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EXTENDED ABSTRACT:

We present an O(n log n) algorithm to construct a constrained Delaunay triangulation (CDT') for a simplc
polygon with interior points and holes. The main difference between our algorithm and the previous algorithms for
the CDT problem is that our algorithm reduces the problem 10 a sct of line intersection problems plus finding
Delaunay triangulations (DT') on several simple polygons plus finding Delaunay triangulations on scveral scts of

points. Our algorithm is based on partitions that exploit useful properties of constrained Delaunay triangulations.

Let O be a set of points in the plane. An edge for Q (or ‘simply an edge) is a line segment that joins two
points in Q and a triangulation for Q is a maximal set of edges for Q no two of which cross. A Delaunay Triangu-
lation (DT) for ( is any triangulation for 0 with the additional property that for each edge e in it there exists a cir-
cle C that passes through the endpoints of e and there is no vertex of Q in the intcrior of C. In a Delaunay triangu-
lation each edge is called a Delaunay edge and each triangle is called a Delaunay triangle. Thc dual of the
Delaunay triangulation problem is the problem of constructing a Voronoi Diagram [SH]. A Voronoi Diagram for a
set of points @ = (g1, g2, ... g} in the plane consists of a set of edges that partition the plane into a sct of regions
R = {ry,ra, ..., rs} with the property that for each i, ¢; € r; and cach point in r; is not farther from g; than from ¢;,
for all j #i. Shamos and Hocy [SH] developed an O(n log n) algorithm to construct the Voronoi diagram for Q
and showed that a Delaunay triangulation for Q may bc obtaincd from it in O(a) time. They also showed that any
"decision tree" type algorithm must take at least Q(n log n) time 1o solve either of the two problems. Lee and
Schacter [LS] developed an algorithm to obtain Delaunay triangulations in O(n log n) time, without constructing
the Voronoi diagram. Generalization of these two problems have been extensively studicd (sce for cxample [WS],
[Cw], [C], [S} and [PS]).

In this paper we study a generalization of the Delaunay triangulation which is known as the Constrained
Delaunay Triangulation (CDT) problem. Let P be a simple polygon, and let #/ be a set of pairwisc disjoint simplc
polygons, called holes, defined inside 2. The edges of P arc called boundary edges and the edges of the holes in /7
are called hole edges. Let D be a sct of points inside /P -RIf, where [P is the region inside P and R// is the region
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inside and the boundary of /7. We define V(4 ), where A is a set of pairwise disjoint polygons, as the union of the
set of vertices in each polygoninA. LetQ =D U V(P)YuV(#H)and let n be the cardinality of Q. A Constrained
Delaunay Triangulation (CDT) for Q restricted by P and H is a sct of edges for Q that satisfy the circle property
and when added o /P -RH partitions the region /P-RI{ into triangles. An edge e is said to satisfy the circle pro-
perty if there is a circle C that passes through the endpoints of e and which does not include inside it any other
point in Q that is visible (when considering boundary and hole edges as obstacles) from both of the endpoints of e .
It is simple to sce that the constrained Delaunay triangulation problem reduces to the Delaunay triangulation for Q
when P is a convex polygon and there are no holes. When each hole degenerates into a single line segment, we
refer o the CDT problem as the CDT” problem. It is simple to see that the CDT and the CDT are computationally
cquivalent problems. A brute force algorithm for the CDT problem was developed by Nielson and Franke [NF].
For the CDT” problem, Lee and Lin [LL] presented an O(n?2) algorithm and Chew [Cw) developed a divide-and-
conquer algorithm that takes optimal time, i.e, O(n log n) time. Wang and Shubert [WS] introduced the notion of
Bounded Voronoi diagram and showed how 1o find the Bounded Voronoi diagram and the CDT’ in O(n log n )
time. Jung (J1}, [J2]) adapted this algorithm to find the CDT" directly. As noted in [J1], the performance of the
algorithm degrades as the number of hole cdges increases. Seidel [S] developed the notion of an Extended Voronoi
Diagram (EVD) and showed that it is the dual of the CDT’ problem. Based on this concept and on Fortune’s [F)
chcp linc technique, Seidel [S] developed an elegant O(n log n) algorithm for constructing the extended Voronoi
diagram and by duality the CDT". All of these algorithms can be easily adapted to solve the CDT problem.

Let us now explain these algorithms in more detail in order to compare them with our algorithm. Chew’s
|Cw] algorithm begins by sorting the set of points Q along their x-coordinate values, and a box that covers all the
points is defined. The box is divided into vertical strips each containing exactly one point, since it is assumed that
all points have distinct x-coordinate values these strips exist. The CDT" is constructed on each strip and then the tri-
angulations of adjacent strips are combined until the CDT” of the entire problem is obtained. The process takes
O(n log n) time. Jung’s method ([J1] and [J2]), which is exactly the dual of Wang and Shubert’s method [WS] is
different. First, the DT of the set of points @ is constructed via Lee and Schacter’s algorithm {LS]. If all the hole
cdges overlap with the Delaunay edges, then the CDT” is just the DT and the algorithm terminates. Otherwise, the
cdges in the DT that intersect hole edges are deleted. Because of this, some regions need (o be retriangulated. The
resulting area which is not triangulated is partitioned into polygons, called difference polygons, by introducing auxi-
liary cdges in such a way that each difference polygon contains exactly one hole edge. Each difference polygon is
triangulated by the O(n log n) algorithm developed by Lee and Lin [LL] that is based on Chazelle’s [Ch] divide-

and-conquer partitioning rule for polygons. Once eéch of the difference polygons is triangulated it is combined with

the previous Delaunay edges. The auxiliary edges are removed in certain order and each time several adjacent
difference polygons are merged. The claim is that the algorithm has an O(n log n) time complexity bound.

Scidel’s [S] method is based on'the concept of Extended Voronoi Diagram and constructs the EVD using Fortune’s

sweep line technique. The CDT’ is obtained by duality. The time complexity bound for Seidel’s algorithm is also
O(n log n). . '
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Our method is different, though it is closest to the one given by Jung ([J1] and {J2]), which is bascd on Wang
and Shubert’s method [WS]. The first step consists of finding the DT of all the points in Q. If the holc edges over-
lap with the Delaunay edges, we have the CDT and the algorithm terminates. Otherwise we proceed as follows.
Instead of deleting a Delaunay edge that intersects a hole edge, as in Jung’s method, we replace the edge (ab) by
edges ai, and ipb where i, (i, )-is the closest point to vertex a (b) on edge ab that intersccts a hole edge. As a
result of this -operation a new set of points is introduced. These points are called E_points, whercas the original
points are referred to as §_points. Then we delete all edges outside the boundary of P or insﬁdc the holcs. We now
take one hole edge and delete all the E_points on it as well as all the edges incident o these E points. The result-
ing polygon is called the cuf of the line. We modify the cut so that it satisfics some additional propertics and call it
the mcut of the line. This mcut is triangulated by the O(n log n) algorithm developed by Lee and Lin [LL] that is
bascd on Chazelle’s [C] divide and conquer partitioning rule for polygons. We add thesc edges to the previously
introduced edges. This procedure is applied to each hole edge with E_poinis on it. The resulting edges form a
CDT.

The main difference between our procedure and Jung's procedure is that in our procedure cach edge which is
added inside the polygon (mcut) satisfies the circle property. For the difference polygons, this is not nccessarily
true, i.e., the property is satisfied inside the diffcrence polygon but not nccessarily outside it. This is why he nceds
to merge adjacent difference polygons after deleting auxiliary edges. Because of this property we say that mcuts
are more natural than difference polygons. The implication of this property of mcuts is that our algorithm reduces
the CDT problem to a set of line intersection problems plus finding Delaunay triangulations on scveral simple
polygons plus finding Delaunay triangulations on several sets of points. This is the first step in reducing the CDT
problem to finding a DT on sets of points plus solving other simple problems. This is important since such a result
would imply the "direct equivalence” of the DT and CDT problems. The interesting point is that some of the proba-
bilistic analyses for the DT problem may directly translate to the CDT problem. Also, our algorithm is based on
partitions that exploit useful properties of constrained Dclaunay triangulations. This is similar in naturc to the

results of Guibas and Stolfi [GS] for finding a DT for a set of line scgments.

For brevity we cannot state the algorithm formally. Neither its correctness proof nor its time complexity
bound proof are simple. They involve proving some geometrical properties of triangulations, and circles, as well as
establishing some relations to account for the steps taken by the algorithm. Our main results are given in the follow-

ing theorem which for brevity we do not prove.

Theorem 1: Our algorithm, which we call FIND_CDT, constructs a CDT for Q restricted by P and I/ in
O(n log n) time. ‘
Proof: For brevity the proof is omitted.
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We outlined an O(n log n) algorithm to construct a constrained Delaunay triangulation for a simple polygon
with interior points and holes. The main difference between our algorithm and the previous algorithms for this
problem is that our algorithm reduces the problem (o a set of line intersection problems plus finding Delaunay tri-
angulations on scveral simple polygons plus finding Delaunay triangulations on several sets of points. This is the
first step in reducing the CDT problem to finding a DT on sets of points plus solving other simple problems. This is
important since such a result would imply the "direct cquivalence” of the DT and CDT problems. The interesting
point is that some of the probabilistic analyses for the DT problem would directly translate to the CDT problem.

Also, our algorithm is based on partitions that exploit uscful properties of constrained Delaunay triangulations.
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