
Bounds for Partitioning Rectilinear Polygons

Teofilo Gonzalez and Si-Qing Zheng
Department of Computer Science

The University of California
Santa Barbara, CA 93106

Abs&acf: We study the problem of partitioning a rectilinear

polygon with interior points into rectangles by introducing a

set of line segments. All points must be included in at least

one of the line segments introduced and the objective

function is to introduce a set of line segments such that the

sum of their lengths is minimal Since this problem is

computationally intractable, we present efficient

approximation algorithms for its solution. The solutions

generated by our algorithms are guaranteed to be within a

fixed constant of the optimal solution value. Even though

the constant approximation bound is not so small, we

conjecture that in general the solutions our algorithms

generate are close to optimal.

Koyumdn: Approximation algorithms, partition of

rectilinear polygons, polynomial time complexity.

hdrotSudion.

Computational geometry is becoming more important

because new problems in areas like pattern recognition,

artificial intelligence, graphics, VLSI design and robotics are

being identified as inherently geometric. For many

geometric problems the algorithmic method of solution

appropriate to a computer appears to be quite complex. One

of the fundamental problems in computational geometry is

to partition a polygon into parts. Traditionally the objective

function is to obtain a convex partition with minimal

number of components, and fortunately polynomial time

algorithms for this problem exist ([CD]. [GJPT], [LLMP],

Permission to copy without fee all or part of this material is grant&
provided that Ihc copies arc not made or distributed for direct
commercial advantage, the ACM copyrighl not& and the tik of Ihc
publication and its date appear, and notice is given that copying is by
permission of the Association for Compuling Machinery. To copy
otherwise. or IO republish, requires a fee and/or specific permission.

0 1985 ACM O-89791~163-6/85/006/0281 WI.75

[LLMPL]. [S]). Liigas el. al. ([LPRS]) investigated the

tition problem for rectilinear polygons, the goal w

obtain a partition with minimum length of pertiti
edges. In VLSI design, the problem of dividing rc

regions into channels can be reduced to this new par

problem ([R]). Some versions of this partition prc

were shown NP-complete, but the computational Comp

of some other related problems is not known ([LPRS]

this paper we investigate the problem of finding ap

mate solutions to some of these partition problem!

show that generating a solution within a “small” COI

factor of the optimal solution value is a polynomially

able problem.

A rectilinear boundary is a simple polygon wit

additional constraint that all of its sides are either pc

or perpendicular to each other. A hole is a simple I

lnear polygon whose sides are parallel or perpendicu

the sides of the rectilinear boundary and located a

inside of a rectilinear boundary. There can be no

inside a hole. A single point inside the boundary is cal

degenerate hale. A mure is a rectilinear boundary

may contain an arbitrary number of nonoverlapping

A +sctangulm parWon of a figure is a set of line segl

lying within its boundary and not crossing any

degenerate hole so that when drawn into the figure th

not enclosed by holes is partitioned into rectangles wh

not contain degenerate holes. The partitioning lint

ments are called edges. A minimum edge length partil

a figure is a rectangular partition such that the sum

length of its edges is the smallest among all feasible

tions. For every set of edges, E(I), in a feasible soluti

problem instance I we use the function L(E(I :

represent the sum of the length of the edges in E(I

more details about these defiiitions see [LPRS].

Known results about the computational complex

minimum edge rectangular partitioning of recta

polygons is displayed in the following table.

: par-

as to

.oning
Buting

,tition

,blem

lexity

). In

prozi-

5. We

1st8nt

’ solv-

h the

uallel

rectii-

liar to

In the

holes

led an

which

holes.

ments

non-

e area

ich do

e seg-

tion of

of the

parti-

Ion for

) to
). For

city of

ilinear

281

Problem Baur&ry Points and Holes compleai1y

I?&HF rmctiliiu polypn hole INO O(Q)

RGNIR rrctan@* non-corectilineu points NP

RFWLP reotllineu poly#on non-corectllins~r pointn NP

E-P rCC*le points NP-compl~l~

RP-P mctilioeu pdydon point* NP-complete

RGNP

FIP-RP

m&l@

rectilineu pdy:on

rectilinear polygons 1 NP-complete 1

rectilinear polygom NP-complela

RGRPP rrcluylc rectilinear polygons Md pdnb h’P-complete

RP-RPP nctillneu pdyao” nctilinev polygon and pdnlr NP-complete

In the above table the RP-NLP problem is interpreted as

“minimum edge length rectangular partitioning of a Rectil-

inear Polygon with Non-core&Linear Points inside it”. and

similarly other abbreviations are self-explanatory, The com-

putational complezity of the problems in the above table is

displayed in fiiure 1.1, where ” problem A -> problem B ”

means that problem A is polynomially reducible to problem

B. i.e. problem A is not computationally “harder” than prob-

lem B.

I
1 Rc-NLP __) Rc-P - RC- ItP ,Rc.I,

I
RP!HF

Rgure 1.1

The computational complexity of the RC-NLP and RP-

NIP haa not yet been established. Since an optiial solution

for a given problem instance of RC-NlP could be very com-

plex (see Rgure 1.2 for an example) and it seems that

there is no way to obtain an optiial solution without

exhaustive search, we strongly conjecture that both of these

problems are NP-complete.

figure 1.2

in this paper we present approximation algorithms for

all the problems included in the RP-P problem Mong with

presenting our algorithma. we show that the solutions pen-

eratsd by our algorithms are optimal to within a constant

factor. That is. if we denote the set of edges in an optimal

solution by A&(I). then L+(&.(I)) 6 c y Em(I)),

where c is a constent, and Em(I) is the set of edges in the

solution generated by our algorithm. Although the approxi-

mation bounds we have obtained are not so small, we believe

that the actual performance of our algorithms is consider-

ably better than what we have been able to show.

A problem instance ia formally defied (w I = (B , P
, fi), where B is a set of (corner) points which defines a

ractilintar polygonal boundary, P is a set of points as degen

crate holes inside the boundary and H is a set of point sets,

each defies a rectilinear hole inside the boundary. In the

rest of this paper we call the polygon defined by B the global

Cormdmy. Certainly B, P and H must satisfy a set of con-

strainr so that “1” Is a valid problem instance. A polygon can

be represented by a list of comer pointa, Po PI, p,,+
ruch that the line segment frompt top(<tl),,od(n) is a side of

the boundary for 0 4 i 5 n - 1. A line segment is represented

by the pair of end points of the segment, i.e. [(21, pt) , (zj

, vj)] represent the lime segment with end points (z(, P,)

and (q . vj 1.

We define the @ induced by a problem instance as

the set of horizontal and vertical line segments introduced

by extending all sides of the figure and the holes in both

directions until either the line segment intersects the side

of a hole or the line segments intersecta the boundary. Pi-

ures 2.1 and A. 1 illustrate the grid induced (by broken lines
) for two problem instances-

I I I I I I

fllure 2. L: (Non-solid limes are grid limes).

It can be easily shown that in any optimal solution

for the RP-RPP problem, all partitioning edges lie on the

induced grid. The proof of this fact uses arguments similar

to the ones in the proof of lemma 1 in [l&RR]. The solutions

that our algorithms generate also have this property.

282

III Divide-and-Conquer Approximation Algorithm for the

REP Problem.

In section II we mentioned that a problem instance is

defined a5 1 = (B , P , H). For the REP problem, I-I is an

empty set and B contains four corner points defining a rec-

tangular global boundary. In our algorithm we use (20 ps),

X, and Y to define the boundary, where (20 , ys) is the

bottom-left corner of the boundary (origin of I), X and Y

are the width and height of the boundary.

We use Ew to denote the solution generated by our

algorithm. In the aIgorithm Em is a set of pairs of points,

each pair representing a line segment in the solution. Ini-

tially Espi is empty.

procrdmPARMlON(ro.yo.X,Y,P)

b*d”

S, IO kcakd to the 1~ d the center of the reckn#c. 2, - z. d x’ md u < n:

a#h lcompounQut etapI

~=r;,~fr~4.Yo+Y~.~4.Yo~l.~~4t,.Yo+Y~.~4.,.Yo~ll
Pr=I~EPIandq<~l:P~=I~l~Pand~>t.l:

Xl=4-+o;X?=X-(~rl-ro);

PARnnON(zo , ye, X, , Y , PI); PARTlTION(G.I, yo, X8. Y ,~a):
md

Since the rules used to do the “horizontal cuts” are

the name as what we use to do the “vertical cuts”, we only

consider “horizontal cuts”; It is easy to see that figure 3.1

below includes all possible situations of one step in the

recursive process of our aIgorithm. A shadowed rectangle
represents a sub-instance without interior points from set

P.

In fIIure 3.1, (1). (3). (4) and (5) correspond the

“simple~ut step” in the aIgorit.hm, and the remaining ones

correspond the “compounc&ut step” in the alporithm.

The basic idea behind recursive definition of our

lower bound function, LB. is to take a “portion” of edge

lengthfromL(E,,,s)insuchawayt.hat lB(I)SyE,,,r(I)

). Now with reference to IIure 3.1 we define LB(I) recur-

sively as follows:

LB(l)=

0

Y

mh~X.ZY I

LB(I,)+LB(h)

ta(I,)tL~l,)+minfX¶~~Yl

LB(I,)tminfX~.YI

I

LB(!,)tTin~.Y,.YI

LB(I,) t ntirrf X* t X3. 2Y I

lB(Ie)+minfX~tXt,ZYI

I b empty

(1)

(2)
(3)

(4

(5)

(3)

(3

(5)

tmmcs3.1:ForanyinstanceI,LB(I)~~E~(I)).

Ifooj: The proof appears in [CZ].

.

For any instance I. we define tbe function USE(1) to

be the sum of the length of the edges introduced by the

alporithm when presented Instance I and without including

the edges introduced In any of its recursive calls. For prob-

lem instance 1. let Ii. Is. I,,, be the subinstances which

283

were used when calIing PARTITION(I). Then y S,) = 2
i-1

ufw Ij 1.

For a problem instance I = (ro, yo, X, Y, P), if maxl

X Y 1 5 (l+a min{ X. Y 1. we call it a re@ar (R)

instance, otherwise we call it an +rsgultar (IR) instance. We

define the CARRY function as follows:

I

0 illis rmp&
CARRY(I) = x+r ifIfs R andnan-en&

(2+4) mint X. Y 1 if I Is IR and non-em&

For non-empty instance 1. we have, equivalently. CARRY(I)

= mint X t Y, (Ztfl) minf X, Y { j. Function CARRY(I) indi-

cates the maximum amount of edge length introduced by

the algorithm in previous (ancestor) calls that have not yet

been accounted for by @+a) l lower bound. For any subin-

stance I we must show that L(&(I)) + CARRY(I) 5

(s+\/ll)*LB(l)~(3t~)*YE~(I)).

Lo- 3.2: For any problem instance I.

(i) L(E,(I))tCARRY(I)4(3t~)*LB(I)

(ii) L(E,(I))tcARRY(I)~(3t~)*L(E~(I)).

f+oof: The proof appears in [CZ].

.

mm-em 3.1: For any instance of the RC-P problem, aIgcr

rithm PARTITION generates a solution E-(I) such that L(

E,(I))s(3+J5)L(Ey(I)).
Aoo$ The proof follows from lemma 3.2.

.

Let us now determine the tightness of our approxi-

mation bound. In example 3.1 we give an instance such that

L(Elp.) = 3.5 L(E,#) - E for any small E > 0. Since we

could not find examples whose behavior is worse than this.

we conjectured that the analysis of our approximation

bound could be improved. However, this is not possible

unless one redefiies the lower bound function. In example

3.2 we show that there are instances for which L(Eqpr) =

(3+4) LB{ I) - G for any small E > 0.

Romple 3.1:

The boundary is the rectangle with origin (0, 0). X =

2’. Y = 1. To ease the arguments we assume that there are

3m points inside the boundary, where m = @“-1. The points

are defined as follows:

Pr=(i/B,1/2+E),lsism:

ppL=(i/B, 1/2-c), lrirm;

Pr = (i/8. l/2). 1 s is m.

For small E the solution generated by our algorithm and the

optimal solution are depicted in fiiure 3.2.

I . ..~.....~.....~...~.~. I
E;pl

figure 3.2

Ci~Edy.
L&(I)) = 3X + (m + 1)/2 - 1 = 3.p + @‘# - 1, and

L(E.J(I))=~X+~~E=~‘+(~‘+‘-~)E.

‘Ibus* *k gg YE, 0wu&pl0)) = 3.5

hw7tp.i~ 3.2:

The boundary is a rectangular with origin (0.0) and

X = Y = P. There are (p-1) t 4*20* points inside the boun-

dary. Among them p-1 points are arranged in such a way

that the algorithm wiII partition the instance into p subin-

stances of size one by one. For k = 2 the partition gen-

erated by the algorithms is given in fiiure 3.3. Applying the

definition of our lower bound function, LB, we know that if

each of these subinstances is not empty none of the lengths

of these edges will be accounted toor in LS. In other words,

the lower bomd function for the problem is equal to the

sum of the lower bounds for each ot the squares.

rIure 3.3

284

The remaining 4*@ points are distributed into 22’ subin-

stances each with four points. Each subinstance is such that

algorithm PARTITION performs a compoundsut followed by

two eimple~ute, in further recursive steps. This is illus-

trated in f&ure 3.4.

m
XI XI

fiiure 3.4

Let x1 = x, = l/(l+a). Then by the definition of LB, it is

easy to see that for each square 1, LB(I) = 22*.

Clearly,

L(&&l)) = 2*zL ‘(P-1) + zti *(2+2/(1+fl)).

‘fhue. Fi L(E,(I))/LB(I) = @ (4+2/(1+4)-2’-‘) = 3+\/5.

in the above examples we only considered the RGP

problem, if we relocate the points we can show that the

above bounds are satisfied by an instance of the RGNLP
problem. Example 3.1 is also the worst case we could find

fw the partition algorithm which only makes a simple-cut at

each recursive step. The above examples shows that the

bound WC obtained is not so far away from the real bound.

With respect to the time complexity bound for algo-

rithm PARTITION we have the fokowing result.

theorem 3.2: The time complexity of algorithm PARTlTlON is

O(ng).

Boo/: The proof of this theorem is straight forward. For

brevity it will be omitted.

.

If compound cuts are not defined in algorithm PARTI-

TION, we obtain another algorithm which in some cases gen-

erates better solutions than the ones generated by algo-

rithm PARTITION. The new algorithm always mekes a verti-

cal cut along q and recursively solves the two remaining

problems. The approximation bound is 5 and the time com-

plexity is the same as before, 0(ne). The proof for the

approximation bound is much more elaborate than the one

for PARTITION, but the constant associated with the time

complexity bound is smaller than the one for algorithm PAR-

TITION. We cannot claim that the solution generated by one

of these algorithms is always better than the solution gen-

erated by the other, because there are instances for which

any of these two algorithms outperforms (with respect to

the objective function value) the other. We can also show

that for some problem instances the solutions generated by

both of these algorithms is equally “bad’ (see example t).

In summary, the approximation algorithms discussed in this

section have approximation bounds that are large because

of the Lower bound function. The main problem with the

lower bound function is that it only takes into account local

relationships between the points and ignores their global

relation. In the next section we trv to circumvent this
problem.

Ii! &proicimtion Algorithns Using Roblem lkns~om-

t&m.

In this section we present another approximation algo-

rithm for the RGP problem. This new algorithm tries to

avoid the drawback of the previous algorithms. The new

algorithm makes decisions based on the global relationship

between the points and the lower bound function used in

this case is closer to the optimal solution. Our approach

consists of transforming the instance of the RP-C problem

into an instance of a generalized RP-HF problem for which

we can find an optimal partition in polynomial tie (see

appendi). Such a partition is our solution to the original

problem. The first transformation is performed by scanning

the points inside the boundary one by one and introducing

jogging lines to make them directly or indirectly connected

to the global boundary. Let PI = (xl, yl). pg = (za ug)

J+, = (&. ~a) be the set of points inside the rectangle end

assume that they have been reordered in such a way that:

1) xi 5 zi, for 1s i C j 4 n: and

2) if q = zj then gt > yf, for 1 g i < j 5 n.

The scanning traverses the points in the order pr, pg.

. ..(p,,. During the ith iteration point pr is connected

directly or indirectly to the global boundary by a vertical

and a horizontal line. Point pr is connected to (x,y). for

some x s q and y 2 J/~, by a shortest path. The path con-

sists of a most one vertical line segment and at most one

horizontal line segment. The vertical line segment (if

present) must be adjacent to p$ and (x.y) must be a boun-

dary point, a line segment introduced before the ith itera-

tion or one of the first i - 1 points. Let C(I) be the set of

knee introduced by the above scanning rule. Fiure 4.1

shows the limes iniroduced for some instance 1.

285

figure 4.1

The instance displayed in figure 4.1 is an instance of

the generalized RP-HF problem. In such a problem we do

not have holes nor points. We only have a rectilinear boun-

dary with jogging lines connected to it. These jogging lines

should be viewed as boundaries. Each side of a lime segment

is a boundary. Since the algorithm in [LPRS] can be’ trivially

modified to find an optimal solution to this problem we do

not include the result in the main text. An explanation on

how to generalize the results in [LPRS] is given in the appen-

dix.

Algorithm TRM’S

Step 1: Construct an instance of the generalized RP-HF

problem by performing scanning procedure;

Step 2: Use the algorithm in the appendix to find an

optimal solution to the RP-HF problem constructed by step

1.

snd of algorithm

Iheorsm 4.1: The time complexity for algorithm TRANS is 0(

n4).

RuoJ: For brevity the proof is omitted.

.

Let E,(l) be the solution generated by algorithm

TRANS. LetE(l)=C(1)uE~(l)uD(l).whereE~(I)is

an optimal solution for I and D(1) is a set of line segments

(to be defied below) needed to make C(I) u EM{ I) a rec-

tangular partition. Clearly L(E(1)) L L(E*(I)). If we

canshowthatL(E(I))~3b(Eopl(l)),thenL(E~(I))4

3 y E.p(I)). Therefore, to prove our result it is only

requiredtoshowthatE(I)=C(l)uEopl(l)uD(l)isa

rectangular partition for the generalized RP-HF problem

constructed by step 1 in procedure TRARS and to prove that

y E(1)) 4 3 L(Elp((I)). Before proving these results, we

make some definition and reduce further our proofs.

Let P(I) = C(f) U E& (I) for some optimal solution Ew (I

). Clearly E&(I) is an rectangular partition. Em-y time

we add a path from C(I) to it we will partition some rectan-

gles and perhaps introduce a joint (see fllum 42) in a mc

tangle. After introducing all the lines in C(I). we can easily

partition P(1) into rectangles with and without joints (see

rim 4.2).

El Ll
aprc 4.2

To produce a rectangular partition for P(1), we must elim-

lnate the joints by .introducing one line segment and thus

partition the rectangle with a joint into three rectangles. All

of these lines that we introduce are the elements of a set

that we define as D(I). Clearly all joints consist of only line

Segments from g&(1). Bach of the sides of a rectangle is

either a boundary. a line segment from E~P(or a line
segment from Ew. Note that in some situations a side of a

rectangle is a line segment from Q and a line segment

from &, The linea in C(I) - E~pr (1) are labeled A. What

mrriUshowisthatyD(I)u(C(I)-~(1)))$2L(Eopl(

I)). We prove this nsult by showing that for each rectangle

R in P(I). LEIN(R) s OPT(R). where LElN(R) is the sum of

the length of the edges from D(I) inside rectangle R plus

the sum of the length of the edges labeled A that belong to

the bottom and right sides of the rectangle plus the length

of the lines that form the joint (if present); and OPT(R) is

the sum of the length of the edges in Ew(1) that belong in

rectangle R Clearly, in order to complete the proof of our

approximation bound it is only mquimd to show that LEN(R

) r(; OpT(R) for all R For rectangle R let X be its width and

Y be its height. Before proving our result we prove some

useful properties that are satisfied by every rectangle R

Luwuna 4.1: For every rectangle R

(a) If the joint is present it can only be located on the bot-

tom left comer of R:

(b) If the joint is present then neither the left nor the bot-

tom side of R can be labeled A nor can they be boundaries;

(c) No side labeled A can be adjacent to a boundary located

on the right or the bottom side of R;

(d) It is impossible for both the bottom and right side of R to

be labeled A;

(e) There cannot be a path all of it labeled A that joins two

boundaries; and

(f) If the left and right side of R is labeled k then X L Y.

280

(g) If the top and bottom side of the rectangle is labeled A.

thenYkX.

Bool: For brevity the proof will be omitted.

.

Lemma 4.2 For all R, LEN(R) s OPT(R).

ctool: The proof appears in [GZ].
.

Note that if algorithm PARTITION is used then c is

(4+-6). and if algorithm TRANS is employed then c is only 4.

-orem 5.2: Algorithm REP has time complexity 0(n’).

Roof: For brevity the proof is omitted.

.

Our algorithms have an approximation bound that is

far from optimal, however we believe that the solutions gen-

erated by our algorithms are usually very close from

optimal. Presently we are. working on approximation algo-

rithms for the RP-RPP problem. We believe that the tech-

niques used by our algorithms can be generalized to solve

these other problem with an approximation bound which is

very close to the previous bounds. Note that this result

would imply the solution of all the partition problems given

in faure 1.

VI. Rejemnces.

w-J1

IAT1

[CJPT]

CGZI

wJ@l

Aho, A. V., J. E. Hopcroft and J. D. Ullman, The
Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.
Avis. D. and C. T. Toussaint, An Efficient Algo-
rithm for Decomposing a Polygon into Star-
shaped Polygons, Pattern Recognition, Vol. 13,
1981.
Chazelle, El. and D. Dobkin, Decomposing a
Polygon into its Convex Parts; Proc. 11th ACM
Symp. on Theory of Cornput.. 1979.
Carey, hf. R., D. S. Johnson, F. P. Preparata and
R E. Tarjan. Triangulating a Simple Polygon;
InfoImution Rocsssing Letters, Vol. 7. NO. 4.
(June 1978).

Gonzalez, T. and S-Q. Zheng, Approximation Algo-
rithms for Partitioning Rectilinear Polygons,
Technical Report, University of California, Santa
Barbara, March 1985.
Lodi, E., F. Luccio. C. Mugnai, and L Pagli, On
Two-dimensional Data Organization 1; FZLndd-
menta Infowrdicae, Vol. 2, No. 2 (1979).

l-&i. E. F. Luccio. C. Mugnai. L Pagli and W.
Lipski. Jr.. On Two-dimensional Data Organization
II; FLndamenta Infomaticae, Vol. 2. No. 3
(1979).
Lingas. A.. R Y. Pinter. R L. Rivest, and A.
Shamir. Minimum Edge Length Partitioning of
Rectilinear Polygons, Proc. 20th Annual Allerton
Conference on Communication, Control, and
Computing. Monticello, Illinois, Oct. 1982.
Rivest. R L.. The “Pl” (Placement and Intercon-
nect) System, Proc. 19th Design Automation
Conference, June 1982.
Sack. J. R. An 0(n log n) Algorithm for Decom-
posing Simple Rectilinear Polygons into Convex
Quadrilaterals, Proc. 20th Annual Aflerton
Conference on Communication, Control and Com-

puting, Oct. 1982.

&pen&z: An 0(n’) Optimal Algorithm for the

Generalized RP-HF Problem

In this section, we introduce an algorithm for the gen-
eralized RP-HF problem. The instance displayed in figure
4.1 is an instance of the generalized RP-HF problem. In the
RP-HF problem do not have holes nor points. We only have a
rectilinear boundary with jogging lines connected to it.
These jogging lines should be viewed as boundaries. Each
side of a line segment is a boundary. The grid induced for
the problem instance given in figure 4.1 is displayed in fig-
ure A. 1.

From these observations it is simple to see that the algo-

rithm given in [LPRS] can be used to solve the generalized

RP-HF problem. The time complexity of the algorithm is 0(

n4).

287

