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Abs&acf: We study the problem of partitioning a rectilinear 

polygon with interior points into rectangles by introducing a 

set of line segments. All points must be included in at least 

one of the line segments introduced and the objective 

function is to introduce a set of line segments such that the 

sum of their lengths is minimal Since this problem is 

computationally intractable, we present efficient 

approximation algorithms for its solution. The solutions 

generated by our algorithms are guaranteed to be within a 

fixed constant of the optimal solution value. Even though 

the constant approximation bound is not so small, we 

conjecture that in general the solutions our algorithms 

generate are close to optimal. 

Koyumdn: Approximation algorithms, partition of 

rectilinear polygons, polynomial time complexity. 

hdrotSudion. 

Computational geometry is becoming more important 

because new problems in areas like pattern recognition, 

artificial intelligence, graphics, VLSI design and robotics are 

being identified as inherently geometric. For many 

geometric problems the algorithmic method of solution 

appropriate to a computer appears to be quite complex. One 

of the fundamental problems in computational geometry is 

to partition a polygon into parts. Traditionally the objective 

function is to obtain a convex partition with minimal 

number of components, and fortunately polynomial time 

algorithms for this problem exist ( [CD]. [GJPT], [LLMP], 
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[LLMPL]. [S] ). Liigas el. al. ( [LPRS] ) investigated the 

tition problem for rectilinear polygons, the goal w 

obtain a partition with minimum length of pertiti 
edges. In VLSI design, the problem of dividing rc 

regions into channels can be reduced to this new par 

problem ( [R] ). Some versions of this partition prc 

were shown NP-complete, but the computational Comp 

of some other related problems is not known ( [LPRS] 

this paper we investigate the problem of finding ap 

mate solutions to some of these partition problem! 

show that generating a solution within a “small” COI 

factor of the optimal solution value is a polynomially 

able problem. 

A rectilinear boundary is a simple polygon wit 

additional constraint that all of its sides are either pc 

or perpendicular to each other. A hole is a simple I 

lnear polygon whose sides are parallel or perpendicu 

the sides of the rectilinear boundary and located a 

inside of a rectilinear boundary. There can be no 

inside a hole. A single point inside the boundary is cal 

degenerate hale. A mure is a rectilinear boundary 

may contain an arbitrary number of nonoverlapping 

A +sctangulm parWon of a figure is a set of line segl 

lying within its boundary and not crossing any 

degenerate hole so that when drawn into the figure th 

not enclosed by holes is partitioned into rectangles wh 

not contain degenerate holes. The partitioning lint 

ments are called edges. A minimum edge length partil 

a figure is a rectangular partition such that the sum 

length of its edges is the smallest among all feasible 

tions. For every set of edges, E( I ), in a feasible soluti 

problem instance I we use the function L( E( I : 

represent the sum of the length of the edges in E( I 

more details about these defiiitions see [LPRS]. 

Known results about the computational complex 

minimum edge rectangular partitioning of recta 

polygons is displayed in the following table. 

: par- 

as to 

.oning 
Buting 

,tition 

,blem 

lexity 

). In 

prozi- 

5. We 

1st8nt 

’ solv- 

h the 

uallel 

rectii- 

liar to 

In the 

holes 

led an 

which 

holes. 

ments 

non- 

e area 

ich do 

e seg- 

tion of 

of the 

parti- 

Ion for 

) to 
). For 

city of 

ilinear 

281 



Problem Baur&ry Points and Holes compleai1y 

I?&HF rmctiliiu polypn hole INO O(Q) 

RGNIR rrctan@* non-corectilineu points NP 

RFWLP reotllineu poly#on non-corectllins~r pointn NP 

E-P rCC*le points NP-compl~l~ 

RP-P mctilioeu pdydon point* NP-complete 

RGNP 

FIP-RP 

m&l@ 

rectilineu pdy:on 

rectilinear polygons 1 NP-complete 1 

rectilinear polygom NP-complela 

RGRPP rrcluylc rectilinear polygons Md pdnb h’P-complete 

RP-RPP nctillneu pdyao” nctilinev polygon and pdnlr NP-complete 

In the above table the RP-NLP problem is interpreted as 

“minimum edge length rectangular partitioning of a Rectil- 

inear Polygon with Non-core&Linear Points inside it”. and 

similarly other abbreviations are self-explanatory, The com- 

putational complezity of the problems in the above table is 

displayed in fiiure 1.1, where ” problem A -> problem B ” 

means that problem A is polynomially reducible to problem 

B. i.e. problem A is not computationally “harder” than prob- 

lem B. 

I 
1 Rc-NLP __) Rc-P - RC- ItP ,Rc.I, 

I 
RP!HF 

Rgure 1.1 

The computational complexity of the RC-NLP and RP- 

NIP haa not yet been established. Since an optiial solution 

for a given problem instance of RC-NlP could be very com- 

plex ( see Rgure 1.2 for an example ) and it seems that 

there is no way to obtain an optiial solution without 

exhaustive search, we strongly conjecture that both of these 

problems are NP-complete. 

figure 1.2 

in this paper we present approximation algorithms for 

all the problems included in the RP-P problem Mong with 

presenting our algorithma. we show that the solutions pen- 

eratsd by our algorithms are optimal to within a constant 

factor. That is. if we denote the set of edges in an optimal 

solution by A&( I ). then L+( &.( I ) ) 6 c y Em( I ) ), 

where c is a constent, and Em( I ) is the set of edges in the 

solution generated by our algorithm. Although the approxi- 

mation bounds we have obtained are not so small, we believe 

that the actual performance of our algorithms is consider- 

ably better than what we have been able to show. 

A problem instance ia formally defied (w I = (B , P 
, fi ), where B is a set of ( corner ) points which defines a 

ractilintar polygonal boundary, P is a set of points as degen 

crate holes inside the boundary and H is a set of point sets, 

each defies a rectilinear hole inside the boundary. In the 

rest of this paper we call the polygon defined by B the global 

Cormdmy. Certainly B, P and H must satisfy a set of con- 

strainr so that “1” Is a valid problem instance. A polygon can 

be represented by a list of comer pointa, Po PI, . . . . p,,+ 
ruch that the line segment frompt top(<tl),,od(n) is a side of 

the boundary for 0 4 i 5 n - 1. A line segment is represented 

by the pair of end points of the segment, i.e. [ ( 21, pt ) , ( zj 

, vj ) ] represent the lime segment with end points ( z( , P, ) 

and ( q . vj 1. 

We define the @ induced by a problem instance as 

the set of horizontal and vertical line segments introduced 

by extending all sides of the figure and the holes in both 

directions until either the line segment intersects the side 

of a hole or the line segments intersecta the boundary. Pi- 

ures 2.1 and A. 1 illustrate the grid induced ( by broken lines 
) for two problem instances- 

I I I I I I 

fllure 2. L: ( Non-solid limes are grid limes ). 

It can be easily shown that in any optimal solution 

for the RP-RPP problem, all partitioning edges lie on the 

induced grid. The proof of this fact uses arguments similar 

to the ones in the proof of lemma 1 in [l&RR]. The solutions 

that our algorithms generate also have this property. 
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III Divide-and-Conquer Approximation Algorithm for the 

REP Problem. 

In section II we mentioned that a problem instance is 

defined a5 1 = ( B , P , H ). For the REP problem, I-I is an 

empty set and B contains four corner points defining a rec- 

tangular global boundary. In our algorithm we use ( 20 ps ), 

X, and Y to define the boundary, where ( 20 , ys ) is the 

bottom-left corner of the boundary ( origin of I ), X and Y 

are the width and height of the boundary. 

We use Ew to denote the solution generated by our 

algorithm. In the aIgorithm Em is a set of pairs of points, 

each pair representing a line segment in the solution. Ini- 

tially Espi is empty. 

procrdmPARMlON(ro.yo.X,Y,P) 

b*d” 

S, IO kcakd to the 1~ d the center of the reckn#c. 2, - z. d x’ md u < n: 

a#h lcompounQut etapI 

~=r;,~fr~4.Yo+Y~.~4.Yo~l.~~4t,.Yo+Y~.~4.,.Yo~ll 
Pr=I~EPIandq<~l:P~=I~l~Pand~>t.l: 

Xl=4-+o;X?=X-(~rl-ro); 

PARnnON( zo , ye, X, , Y , PI ); PARTlTION( G.I, yo, X8. Y ,~a): 
md 

Since the rules used to do the “horizontal cuts” are 

the name as what we use to do the “vertical cuts”, we only 

consider “horizontal cuts”; It is easy to see that figure 3.1 

below includes all possible situations of one step in the 

recursive process of our aIgorithm. A shadowed rectangle 
represents a sub-instance without interior points from set 

P. 

In fIIure 3.1, (1). (3). (4) and (5) correspond the 

“simple~ut step” in the aIgorit.hm, and the remaining ones 

correspond the “compounc&ut step” in the alporithm. 

The basic idea behind recursive definition of our 

lower bound function, LB. is to take a “portion” of edge 

lengthfromL(E,,,s)insuchawayt.hat lB(I)SyE,,,r(I) 

). Now with reference to IIure 3.1 we define LB( I ) recur- 

sively as follows: 

LB(l)= 

0 

Y 

mh~X.ZY I 

LB(I,)+LB(h) 

ta(I,)tL~l,)+minfX¶~~Yl 

LB(I,)tminfX~.YI 

I 

LB(!,)tTin~.Y,.YI 

LB( I, ) t ntirrf X* t X3. 2Y I 

lB(Ie)+minfX~tXt,ZYI 

I b empty 

(1) 

(2) 
(3) 

(4 

(5) 

(3) 

(3 

(5) 

tmmcs3.1:ForanyinstanceI,LB(I)~~E~(I)). 

Ifooj: The proof appears in [CZ]. 

. 

For any instance I. we define tbe function USE( 1) to 

be the sum of the length of the edges introduced by the 

alporithm when presented Instance I and without including 

the edges introduced In any of its recursive calls. For prob- 

lem instance 1. let Ii. Is. . . . . I,,, be the subinstances which 
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were used when calIing PARTITION( I ). Then y S, ) = 2 
i-1 

ufw Ij 1. 

For a problem instance I = ( ro, yo, X, Y, P ), if maxl 

X Y 1 5 (l+a min{ X. Y 1. we call it a re@ar ( R ) 

instance, otherwise we call it an +rsgultar (IR) instance. We 

define the CARRY function as follows: 

I 

0 illis rmp& 
CARRY(I) = x+r ifIfs R andnan-en& 

(2+4) mint X. Y 1 if I Is IR and non-em& 

For non-empty instance 1. we have, equivalently. CARRY( I ) 

= mint X t Y, (Ztfl) minf X, Y { j. Function CARRY( I ) indi- 

cates the maximum amount of edge length introduced by 

the algorithm in previous ( ancestor ) calls that have not yet 

been accounted for by @+a) l lower bound. For any subin- 

stance I we must show that L( &( I ) ) + CARRY( I ) 5 

(s+\/ll)*LB(l)~(3t~)*YE~(I)). 

Lo- 3.2: For any problem instance I. 

(i) L(E,(I))tCARRY(I)4(3t~)*LB(I) 

(ii) L(E,(I))tcARRY(I)~(3t~)*L(E~(I)). 

f+oof: The proof appears in [CZ]. 

. 

mm-em 3.1: For any instance of the RC-P problem, aIgcr 

rithm PARTITION generates a solution E-( I ) such that L( 

E,(I))s(3+J5)L(Ey(I)). 
Aoo$ The proof follows from lemma 3.2. 

. 

Let us now determine the tightness of our approxi- 

mation bound. In example 3.1 we give an instance such that 

L( Elp. ) = 3.5 L( E,# ) - E for any small E > 0. Since we 

could not find examples whose behavior is worse than this. 

we conjectured that the analysis of our approximation 

bound could be improved. However, this is not possible 

unless one redefiies the lower bound function. In example 

3.2 we show that there are instances for which L( Eqpr ) = 

(3+4) LB{ I ) - G for any small E > 0. 

Romple 3.1: 

The boundary is the rectangle with origin (0, 0). X = 

2’. Y = 1. To ease the arguments we assume that there are 

3m points inside the boundary, where m = @“-1. The points 

are defined as follows: 

Pr=(i/B,1/2+E),lsism: 

ppL=(i/B, 1/2-c), lrirm; 

Pr = (i/8. l/2). 1 s is m. 

For small E the solution generated by our algorithm and the 

optimal solution are depicted in fiiure 3.2. 

I . ..~.....~.....~...~.~. I 
E;pl 

figure 3.2 

Ci~Edy. 
L&(I)) = 3X + (m + 1)/2 - 1 = 3.p + @‘# - 1, and 

L(E.J(I))=~X+~~E=~‘+(~‘+‘-~)E. 

‘Ibus* *k gg YE, 0wu&pl0)) = 3.5 

hw7tp.i~ 3.2: 

The boundary is a rectangular with origin (0.0) and 

X = Y = P. There are (p-1) t 4*20* points inside the boun- 

dary. Among them p-1 points are arranged in such a way 

that the algorithm wiII partition the instance into p subin- 

stances of size one by one. For k = 2 the partition gen- 

erated by the algorithms is given in fiiure 3.3. Applying the 

definition of our lower bound function, LB, we know that if 

each of these subinstances is not empty none of the lengths 

of these edges will be accounted toor in LS. In other words, 

the lower bomd function for the problem is equal to the 

sum of the lower bounds for each ot the squares. 

rIure 3.3 
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The remaining 4*@ points are distributed into 22’ subin- 

stances each with four points. Each subinstance is such that 

algorithm PARTITION performs a compoundsut followed by 

two eimple~ute, in further recursive steps. This is illus- 

trated in f&ure 3.4. 

m 
XI XI 

fiiure 3.4 

Let x1 = x, = l/(l+a). Then by the definition of LB, it is 

easy to see that for each square 1, LB(I) = 22*. 

Clearly, 

L(&&l)) = 2*zL ‘(P-1) + zti *(2+2/( 1+fl)). 

‘fhue. Fi L(E,(I))/LB(I) = @ (4+2/(1+4)-2’-‘) = 3+\/5. 

in the above examples we only considered the RGP 

problem, if we relocate the points we can show that the 

above bounds are satisfied by an instance of the RGNLP 
problem. Example 3.1 is also the worst case we could find 

fw the partition algorithm which only makes a simple-cut at 

each recursive step. The above examples shows that the 

bound WC obtained is not so far away from the real bound. 

With respect to the time complexity bound for algo- 

rithm PARTITION we have the fokowing result. 

theorem 3.2: The time complexity of algorithm PARTlTlON is 

O( ng ). 

Boo/: The proof of this theorem is straight forward. For 

brevity it will be omitted. 

. 

If compound cuts are not defined in algorithm PARTI- 

TION, we obtain another algorithm which in some cases gen- 

erates better solutions than the ones generated by algo- 

rithm PARTITION. The new algorithm always mekes a verti- 

cal cut along q and recursively solves the two remaining 

problems. The approximation bound is 5 and the time com- 

plexity is the same as before, 0( ne ). The proof for the 

approximation bound is much more elaborate than the one 

for PARTITION, but the constant associated with the time 

complexity bound is smaller than the one for algorithm PAR- 

TITION. We cannot claim that the solution generated by one 

of these algorithms is always better than the solution gen- 

erated by the other, because there are instances for which 

any of these two algorithms outperforms ( with respect to 

the objective function value ) the other. We can also show 

that for some problem instances the solutions generated by 

both of these algorithms is equally “bad’ ( see example t ). 

In summary, the approximation algorithms discussed in this 

section have approximation bounds that are large because 

of the Lower bound function. The main problem with the 

lower bound function is that it only takes into account local 

relationships between the points and ignores their global 

relation. In the next section we trv to circumvent this 
problem. 

Ii! &proicimtion Algorithns Using Roblem lkns~om- 

t&m. 

In this section we present another approximation algo- 

rithm for the RGP problem. This new algorithm tries to 

avoid the drawback of the previous algorithms. The new 

algorithm makes decisions based on the global relationship 

between the points and the lower bound function used in 

this case is closer to the optimal solution. Our approach 

consists of transforming the instance of the RP-C problem 

into an instance of a generalized RP-HF problem for which 

we can find an optimal partition in polynomial tie (see 

appendi). Such a partition is our solution to the original 

problem. The first transformation is performed by scanning 

the points inside the boundary one by one and introducing 

jogging lines to make them directly or indirectly connected 

to the global boundary. Let PI = ( xl, yl ). pg = ( za ug ) . . . . . 

J+, = ( &. ~a ) be the set of points inside the rectangle end 

assume that they have been reordered in such a way that: 

1) xi 5 zi, for 1s i C j 4 n: and 

2) if q = zj then gt > yf, for 1 g i < j 5 n. 

The scanning traverses the points in the order pr, pg. 

. ..( p,,. During the ith iteration point pr is connected 

directly or indirectly to the global boundary by a vertical 

and a horizontal line. Point pr is connected to (x,y). for 

some x s q and y 2 J/~, by a shortest path. The path con- 

sists of a most one vertical line segment and at most one 

horizontal line segment. The vertical line segment ( if 

present ) must be adjacent to p$ and (x.y) must be a boun- 

dary point, a line segment introduced before the ith itera- 

tion or one of the first i - 1 points. Let C( I ) be the set of 

knee introduced by the above scanning rule. Fiure 4.1 

shows the limes iniroduced for some instance 1. 
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figure 4.1 

The instance displayed in figure 4.1 is an instance of 

the generalized RP-HF problem. In such a problem we do 

not have holes nor points. We only have a rectilinear boun- 

dary with jogging lines connected to it. These jogging lines 

should be viewed as boundaries. Each side of a lime segment 

is a boundary. Since the algorithm in [LPRS] can be’ trivially 

modified to find an optimal solution to this problem we do 

not include the result in the main text. An explanation on 

how to generalize the results in [LPRS] is given in the appen- 

dix. 

Algorithm TRM’S 

Step 1: Construct an instance of the generalized RP-HF 

problem by performing scanning procedure; 

Step 2: Use the algorithm in the appendix to find an 

optimal solution to the RP-HF problem constructed by step 

1. 

snd of algorithm 

Iheorsm 4.1: The time complexity for algorithm TRANS is 0( 

n4 ). 

RuoJ: For brevity the proof is omitted. 

. 

Let E,(l) be the solution generated by algorithm 

TRANS. LetE(l)=C(1)uE~(l)uD(l).whereE~(I)is 

an optimal solution for I and D( 1 ) is a set of line segments 

(to be defied below) needed to make C( I) u EM{ I ) a rec- 

tangular partition. Clearly L( E( 1 ) ) L L( E*( I ) ). If we 

canshowthatL(E(I))~3b(Eopl(l)),thenL(E~(I))4 

3 y E.p( I ) ). Therefore, to prove our result it is only 

requiredtoshowthatE(I)=C(l)uEopl(l)uD(l)isa 

rectangular partition for the generalized RP-HF problem 

constructed by step 1 in procedure TRARS and to prove that 

y E( 1 ) ) 4 3 L( Elp(( I ) ). Before proving these results, we 

make some definition and reduce further our proofs. 

Let P( I ) = C( f ) U E& ( I ) for some optimal solution Ew ( I 

). Clearly E&( I ) is an rectangular partition. Em-y time 

we add a path from C( I ) to it we will partition some rectan- 

gles and perhaps introduce a joint (see fllum 42) in a mc 

tangle. After introducing all the lines in C( I ). we can easily 

partition P( 1) into rectangles with and without joints ( see 

rim 4.2 ). 

El Ll 
aprc 4.2 

To produce a rectangular partition for P( 1 ), we must elim- 

lnate the joints by .introducing one line segment and thus 

partition the rectangle with a joint into three rectangles. All 

of these lines that we introduce are the elements of a set 

that we define as D( I ). Clearly all joints consist of only line 

Segments from g&( 1 ). Bach of the sides of a rectangle is 

either a boundary. a line segment from E~P( or a line 
segment from Ew. Note that in some situations a side of a 

rectangle is a line segment from Q and a line segment 

from &, The linea in C( I ) - E~pr ( 1 ) are labeled A. What 

mrriUshowisthatyD(I)u(C(I)-~(1)))$2L(Eopl( 

I ) ). We prove this nsult by showing that for each rectangle 

R in P( I ). LEIN( R ) s OPT( R ). where LElN( R ) is the sum of 

the length of the edges from D( I ) inside rectangle R plus 

the sum of the length of the edges labeled A that belong to 

the bottom and right sides of the rectangle plus the length 

of the lines that form the joint (if present); and OPT( R ) is 

the sum of the length of the edges in Ew( 1) that belong in 

rectangle R Clearly, in order to complete the proof of our 

approximation bound it is only mquimd to show that LEN( R 

) r(; OpT( R ) for all R For rectangle R let X be its width and 

Y be its height. Before proving our result we prove some 

useful properties that are satisfied by every rectangle R 

Luwuna 4.1: For every rectangle R 

(a) If the joint is present it can only be located on the bot- 

tom left comer of R: 

(b) If the joint is present then neither the left nor the bot- 

tom side of R can be labeled A nor can they be boundaries; 

(c) No side labeled A can be adjacent to a boundary located 

on the right or the bottom side of R; 

(d) It is impossible for both the bottom and right side of R to 

be labeled A; 

(e) There cannot be a path all of it labeled A that joins two 

boundaries; and 

(f) If the left and right side of R is labeled k then X L Y. 
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(g) If the top and bottom side of the rectangle is labeled A. 

thenYkX. 

Bool: For brevity the proof will be omitted. 

. 

Lemma 4.2 For all R, LEN(R) s OPT(R). 

ctool: The proof appears in [GZ]. 
. 

Note that if algorithm PARTITION is used then c is 

(4+-6). and if algorithm TRANS is employed then c is only 4. 

-orem 5.2: Algorithm REP has time complexity 0( n’ ). 

Roof: For brevity the proof is omitted. 

. 

Our algorithms have an approximation bound that is 

far from optimal, however we believe that the solutions gen- 

erated by our algorithms are usually very close from 

optimal. Presently we are. working on approximation algo- 

rithms for the RP-RPP problem. We believe that the tech- 

niques used by our algorithms can be generalized to solve 

these other problem with an approximation bound which is 

very close to the previous bounds. Note that this result 

would imply the solution of all the partition problems given 

in faure 1. 

VI. Rejemnces. 

w-J1 

IAT1 

[CJPT] 

CGZI 

wJ@l 

Aho, A. V., J. E. Hopcroft and J. D. Ullman, The 
Design and Analysis of Computer Algorithms, 
Addison-Wesley, 1974. 
Avis. D. and C. T. Toussaint, An Efficient Algo- 
rithm for Decomposing a Polygon into Star- 
shaped Polygons, Pattern Recognition, Vol. 13, 
1981. 
Chazelle, El. and D. Dobkin, Decomposing a 
Polygon into its Convex Parts; Proc. 11th ACM 
Symp. on Theory of Cornput.. 1979. 
Carey, hf. R., D. S. Johnson, F. P. Preparata and 
R E. Tarjan. Triangulating a Simple Polygon; 
InfoImution Rocsssing Letters, Vol. 7. NO. 4. 
(June 1978). 

Gonzalez, T. and S-Q. Zheng, Approximation Algo- 
rithms for Partitioning Rectilinear Polygons, 
Technical Report, University of California, Santa 
Barbara, March 1985. 
Lodi, E., F. Luccio. C. Mugnai, and L Pagli, On 
Two-dimensional Data Organization 1; FZLndd- 
menta Infowrdicae, Vol. 2, No. 2 (1979). 

l-&i. E. F. Luccio. C. Mugnai. L Pagli and W. 
Lipski. Jr.. On Two-dimensional Data Organization 
II; FLndamenta Infomaticae, Vol. 2. No. 3 
(1979). 
Lingas. A.. R Y. Pinter. R L. Rivest, and A. 
Shamir. Minimum Edge Length Partitioning of 
Rectilinear Polygons, Proc. 20th Annual Allerton 
Conference on Communication, Control, and 
Computing. Monticello, Illinois, Oct. 1982. 
Rivest. R L.. The “Pl” (Placement and Intercon- 
nect) System, Proc. 19th Design Automation 
Conference, June 1982. 
Sack. J. R. An 0( n log n ) Algorithm for Decom- 
posing Simple Rectilinear Polygons into Convex 
Quadrilaterals, Proc. 20th Annual Aflerton 
Conference on Communication, Control and Com- 

puting, Oct. 1982. 

&pen&z: An 0( n’ ) Optimal Algorithm for the 

Generalized RP-HF Problem 

In this section, we introduce an algorithm for the gen- 
eralized RP-HF problem. The instance displayed in figure 
4.1 is an instance of the generalized RP-HF problem. In the 
RP-HF problem do not have holes nor points. We only have a 
rectilinear boundary with jogging lines connected to it. 
These jogging lines should be viewed as boundaries. Each 
side of a line segment is a boundary. The grid induced for 
the problem instance given in figure 4.1 is displayed in fig- 
ure A. 1. 

From these observations it is simple to see that the algo- 

rithm given in [LPRS] can be used to solve the generalized 

RP-HF problem. The time complexity of the algorithm is 0( 

n4 ). 
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