Organization I Funda-
mente Informaticae, Vol. 2, No. 2 (1879).

fat]

{cp]

[GIPT]

(cz

(LLvP]

287

{LLMPL])

[LPRS]

(R]

(s}

Lodi, E. F. Luccio. C. Mugnai. L. Pagli and W.
Lipski, Jr., On Two-dimensional Data Organization
I; Fundamenta Informaticae, Vol. 2, No. 3
(1979).

Lingas, A, R Y. Pinter, R. L. Rivest, and A.
Shamir, Minimum Edge Length Partitioning of
Rectilinear Polygons, Proc. 20th Annual Allerton
Conference on Communication, Control, and
Computing, Monticello, Ilinois, Oct. 1982.

Rivest, R. L., The "PI"” (Placement and Intercon-
nect) System, Proc. 19th Design Automation
Conference, June 1982,

Sack, J. R, An O(n log n) Algorithm for Decom-
posing Simple Rectilinear Polygons into Convex
Quadrilaterals, Proc, 20th Annual Allerton
Conference on Communication, Control and Com-

puting, Oct. 1982,

Appendiz: An O(n*) Optimal Algorithm for the
Generalized RP-HF Problem.

In this section, we introduce an algorithm for the gen-
eralized RP-HF problem. The instance displayed in figure
4.1 is an instance of the generalized RP-HF problem. In the
RP-HF problem do not have holes nor points. We only have a
rectilinear boundary with jogging lines connected to it.
These jogging lines should be viewed as boundaries. Each
side of a line segment is a boundary. The grid induced for
the problem instance given in figure 4.1 is displayed in fig-
ure A.1.

[]
]
[}
T4
[]
1
4

E

e ebel wed

[}
(]
R e
t

From these observations it is simple to see that the algo-
rithm given in [LPRS] can be used to solve the generalized
RP-HF problem. The time complexity of the algorithm is O(
nt)

