Constrained Delaunay Triangulations
for
Polygons with Interior Points and Holes

by

Teofilo Gonzalez and Mohammadreza Razzazit
Department of Computer Science
University of California
Santa Barbara, CA 93106

ABSTRACT: We present an O(z log n) algorithm to construct a constrained Delaunay
triangulation (CDT) for a simple polygon with interior points and holes. The main difference
between our algorithm and the previous algorithms for this problem is that our algorithm reduces
the problem to a set of line intersection problems plus finding Delaunay triangulations (DT) of
several simple polygons plus finding a Delaunay triangulation of a set of points. Our algorithm
is based on partitions and exploit useful properties of constrained Delaunay triangulations.

KEYWORDS: Computational Geometry, Constrained Delaunay Triangulations, Time Optimal
Algorithms.

+ Current address: Computer Engineering and Science Department, Case Western Reserve University, Cleveland, Ohio
44106.

July 27, 1991

I. INTRODUCTION

The problem of constructing a Delaunay Triangulation, and its dual (constructing a Voronoi
Diagram), are fundamental problems in computational geometry. There are numerous applica-
tion for these two problems which have been studied from the computational point of view for
many years. Shamos and Hoey [SH] developed an O(n log n) algorithm to construct the Voro-
noi diagram for O and showed that a Delaunay triangulation for Q may be subsequently
obtained in O(n) time. They also showed that any "decision tree" type algorithm must take at
least Q(n log n) time to solve either of the two problems. Lee and Schacter [LS] developed an
O(n log n) time algorithm to construct a Delaunay triangulations, without constructing the
Voronoi diagram. Before we discuss our problem, let us formally define the problems just dis-
cussed. Let O be a set of points in the plane. An edge for Q (or simply an edge) is a line seg-
ment that joins two points in Q and a triangulation for Q is a maximal set of edges for Q no two
of which cross. A Delaunay Triangulation (DT) for Q is any triangulation for Q in which every
edge satisfies the circle property. We say that edge e satisfies the circle property if there exists a
circle C that passes through its endpoints and there is no vertex of Q in the interior of C. The
edges (triangles) in a Delaunay triangulation are called Delaunay edges (triangles) and are
referred to as d_edges (d_triangles). The dual of the Delaunay triangulation problem is the
problem of constructing a Voronoi Diagram [SH]. A Voronoi Diagram for a set of points Q =
{¢1, q2, ... g,} in the plane is a partition of the plane into a set of regions R = {ry, ry, ..., 1, }
with the property that for each i, g; € r; and for all j #i each point in r; is not farther from g;
than from g;.

Generalization of these two problems have been extensively studied (see for example [WS],
[Cw], [C], [S] and [PS]). In this paper we study a generalization of the Delaunay tﬁangulation
problem known as the Constrained Delaunay Triangulation (CDT) problem. This problem has
many interesting applications, including the approximation of terrain surfaces ([LL]). Before we
discuss known algorithms for this problem, let us formally define the CDT problem. Let P be a
simple polygon, and let H be a set of pairwise disjoint simple polygons, called holes, defined
inside P. The edges of P are called boundary edges and the edges of the holes in H are called
hole edges. Let D be a set of points inside I P-R_H, where I_P is the region inside P and R_H
is the region inside and the boundary of H. We define V(4), where A is a set of pairwise dis-
joint polygons, as the union of the set of vertices in each polygonin A. LetQ =D U V(P) U
V(H) and let n be the cardinality of Q. A Constrained Delaunay Triangulation (CDT) for Q
restricted by P and H is a set of edges for Q that satisfy the circle property and partition the
region I_P-R_H into triangles. An edge e is said to satisfy the circle property if there is a circle
C that passes through its endpoints and which does not include inside it any other point in Q
that is visible (when considering boundary and hole edges as obstacles) from both of the

July 27, 1991

endpoints of ¢. It is simple to see that the constrained Delaunay triangulation problem reduces
to the Delaunay triangulation for Q when P is a convex polygon and there are no holes. When
each hole degenerates into a single line segment, we refer to the CDT problem as the CDT” prob-
lem. It is simple to see that the CDT’ problem is a restricted version of the CDT problem.

A brute force algorithm for the CDT problem was developed by Nielson and Franke [NF].
Lee and Lin [LL] presented an O(n2) algorithm for the CDT’ problem and an O(xn log n) algo-
rithm for the case when there are neither holes nor interior points. The latter algorithm is based
on Chazelle’s [Ch] divide-and-conquer partitioning rule for polygons. Chew [Cw] developed a
divide-and-conquer algorithm for the CDT’ problem that takes optimal time, i.e, O(n log n)
time. Wang and Shubert [WS] introduced the notion of Bounded Voronoi diagram and showed
how to find the Bounded Voronoi diagram and the CDT’ in O(n log n) time. Jung ([J1], [J2])
adapted this algorithm to find the CDT’ directly. As noted in [J1], the performance of the algo-
rithm degrades as the number of hole edges increases. Seidel [S] developed the notion of an
Extended Voronoi Diagram (EVD) and showed that it is the dual of the CDT’ problem. Seidel’s
[S] algorithm constructs the extended Voronoi diagram and by duality the CDT’ in O(n log n)
time. All of these algorithms can be easily adapted to solve the CDT problem; therefore, the
CDT and CDT’ problems are computational equivalent problems. Let us explain these algo-
rithms in more detail in order to compare them to our algorithm.

Chew’s [Cw] algorithm begins by sorting the set of points Q along their x-coordinate
values and a box covering all its points is defined. The box is partitioned into vertical
strips each containing exactly one point (this is possible since it is assumed that all points
have distinct x-coordinate values). The CDT’ is constructed for each strip and then the
triangulations of adjacent strips are combined until the CDT’ of the entire problem is
obtained.

Jung’s [J1] and [J2] method, which is exactly the dual of Wang and Shubert’s method
[WS] is different. First, the DT of the set of points O is constructed. If all the hole edges
overlap with the Delaunay edges, then the CDT’ is just the DT and the algorithm ter-
minates. Otherwise, the edges in the DT that intersect hole edges are deleted. Because
of this, some regions may need to be retriangulated. The area which is not triangulated is
partitioned into polygons, called difference polygons, by introducing a set of auxiliary
edges in such a way that each difference polygon contains exactly one hole edge. The
CDT of each difference polygon is constructed via Lee and Lin’s [LL] algorithm and. the
new edges are added to the previous Delaunay edges. Then the auxiliary edges are
removed in certain order and the triangulation of certain adjacent regions needs to be
modified.

July 27, 1991

Seidel’s [S] method is based on the concept of Extended Voronoi Diagram and constructs
the EVD using Fortune’s sweep line technique. The CDT’ is obtained by duality.

Our method is different, though it has many similarities to the one given by Jung [J1] and
[J2], which is based on Wang and Shubert’s method [WS]. The first step consists of finding the
DT of all the points in Q. If the hole edges overlap with the Delaunay edges we have the CDT
and the algorithm terminates. Otherwise we proceed as follows. Instead of deleting a Delaunay
edge that intersects an h_edge (hole or boundary edge), as in Jung’s method, we replace the edge
(ab) by edges ai, and ib where i, (i) is the closest point to vertex a@ (b) on edge ab that
intersects an h-edge. As aresult of this operation a new set of points is introduced. These points
are called E_points, whereas the original points are referred to as S_points. All edges outside the
boundary of P or inside the holes are deleted. Then the algorithm selects an h_edge at a time
and deletes all the E_points on it as well as all the edges incident to these E_points. The result-
ing polygon is called the CUT of the line. We modify the CUT so that it satisfies some addi-
tional properties (which we define later on) and call it the MCUT of the line. A CDT for the
MCUT is constructed via Lee and Lin’s [LL] algorithm and then the CDT is transformed into
another CDT that satisfies some additional properties. This procedure is applied to each h-edge
with E_points on it. We claim that the resulting edges form a CDT and that procedure takes{(/)/(; >
log n) time.. T

The main difference between our procedure and Jung’s procedure is that in our procedure
cach edge added inside an MCUT satisfies the circle property not only for the vertices in the
MCUT, but also for the points in set Q. For the difference polygons, this is not necessarily true,
i.e., the property is satisfied inside the difference polygon but not necessarily outside it. This is
why he needs to merge adjacent difference polygons after deleting auxiliary edges. Because of
this property we say that MCUTS are more natural than difference polygons. The implication of
this property of MCUTs is that our algorithm reduces the CDT problem to a set of line intersec-
tion problems plus finding Delaunay triangulations of several simple polygons plus finding a
Delaunay triangulation of a set of points. This is the first step in reducing the CDT problem to
finding a DT of sets of points plus solving other simple problems. This is important since such a
result would imply the "direct equivalence" of the DT and CDT problems. The interesting point
is that some of the probabilistic analyses for the DT problem may translate directly to the CDT
problem. Also, our algorithm is based on partitions and exploit useful properties of constrained
Delaunay triangulations. This is similar in nature to the results of Guibas and Stolfi [GS] for
finding a DT for a set of line segments.

July 27, 1991

In section II we define some terms and prove some basic properties for circles which will
be used thought this paper. The algorithm is presented in section III. In section IV we establish
correctness and in section V we show that the algorithm takes O(n log) time.

II. DEFINITIONS AND BASIC CIRCLE PROPERTIES

As defined in the introduction, let P be a convex polygon, and let H be a set of pairwise
disjoint simple polygons, called holes (note that a hole has nonzero area), defined inside P. Let
D be a set of points inside _ P-R_H,let Q@ =D U V(P) U V(H), and let n be the cardinality
of set 0. An edge of a polygon representing a hole is called a hole edge, and an edge of P is
called a boundary edge. A boundary edge, hole edge or part of a hole or boundary edge is called
an h_edge. Edges and triangles resulting from a DT or CDT are called Delaunay edges
(d_edges) and Delaunay triangles (d_triangles). Deleting zero or more edges from a triangula-
tion results in an s_triangulation (or sub-triangulation).

The (infinite length) line that passes through points @ and b (a # b) is referred to by
line(ab), and the line that starts at point a, passes through b and continues to infinity is referred
to as halfline(ab). Let p be a point and ab be a line segment. We say that pointp € [a, b]if
point p is a point in line segment ab. We say that pointp € (a@,b)ifp € [a,b],p #a andp
#b. Letabc be a triangle. Then, cir(abc) is the circle passing through points a, b and ¢. The
prefix R_<#> attached to the name of a closed curve or polygon is used to represent the region
inside and including that closed curve or polygon. The prefix V_ (E_) attached to the name of a
polygon is used to represent the vertices (edges) of the polygon. Let B(c) (R(c)) represent the
boundary (boundary and the region inside) of a polygon or a closed curve ¢. Note that
R_cir(@abc) = R(cir(abc)) and cir(abc) = B(R(cir(abc))). An edge is said to be a crossing
edge for triangle ab c if it intersects cir(abc) at two points, but does not intersect any side of
triangle a b ¢, unless it is a line that overlaps with lineab, bc,orca. An h_edge of P is said to
be a passing edge for triangle abc if it is a crossing edge for triangle abc. Let abc be a trian-
gle such that no point in the interior of R (abc¢) is inside a hole or outside the boundary of P.
Letef be an h_edge. We define R_cir_ignore(abc, e f) as the region (closed) bounded by the
edge ef and cir(a b ¢) that does not contain all of the three points a, b and ¢, if e f is a passing
edge; otherwise it is defined as &. We define

cons_cir(abc) =B R_cir(abc) - of is a pam,’%; edge for abe R_cir_ignore(abc, ef)).

Note that R_cons_cir(ab ¢) consists of those points p inside and on cir(a b ¢) visible from the
center of triangle ab ¢ if we consider a passing edge as a wall (the undotted region inside the cir-
cle in figure 1). Similarly for circle C and a point b € R (C) we define cons(C, b) to be.the
boundary of the region containing all points p € R(C) which are visible from point b when

July 27, 1991

considering any h_edge intersecting R (C) as a wall.

=

\\//

£

7]

passing edges

Figure 1: Passing edges.

Let C be a circle and let ab be a line that intersects circle C at the two distinct points
a #b. We say that line ab splits R (C) into two regions R | and R, with line ab belonging to
both the regions. The circle centered at point ¢ that passes through points a and b is denoted by
cirl(ab, t). A crossing edge for edge ab and point ¢ is an edge which intersects cirl(ab, ¢) at
two points but does not intersect edge ab unless it is a line that overlaps with line ab. We
define cirl_ignore(ab, t), cons_cirl(ab, t), R_cirl_ignore(abd, t) and R_cons_cirl(ab, t) in the
obvious way (note that in this case visibility is defined with respect to center of the line and the
only points visible are points in I_P-R_H). Each point in the set Q is referred to as an S _point
and it is represented in all figures by filled-in circles. The points introduced by the algorithm are
referred to as E_points and are represented by non filled-in circles. An E_point on the h_edge s ¢
is referred to as an E_point(st). We call an edge SS_edge (EE_edge) if its end points are two
S_points (E_points). An edge is called an SE_edge if one of its end points is an S_point and the
other is an E_point. We say that line ab satisfies the circle property if there is a circle C passing
through a and b such that the set of all the points in R (C') which are either visible from @ or b
(remember that h_edges are considered as walls) does not contain S_points, but may contain
E_points. We say that a point m satisfies the circle property with respect to h_edge sz, if edge
mh satisfies the circle property, where 4 is the orthogonal projection of m on st.

The following three propositions give important properties of circles passing through two
fixed points which will be used throughout our proofs.

Proposition 1: Let ab be a line segment that intersects circle C at points @” and b', and let ¢ be
any point which is not cblinear withab. Line ab splits R (C) into regions R and R,. Then, R
c R _cir(abc) and/for Ry c R_cir(abc).

Proof: Since ab intersects C at two points and [a, b] < R_cir(ab c), it must be that R (C) N
R_cir(abc) # & and there are points on C which are inside R_cir(abc) (see figure 2).

July 27, 1991

7

Therefore, either R (C) < R_cir(abc), or R_cir(abc)-R(C)# D and R (C)' -R_cir(abc) # O.
In the former case we know that R{ c R_cir(abc) and Ry, € R_cir(ab ¢), and the result follows.
In the latter case it must be that C and cir(a bc) intersect at two points. Let d and e be such
points. Let de split C into two arcs, C; and C,. Either Cy < R_cir(ab¢) and each point in
Co-{d, e} ¢ R cir(abc), or C5 < R _cir(abc) and each point in Cq-{d, e} ¢ R_cir(abc).
Since a” and b” are in R_cir(ab ¢) and on circle C, they must both be in either C or C5. There-
fore, all points in C N Ry or C N R, are inside R _cir(ab c¢), which implies that R; <
R_cir(labc)orRy c R _cir(abc).

a

C

Figure 2: Proposition 1.

Proposition 2: If two circles D and D’ intersect at two points @ and b where line ab splits
R (D) into two regions R and R, then Ry c R (D) and/or Ry R (D).

Proof: The proof follows by substituting R_cir(abc) by R(D), the R (C) by R(D"), and line de
by line a b in proposition 1.

- g

Definition: Let ab be a line intersecting circle C at two points. Let ¢ be a point not on line ab.
Line(a b) divides the plane into two regions R ; and R 5, and also divides R (C) into two regions
Cyiand Co, where C1 C Ry and Co C Ry. If point ¢ € Rq, we use C. 4 to represent B (C)
and C_; 4 to represent B(C,). For triangle abc we define similarly cir,. 4 (abc) and
cir ¢ 1gp(abc).

Proposition 3: Given two different circles C and C’ both passing through points ¢ and » and
given point ¢ not on line ab, then either C. |4 is inside C” 4. |45 OF C"4¢ | ap i8S inside C e |gp-

July 27, 1991

Proof: Immediate from proposition 2.

1. Algorithm FIND_CDT. ~\

In this section we present our algorithm, FIND_CDT, that genera{;c/@ t?f&SPT for Q res-
tricted by P and H. In subsequent sections we show that our algorithn¥generates a CDT for Q
restricted by P and H in O(n log n) time.

Let E' be a triangulation for @ U @, (where Q, is a set of E_points) restricted by P and H . \\
We say that@ c E’ is an s_triangulation for Q U Q, restricted by P and H. We useé)
throughout the algorithm to represent an s_triangulation and we use E_edge to represent an edge
in set @> Algorithm FIND_CDT consists of the following three steps.

Step 1: Construct the DT for Q. All the Delaunay edges just introduced are called o_edges
(original edges). For each o_edge, e, let T, be the set of triangles in the DT for Q having
edge e as one of it sides. The triangles in set T, are said to be associated with edge e. The
set E consists of all the hole and boundary edges plus all the o_edges that do not completely
overlap with a hole or boundary edge. Clearly, all edges in E are SS_edges. Note that set E
might not be a triangulation or an s_triangulation for Q because some o_edges may cross
hole and/or boundary edges.

Step 2: Invoke procedure DT_CE to transform E into an s_triangulation for 0 U Q, res-
tricted by P and H, where Q. is a set of E_points. Procedure DT_CE considers each
Delaunay edge at a time. When considering Delaunay edge ab the procedure checks if it
crosses a hole or a boundary edge. When this is the casqgg the algorithm finds e, (ep), the
hole or boundary edge that crosses edge ab at a point closestto @ (b). Let i, and i be the
crossing points. An E_point is generated at i, and if i, # i} then another E_point is gen-
erated at ip. Introducing an E_point, d, on an h_edge ef, has the effect of replacing
h_edge ef by h_edges ed and df in E. When an E_point is deleted, it has the opposite
effect. The o_edge ab is replaced by edges ai, and bi, (which will be referred to as
oc_edges) in E. The triangles associated with edge ab are said to be associated with both
of these new oc_edges. Once we have performed the above operation on all o_edges, we
delete all the o_edges and oc_edges which are completely inside a hole or outside P, and
delete each E_point with only h_edges incident to it. Clearly, after this step set E consists

July 27, 1991

of SS_edges, SE_edges and EE_edges. All the o-edges are SS_edges; all the oc_edges are
SE_edges; and the h_edges can be SS_edges, SE_edges or EE_edges.
V’t A){N&W W\}WJ\
Later on we show that after step 2 (i) - (iii) hold, and\(%'i) - (iii) are loop invariants for
step 3.

(1) Set E is an s_triangulation for O U Q, restricted by P and H, where 0, is the set of
E_points.

(i1) Every non h_edge in E satisfies the circle property.
(iii) Every face with at least 4 vertices has at least one E_point on it.

In the next section we establish correctness from these loop invariants as well as with other
facts that we establish later on.

Step 3. For each hole and/or boundary edge ab which is currently partitioned by E_points,
we perform the following operations. First we delete all the E_points currently partitioning
line ab together with all the edges incident to them (these edges are oc_edges, i_edges and
g edges [i_edges and g_edges are defined later on]). This operation is performed by pro-
cedure GET_CUT(ab) and it generates the polygon called the CUT of line ab or simply
CUT(ab). The dashed lines in figure 3 are the edges deleted ‘for line& /ﬁb when invoking
procedure GET_CUT(ab). If we find a CDT for CUT(a b @dges rﬁgsijy not satisfy the cir-
cle property with respect to @ (loop invan'ant(;ii)) This is why we transform the CUT into
an MCUT. o

|
|
|
\

Figure 3: Cut of line a b. =

We apply procedure GET_MCUT(ab). The procedure transforms the polygon CUT(ab)
into the polygon called the MCUT of line ab which is denoted by MCUT(ab). This pro-
cedure deletes some SE_edges (in lemma 1 we show that these SE_edges must be
oc_edges) from E, and adds to E a new type of edge which we call g_edges. Every g_edge
is an SE_edge which is perpendicular to the h_edge where its E_point is located. Let us
now formally define procedure GET_MCUT.

July 27, 1991

10

Procedure GET _MCUT(ab);
begin
let MCUT(ab) be CUT(ab);
while there is an SE_edge which is not a g_edge on E_MCUT(a b) do
begin
Let se be an SE_edge which is not a g_edge on E_MCUT(ab);
Let uv be the hole or boundary edge partitioned by E_point ¢;
if s can be orthogonally projected on uv without intersecting another edge then
let & be the projection of s on uv; /* sh is perpendicular to uv */
if s h is inside cir(¢), for some triangle ¢ in the set of triangles associated with edge se then
add E_point & (if not already there) to line # v, modify the corresponding
edge which is in E_ MCUT(a b) and is part of uv to extend to E_point 4,
and add g_edge sk to E and E_MCUT(ab).
endif
endif
Delete SE_edge se from E and E MCUT(a b);
Delete E_point e if all the edges incident to it are h_edges.
end;
end;

Let W be a copy of polygon MCUT. Change all the E_points in W to S_points and label
all edges as boundary edges. We construct a CDT for W by invoking procedure XCDT
(XCDT is any procedure that constructs the CDT of a given polygon without holes, e.g., the
O(n log n) algorithm developed by Lee and Lin [LL] that is based on Chazelle’s [C] divide
and conquer partitioning rule for polygons). We add all the newly generated d_edges in the
CDT for W to set E after transforming the CDT into another CDT without n_edges
(EE_edges with endpoints on different h_edges). This is done by replacing n_edges by
either SS_edges or SE_edges (later on we show that this is always possible) Later on we
show that this is always possible, in part because the g_edges are perpendicular to the
h_edge where its E_point is located. The replacement of n_edges is extremely important as
otherwise the CDT edges introduced by procedure XCDT might not satisfy the circle pro-
perty with respect to Q (loop invariant ii). After applying the above transformation it is
simple to see that the d_edges in the CDT for W when added to set E could be: SS_edges
which we call a_edges, or SE_edges which we call i_edges. The a_edges will end up in the
final CDT; and the i_edges will eventually be deleted in procedure GET_CUT and
GET_MCUT (actually only in GET_CUT(lemma 1)). |

July 27, 1991

11
END OF PROCEDURE
Our algorithm FIND_CDT is summarized below.

procedure FIND_CDT
1 Apply DT on O and let E be the set of d_edges just introduced,;
2 Add all the hole and boundary edges to E;
3 Apply routine DT_CE to transform E into an s_triangulation;
4 for each hole or boundary edge a b which is partitioned by an E_point do
begin
find CUT(ab) and MCUT(a b);
construct W from MCUT(a b);
construct CDT of polygon W by invoking procedure XCDT; /* use Lee and Lin’s procedure [LL] */
after modifying the CDT for W so that no n_edges appear, add the resulting edges to E;

0~ O\ L

end.

O

return(E);
end of procedure

IV. Correctness of Algorithm FIND CDT.

In this section we establish correctness, i.e., we show that for every problem instance algo-
rithm FIND_CDT constructs a constrained Delaunay triangulation (theorem 1). This theorem is
based on lemma 7 where loop invariants i - iii for procedure FIND_CDT are established, and
lemma 1 where we show that when adding a g_edge at least one oc_edge is deleted. To prove
lemma 7 we use lemma 1 where we show that only oc_edges are deleted by procedure
GET_MCUT; lemma 2 where we show that g_edges satisfy the circle property; lemma 5 where
we show that for each MCUT constructed by XCDT, there is a CDT without n_edges; and
lemma 6 where we show that the d_edges in the CDT for an MCUT satisfy the circle property
when considering all points in Q.

Definition: Suppose that in the process of constructing MCUT(s¢) from CUT(sz) we find
oc_edges np and n'p” with E_points partitioning the hole or boundary edge 5. Suppose that
we remove SE_edge np (n'p’) and stop at S_point m (m”), such that point m (m’) satisfies the
circle property with respect to edge s't’ (figure 4). We call m (m") guard point of ¢’ (s") for line
s't’ or simply say m is g_point(¢’, s't) and m” is g_point(s’, s'¢"). Lines mh and m’h” are called
guard edges of line s't" (g_edge(t’, s't’) and g_edge(s’, s't") or in general g_edge). Note that it is

July 27, 1991

12

possible for an h_edge s’ to have less than two guard points, and if h_edge s'z" appears several
times on the MCUT of an edge s ¢, then it may have more than two guard points.

N ¢

mcut(st)

K p p h

Figure 4: g-points.

Lemma 1: All the SE_edges deleted by procedure GET_MCUT are oc_edges and for each
g_edge added at least one oc_edge is deleted.

Proof: Since the only type of SE_edges which are not g _edges are oc_edges and i_edges, we
only need to show that i_edges are never removed by procedure GET_MCUT. Consider now

the i_edges. After triangulating an MCUT (figure 5 a and c), suppose that the resulting polygon
is of the form given in figure 5 (b and d).

July 27, 1991

13

Figure 5: Proof of lemma 1.

It is simple to show that each i_edge introduced at step 8 is inside a polygon, which we call
bounding polygon for i_edges, formed by SS_edges, h_edges and g_edges; and all the edges of
the bounding polygon are i_edges. Since procedure GET_MCUT(a b) never deletes SS_edges
nor g_edges, and when it removes an h_edge it also deletes an SE_edge which is not a g_edge, it
then follows that no i_edges will ever be removed by GET_MCUT(ab). Since at each iteration
at least one oc_edge is deleted and at most one g_edge is introduced, then for each g_edge added
at least one oc_edge is deleted. This competes the proof of the lemma.

(]

Lemma 2: Let mh be a g_edge introduced by procedure GET_MCUT(ab). Then edge mh
satisfies the circle property.

Proof: Clearly, it is only required to show that there is a circle, C 1, such that the set of points in
R (C) visible from m and & may contain E_points but may not contain S_points. From pro-
cedure GET_MCUT and lemma 1, we know that the edge deleted when edge m 7 was added is
an oc_edge. This oc_edge is a part of a d_edge (say edge m f), where m f intersects the h_edge
which 1is partitioned by the E_point 2. Let C be the circle that procedure GET_MCUT calls
cir(z) when adding line mh. Clearly C passes through m and includes f, and the set of all

July 27, 1991

14

points visible from m and inside C contains no S_points. From procedure GET_MCUT we
know that circle C includes completely line m ~. Continue line m £k until it intersects C, let us
say that it intersects it at point k. Let o be the center of circle C, and let me be tangent to C at
m (see figure 6). Let the intersection of the bisector of mh with line o m be point 0. Clearly,
the circle C'1 with center o1 and radius 01/, passes through m and . Since o jm is perpendicu-
lar to line me, me is a tangent line to both C and C at point m . Thus C is completely inside
C. Each point in Cy which is visible from m is also in C' and since C is inside C, it is visible

from m in C. Therefore, edge m h satisfies the circle property. This completes the proof of the
lemma.

N

f

Figure 6: Proof of lemma 2.

Lemma 3: Let ae be an oc_edge generated by procedure DT_CE then edge ae satisfies the cir-
cle property.

Proof: Line ae is a part of ad_edge af . Since line af is a d_edge, we know it satisfies the cir-
cle property. Using arguments similar to the ones in the proof of lemma 2, it is simple to show
that edge a e also satisfies the circle property. This completes the proof of the lemma.

We now show (lemma 5) that for every MCUT there is a CDT without n_edges. To prove
this we need some basic properties of right angles (lemma 4) and additional definitions.

July 27, 1991

15

Definition: Vertex b is defined as the focal point of angle abc. We say that point v is visible
from angle abc if there is a line v b that divides angle ab ¢ and does not overlap with line ab
or bc. We say that angle ab ¢ is visible from angle a’b’c” (or vice-versa) iff the focal point b” is
visible from angle ab¢ and the focal point b is visible from angle a’b’c’. We say that point v is
visible from angles abc and a’b’c’ if there is a line segment vb that divides angle abc and
does not intersect line segments ab, bc,a’b’ or b'c’; and there is a line segment v b’ that divides
angle a'b’c” and does not intersect line segments ab,bc,a’d’,orb’c’.

Lemma 4: Consider the two different right angles ab¢ and a’b’c’. Assume that these angles do
not intersect, except when points @ and a’ coincide, or points ¢ and ¢’ coincide. Suppose that
angle abc is visible from angle a’b’c’, and let C be any circle passing through b and either
passing through b’ or just having point »” inside it. Then a pointp € {a, ¢, a’, ¢’} is inside C,
or all four points in {a,c,a’,c’} areon C.

Proof: Since angles abc¢ and a’b’c’ are visible, then halfline(b a) intersects either halfline(b’a’)
or halfline(b’c’). Similarly, halfline(bc) intersects halfline(b’a’) or halfline (b’c’). Assume
without loss of generality that halfline(b a) intersects halfline(b’'a’). Let a” (¢”) be the intersec-
tion point of halfline(ba) and halfline(b'a’) (halfline(bc) and halfline(b’c")) (see figures 7 and
8). The polygon bc"b'a” is a quadrangle. Since angles a"bc” and a"b’c” are 90 degrees,
there is a circle, C, that passes through these four points (see figure 7 and 8). Clearly, at least
oneof a,ora’ (b,orb’)is inside of C, or both @ and a’ (¢ and ¢") are on C. Also, halfline bb’
divides circle C into two regions R and R, where R | contains point ¢ and/or point a’, and R
contains point ¢ and/or ¢’. Applying proposition 1, we know that any circle passing through b
and b’ is identical to C, or it either contains region R; or R,. Therefore, any circle passing
through b and b" has a pointp € {a, ¢, a’, ¢’} inside it, or all points in {a, ¢, a’, ¢’} are on it.
Any circle C’ passing through b and having b’ inside it will intersect C at two points (one of
which is b), or will intersect C at b and includes C. Applying arguments similar to the ones in
the previous case, it is simple to show that a pointp € {a, ¢, a’, ¢’} is inside C’.

a

July 27, 1991

16

Figure 8: a,a’, b and b’ are inside C.

Lemma 5: For each MCUT constructed in FIND_CDT, there is a CDT without n_edges.

Proof: The proof is by contradiction. Suppose MCUT(s¢) has the property that all its CDTs
have at least one n_edge. Let us now consider the CDT with the least number of n_edges.
Clearly, there is at least one n_edge. Let edge bb be an n_edge in MCUT(s¢). From the algo-
rithm it is simple to verify that each E_point in an MCUT is a vertex of V_MCUT(s ¢) and is a
focal point of a 90 degree angle. Letabc and a'b’c’ be any two such angles where points a, b,
¢,a,b’ and ¢’ belong to V_MCUT(s¢). One side of each right angle is an h_edge and the other
side is a g_edge. Therefore, at least one of @ and ¢ (¢ and ¢”) is an S_point. In order for the
CDT to contain the n_edge b b’ it must be that the two angles are visible and that there is a circle
C that passes through b and b” such that cons(C, b) contains no S_points inside it, but may con-
tain E_points. By construction it cannot be that the sides of these angles intersect, except that
points @ and @', or b and b’ may coincide (or @ and »” and @’ and »). Since the conditions of
lemma 4 are satisfied, we know every circle C passing through points b and b” has a point p e
{a,c,a’, ¢’} inside it; or all points in {a, a’, ¢, ¢’} are on circle C. Any such point, inside or
on circle C, is visible from b so it is inside or on cons(C). In the former case we know that
when the CDT of MCUT(s ¢) was obtained, all the points in V_MCUT(s) were treated as solid
points. Therefore, a CDT of MCUT(st) cannot contain bb” as a d_edge. This contradicts the
fact that bb’ is an n_edge. In the latter case it must be that ¢ and @’ coincide; and ¢ and ¢’

July 27, 1991

17

coincide Therefore, b, b’, a and ¢ are on the circle and they form a quadrangle. Since at least
one of a or ¢ is an S_point, a triangulation for the MCUT(s ¢) can be obtained by adding edge
ac and deleting edge bb’. This contradicts the fact that the CDT of the MCUT(s ¢) that we
started from has the least number of n_edges. This completes the proof of the lemma.

g

Now we are ready to prove a fundamental property of our algorithm. This property is that
every d_edge in a CDT of an MCUT is also a d_edge of the whole problem.

Lemma 6: Let R be polygon MCUT(s ¢) and assume that each non h_edge on it satisfies the cir-
cle property. Let X be a CDT of R without n_edges. Let abc be a triangle in X. Then
cons_cir(a b ¢) does not contain any point of Q but may contain E_points.

Proof: Suppose not. Assume there is a point f € @ which is inside cons_cir(abc) (ie., f is
visible from the center of triangle a b ¢ when considering the borders of P and the hole edges as
walls). Triangle abc divides R_cons_cir(ab c¢) in four regions, triangle ab ¢ and three other
regions, each having a side of the triangle as its boundary edge. We refer to these regions as
regions cc_region(b c), cc_region(a b) and cc_region(a c) (see figure 9).

cc_region(b ¢)

cc_region(d ¢) ec_region(a b)

Figure 9: cc_regions.

Since all the points in triangle ab ¢ are also in R it must be that point f is outside triangle abc,
and point f belongs to one of the cc_regions. Assume without loss of generality that f belongs
to cc_region(ab). Let S be the set of boundary edges from R, hole edges, and boundary edges
in P that are crossing edges in region cc_region(a b) and which are located between line ab and
point f, i.e., point f is not located in the region formed by any one of these lines, line ab, and

July 27, 1991

18

cir(abc). Since point f is in cons_cir(a b c), it must be that set S does not contain a hole edge
or an edge that is boundary of P. Since point f is outside polygon R, then there is at least one
edge in S which is a boundary of R. Let de be one of such edges. Since de is a crossing edge,
points d and e are not inside cir(abc). From the conditions of the lemma we know that de
satisfies the circle property. Therefore, there is a point ¢ such that cir(d e, t) passes through the
end points of line de and cir(de, ¢) does not contain any other point of Q. Since line de
divides cir(a b c) in two regions: R ; containing f, and R containing a, b and ¢ (figure 9), then
by proposition 1 cons_cir(de, t) contains either f or it contains a, b and ¢. Since X is a CDT
of R without n_edges, we know that at least one of the points a, b or ¢ is an S_point. This con-
tradicts the fact that cons_cir(de,) does not contain a point from Q inside it. Therefore, our
assumption that f belongs to cons_cir(ab c) is false and therefore no point in O can belong to
cons_cir(a b c¢). This completes the proof of the lemma.

O

In the following lemma we prove three loop invariants for algorithm FIND_CDT which
will help us establish correctness.

Lemma 7: Each time line 4 in procedure FIND_CDT is about to be executed set E satisfies (i) -
(iii) below.

(i) Set E is an s_triangulation for Q U Q. restricted by P and H, where Q, is the set of
E_points.

(i) Every non h_edge in E satisfies the circle property.

(iii) Every face with at least four vertices has at least one E_point vertex.

Proof: We prove by induction on k (k = 1) that the kth time line 4 is about to be executed (i) -
(iii) hold.

Basis: We show that just before the first time line 4 is about to be executed (i) - (iii) hold. For
convenience let us view algorithm DT_CE as the following procedure (note that this procedure
is not O(n log n); however, it output is identical to the one generated by our procedure).

July 27, 1991

19

line 3
(3.1) Let E be the set of hole edges, boundary edges and d_edges introduced by procedure DT (note that if tw
overlap, the d_edge is deleted);
for each pair of edges that intersect at a point other than their end points do
let edge ab and d e intersect at point ¢ (different froma, b,d and e);
add an E_point at ¢ and replace edge ab (de) by linesac (dc)and cb (ce);
endfor;
Delete all edges which are inside a hole or outside P ;

(3.2) Delete each EE_edges which are not h_edges together with its E_points;
end of (3.1)-(3.2)

e S
R G A

Figure 10: Proof of lemma 7.

Let us now prove that after step 3.1 set E satisfies (i) - (iii). It is simple to verify that after step
3.1 set E is an s_triangulation for @ U Q, restricted by P and H. Clearly, just after step 3.1 all
the non h_edges are o_edges or sections of o_edges. Since all the o_edges are introduced in line
1 and they satisfy the circle property with respect to O and by lemma 3 the circle property holds
for each segment of an o_edge, then (ii) holds. Just after combining the hole and boundary
edges with the d_edges in the DT for Q and replacing each crossing by four edges and an
E_point, a hole or boundary edge either overlaps with a d_edge or it intersects at least one
o_edge (see figure 10a-g, where the hole and boundary edges are represented by thick lines).
Therefore, the faces resulting after these operations are shown in figure 10 (a.1, b.1-2, c.1, d.1,
e.1l, £.1, and g.1) and (iii) holds. It is simple to show that after deleting all edges inside a hole or
outside P, (i) - (iii) hold. Also, all faces are of the form shown in figure 10 (a.1, b.1-2, c.1, d.1,
e.1, f.1 and g.1) and just after step 3.1 all the E_points have exactly one oc_edge incident to it.

July 27, 1991

20

(@) ()
Figure 11.

Clearly, removing an EE_edge which is not an h_edge combines two faces together.
Therefore, (i) and (ii) hold after line 3.2. Condition (iii) will not hold if two faces are combined
and a face with at least four edges and no E_point is generated. This can happen if both of the
initial faces have only two E_points and these E_points are adjacent to the EE_edge. Also,
either both faces have three points (figure 11a), or at least one of the original faces must contain
four points (see figure 11b). The case given in figure 11a does not arise since an E_point may
not have two or more oc_edges incident to it nor it may join two different hole or boundary
edges; and the case given in figure 11b does not arise since it would imply that at least one
SE_edge in one of the faces must have been previously deleted. However, the procedure does
not delete SE_edges inside these faces. So it must be that (i)-(iii) hold after line 3.2.

Induction Hypothesis: Suppose set E satisfies (1)-(iii) just before line 4 is about to be executed
for the k th time.

Induction step: Set E satisfies (i)-(iii) just before line 4 is about to be executed for the kth time.
Let us now consider the k th iteration. By the induction hypothesis we know that set E satisfies
(1)-(iii). Procedure GET_CUT(ab) deletes a set of SE_edges which are not h_edges and deletes
E_points on h_edges which are not endpoints of an SE_edge. The removal of all of these edges
combines adjacent faces into a single face which we call polygon CUT(ab). Clearly, (i) and (ii)
hold. Since we have not modified any face other than CUT(a b), E satisfies (iii) except possibly
for face CUT(ab). Procedure GET_MCUT(ab) deletes some oc_edges and introduces addi-
tional g_edges (lemma 1) which satisfy the circle property (lemma 2). Therefore just after step
5, E satisfies (i)-(iii), except possibly for (iii) which might not hold for the face which we call
MCUT(ab). As a result of executing steps 6-8 the face called MCUT(ab) is triangulated, the
triangulation is slightly modified so that no n_edges appear and all the edges (which are called
i_edges and a_edges) are added to E. By lemma 5 we know that it is always possible to
transform a triangulation to one that does not contain n_edges. Therefore, (i) holds after these
three steps. Since the conditions of lemma 6 hold, we know that all the new edges introduced in
these three steps satisfy the circle property. Therefore, (ii) holds after the three steps. Since (iii)

July 27, 1991

21

holds on all faces except possibly for the face called MCUT(ab) and we triangulate such face, it
follows that (iii) hold after this step. Hence, (i)-(iii) hold true just before line 4 is about to be
executed for the k +1st time. This completes the proof of the induction step and the lemma fol-
lows by induction.

a

The main theorem that establishes the correctness of procedure FIND_CDT is given below.

Theorem 1: Algorithm FIND_CDT constructs a CDT for Q restricted by P and H .

Proof: In the first three lines of procedure FIND_CDT E_points and oc_edges are introduced.
We claim that each time loop 4-8 is executed the number of oc_edges plus the number of
E_points decreases. The reason for this is that oc_edges are not introduced in the loop, for each
oc_edge we delete in procedure GET_MCUT we introduce at most one E_point (lemma 1) and
at least one E_point is deleted by procedure GET_CUT. Therefore, since the number of
oc_edges and E_points introduced in lines 1-3 is finite, after a finite number of iterations of loop
4-8 there will be no E_points. From lemma 7(i), we know that the last time line 4 was executed
E was an s_triangulation for 0 U @, restricted by P and H. By lemma 7 (iii) we know that
each of the faces of E with more than four nodes on it must have an E_point. But when the algo-
rithm terminates 0, = &, i.e., there are no E_points. Therefore, none of the faces in E has more
than three vertices. Le., E is a triangulation for Q restricted by P and H. By lemma 7 (ii) we
know that each E_edge which is not a hole or boundary edge in the triangulation E satisfies the
circle property. Therefore, triangulation generated by algorithm FIND_CDT, E, is a CDT for Q
restricted by P and H. This completes the proof of the theorem.

O

V. Complexity of Algorithm FIND CDT.

In this section we establish the time complexity bound of O(n log n) for procedure
FIND_CDT. To prove the result we establish three lemmas that relate edges in different
MCUTs at different times.

It is simple to see that steps 1-3 take O(n log n) time. Let us break the loop in two parts.
The first part (lines 4 - 6) take time O(k; + er;) where k; is the number of points in the resulting
MCUT polygon and er; is the number of SE_edges removed. The second part (lines 7 and 8)
takes time O(k; log k;) (remember that Lee and Lin’s algorithm takes O(k log k) time when the
polygon has k vertices). Since the number of S_points is # and no three consecutive vertices in

July 27, 1991

22

the MCUT can be E_points, it must be that k; is O(n). Therefore, the overall time complexity
for both parts is O, (k; log n) + Y er;). We can establish our time complexity bound by show-
ing that ¥ k; is O(n) and) er; is O(n).

In lemma 9 we show that if consecutive S_points in an MCUT had an SE_edge removed
when constructing the CUT, then in the CDT for the MCUT that we construct no two of these
consecutive points can have an SE_edge to another E_point (see figure 12). This lemma
together with other facts are then used in Theorem 2 to establish that 3" k; is O(n). If we show
that each S_point appears in a constant number of MCUTSs, then we can easily establish that 3
er; is O(n). However, it may be that some S_point is in a large number of MCUTs. In lemma
10 we essentially establish that every two times an S_point appears in an MCUT, at least one
SS_edge is introduced. Since we prove in theorem 2 that the number of SS_edges introduced is
O(n), it then follows that ¥ er; is O(n).

Lemma 8: Let st be an h_edge and let points @ and b belong to V_MCUT(s¢). Assume there
are E_points & and h’ belonging to R_MCUT(s ¢) such that for triangles abh and abh’ we
know that R(abh) c R_MCUT(s¢t) and R(abh’) ¢ R_MCUT(st). Furthermore, assume that
S1 = R ciryy ap(abh) < R ciryy pn(@abh’) = So. Then, Ry = R_cons_ciry, 1 @bh) <
R_cons_cir,y 1ap(@bh) =Ry

Proof: We prove the lemma by contradiction. Suppose there exists a pointp € R such thatp ¢
R, . Since S1 € S2,p € Ryandp ¢ R there exists a passing edge ¢d for triangle abh’ such
that p e R_cir_ignore(abh’, cd). Since S1 < S, and p € Ry, it must be that edge cd is also a
passing edge for triangle abh. But then p € R_cir_ignore(abh, cd) and by assumption p ¢
R_cons_cir(ab h), a contradiction. This completes the proof of the lemma.

July 27, 1991

23

Figure 12: Proof of lemma 9.

Lemma 9: Assume two adjacent S_points @ and b are connected directly by edges to point 4 €
E_point(s¢) for h_edge st and suppose there is a g_edge mh (m is g_poini(s,s¢)). In the CDT
of MCUT(s t) points @ and b cannot be connected directly by edges to a point " € E_point(st")
where s't" is an h_edge with a section of it appearing as an edge in E_MCUT(s ¢).

Proof: We prove this lemma by contradiction. Since %’ is an E_point in MCUT(s¢), it must
have a g _point. Letm’ be g_point(s’, s't). Let S1=R_cir y s (@bh), Sy =R_ciryy 1a@bh),
Ry = R_cons_ciry 1p(@bh), and Ry = R_cons_cir 1. (@bh’). By proposition 2 we know
that either §1 € Sy or S € §1. Therefore, the conditions of lemma 8 are satisfied, and we know
that either Ry C R, or Ry C R1. Let C be the larger of cir .y 155 (abh) and cir .y g (@b h). In
each case we have two right angles mht and m'h’t” such that the focal point of one of these
angles is inside or on circle C and the focal point of the other right angle is on the boundary of
C. From lemma 4 either edge mh intersects line m'h’” or lines 2z and A't” intersect; or a point p
e {m,m', t,t)isinside C. These lines cannot intersect at any point except at their end points,
because s¢ and st are h_edges, [m, h] € R_CUT(st), and m’h’ is obtained by moving the
E_point of an SE_edge ce, ce € E_CUT(st). Moving edge ce adds an extra region to
CUT(st) and any g_edge introduced because of this operation to E_MCUT(s¢) is not inside
R_CUT(s). None of points ¢’, m’, m and ¢ can be inside C, otherwise, as we show in the fol-
lowing paragraph, they have to be inside cons(C') which contradicts our assumption.

In order to have one point e.g. point x inside C but not inside cons(C) there should exist a
passing edge e dividing C into two regions ¢y and ¢ such that ¢ contains point x and ¢4 con-
tains points ¢ and b, with the property that no edge can intersect edge ¢ and connect any point
of ¢ to a point of ¢,. We prove that all points ¢, m’, m and ¢ if they belong to C they should
belong to the ¢, region by showing for each of these points there is an edge which connects it to
a point of region ¢,. Assume these points belong to C. Points 4 and 4’ belongs to ¢, because of
edges h'a and ha. Point m belongs to ¢, because of edge m h, where h belongs to ¢ . Similarly
points ¢’, m” and ¢ belong to ¢, because of edges t'A’, m'h" and t k. This shows if any of points ¢,

July 27, 1991

24

m’, m and t belongs to C it should belong to cons(C). This completes the proof of the lemma.

O

Lemma 10: Assume that in the process of executing the algorithm, we have the case where on
MCUT of line s¢ there are adjacent S_points a, b and ¢ (@ and ¢ could be guard points),
E_point 4" on line s't’, E_point 4 on line s¢, and points a, b and ¢ are connected by edges to .
Following the steps of the algorithm let’s remove all E_points located on line s¢ including point
h and find the CDT of the MCUT of line s¢. Assume after this step point b is connected to A’
where without loss of generality we assume that if there is another E_point ¢’ on line s't" such
that it also is connected directly to b, going clockwise around b, bk’ is before b¢q’. Because of
line bA’, b might appear in MCUT of line s't. We prove each such additional appearance of
solid point b on some MCUT will introduce at least one more SS_edge to the edges incident to
b and for each such SS_edge introduced, point b can reappear on at most two other MCUTs.

Proof: From the arguments in the proof of lemma 7 we know that no edge of type EE where its
end points belong to different h_edges exists. This together with the conditions given in the
lemma we have figure 13 where b is connected directly to 4. Assume E_points on line s¢ are
removed and the CDT of the MCUT of line s¢ is obtained and there is an edge from b to /.

Figure 13: Proof of lemma 10. .

By lemma 9, two adjacent solid points cannot be moved from one MCUT to another, so there
cannot exist any edge connecting directly @ or ¢ to h’. Also since no edge of type EE where its
end points belongs to different hole lines exists, the next spoke of point 4" going clockwise
around 4" and after h’b should be an edge connecting 4’ to a solid point x , where point x is not
¢ . Since there is no other edge in clockwise order around 4" and between A'b and k'x, b has to
be connected to x . Edge bx is type SS and is introduced in this step of the algorithm. To prove
the second part of the lemma, note that each reappearance of point b on different MCUTS causes
one SS_edge incident to b be added e.g. figure 14 where deleting bh and getting CDT of
MCUT(s ¢) causes SS_edges bx and by be introduced. Since bx and by can coincide, each
SS_edge can contribute to at most two reappearances of an S_point in two different MCUTs.

O

Tuly 27, 1991

25

Figure 14: CDT of MCUT(s t) causes SS_edges bx and by to appear.

Theorem 2: Algorithm FIND_CDT constructs a CDT for Q restricted by P and H in O(n log n)
time.

Proof: 1t is simple to see that steps 1-3 take O(n log n) time. Let us break the loop in two parts.
The first part (lines 4 - 6) take time O(k; + er;) where k; is the number of points in the resulting
MCUT polygon and er; is the number of SE_edges removed. The second part (lines 7 and 8)
takes time O(k; log k;) (remember that Lee and Lin’s algorithm takes O(k log k) time when the
polygon has k vertices). Since the number of S_points is n and no three consecutive vertices in
the MCUT can be E_points, it must be that k; is O(n). Therefore, the total time complexity for
both parts is O(Y, (k; log n) + Y er;). Therefore, we can complete the proof of the theorem by
showing that 3" k; is O(n) and ¥’ er; is O(n).

Before we prove these relations, it is convenient to first prove the following statements.

(i) The only place that oc_edges are introduced is in step 3.

(i1) Procedure GET_CUT(ab) removes oc_edges, i_edges, and g_edges.

(iii) Procedure GET_MCUT(a b) removes only oc_edges and for each g_edge it introduces it
deletes an oc_edge (lemma 1).

(iv) The only place that i_edges are introduced is in line 8.

(v) SS_edges are never deleted after line 3.

(vi) Once ani_edge or a g_edge is removed, it will never be added again.

The proof of (1), (i), (iv) and (v) is trivial and by lemma 1 (iii) holds. Let us now prove
that (vi) holds. From (ii) and (iii) we know that the only place where i_edges and g_edges are
removed is in procedure GET_CUT. When such a removal occurs the E_point is deleted and
since E_points are never introduced after this step on line a b, it then follows that such ani_edge
or g_edge will never be added again.

Since oc_edges are only introduced at step 3 (see (i) above), for each o_edge we introduce
at most two oc_edges and the number of o_edges in DT of Q is O(n), we know that the number
of oc_edges is at most twice the number of o_edges which is O(n). An oc_edge will be removed

July 27, 1991

26

in CUT(ab) or in MCUT(ab). When it is removed in MCUT(a b) it may introduce a g_edge.
Since the only place g_edges are introduced is in procedure GET_MCUT, the total number of
g edges is at most O(n). We say that an S_point appears in an MCUT(st) directly if an
SE_edge incident to it was deleted by procedure GET _CUT(s¢). We say that it appears
indirectly otherwise. When an i_edge is introduced (by step 8 of FIND_CDT) it must have been
that its S_point appeared in MCUT(s ¢) directly or indirectly. When the S_point appears directly
in MCUT(s¢) then at least one oc_edge, g_edge or i_edge was deleted. Let us now analyze
these cases separately.

Suppose that S_point p appears in MCUT(s ¢) indirectly. Let sp and pt be the two edges
in E_MCUT(st). Clearly, these two edges are SS_edges, h_edges or g_edges. Since p appears
in MCUT(s ¢) indirectly, then all the edges in the angle sp¢ which were deleted at this step were
oc_edges. When the algorithm introduces SE_edges (at step 8 of FIND_CDT) incident to p and
located inside angle spt, we claim that if £ of such edges are introduced, then at least (k/2)-1
SS_edges must be introduced in the angle sp¢. The reason for this is that we never introduce
EE_edges (step 7 and 8 in FIND_CDT) and there can be at most two consecutive E_points in
E_MCUT(s?). |

Suppose that an S_point b appeared directly in MCUT(s ¢) because an i_edge was deleted.
Let a and ¢ be the nodes adjacent to b in V_MCUT(s?). Suppose that @, b and ¢ were joined
to i € E_point(s) (the proof of the other cases is omitted since it is similar). Then from lemma
10 we know that an SS_edge is introduced when we construct the CDT of MCUT(s¢). If more
than one i_edges incident to b are introduced, then a proof similar to the one in lemma 10 may
be used to show that for each pair of them at least one SS_edge is introduced (at step 8 of
FIND_CDT). The case when an S_point appears directly because of an oc_edge was deleted is
treated as in the case of S_points that appear indirectly; and the case when an S_point appears
directly because of a g_edge each side is treated as either an S_point that appears indirectly, or
an S_point that appears directly and the edge deleted is an i_edge.

Therefore, the number of i_edges introduced is bounded by twice the number of SS_edges
(which are at most O(n)) plus twice the number of g_edges (bounded by O(n)) plus twice the
number of hole edges (which is bounded by O(n)). This together with the fact that the number
of oc_edges is O(n) shows that Y’ er; is O(n).

Let us now show that ¥ k; is O(n). Each time we triangulate an MCUT with k; nodes
O(k;) edges are introduced. The new edges introduced are SS_edges (a_edges), or SE_edges
(i_edges), since there are no EE_edges (see the proof of lemma 7). Since a_edges are never
removed and since i_edges will never be added after we delete their E_points, we know that '
k; is bounded by the number of a_edges plus the number of i_edges introduced by the algorithm
which we know is O(n). From previous arguments, it follows that FIND_CDT takes O(n log n)

July 27, 1991

27

time. This completes the proof of the theorem.

VI Discussion

We presented an O(n log n) algorithm to construct a constrained Delaunay triangulation
for a simple polygon with interior points and holes. The main difference between our algorithm
and the previous algorithms for this problem is that our algorithm reduces the problem to a set of
line intersection problems plus finding Delaunay triangulations of several simple polygons plus
finding Delaunay triangulations of several sets of points. This is the first step in reducing the
CDT problem to finding a DT of sets of points plus solving other simple problems. This is
important since such a result would imply the "direct equivalence" of the DT and CDT prob-
lems. The interesting point is that all the probabilistic analyses for the DT problem would
directly translate to the CDT problem. Also, our algorithm is based on partitions and exploit
useful properties of constrained Delaunay triangulations.

VH References

[C] Chazelle, B. M., "A Theorem on Polygon cuting with Applications," Proceedings of the
23rd IEEE Annual Symposium on Foundations of Computer Science, 1982, 339 - 349,

[Cw] Chew L., "constrained Delaunay Triangulations," Proceedings of the 3rd Annual Sympo-
sium on Computational Geometry, 1987, pp. 215 - 222.

[J1] Jung, D., "An Optimal Algorithm for Constrained Delaunay Triangulations," Proceedings
of the 1988 Annual Allerton Conference on Communications, Control and Computing,
pp. 83 - 84, October 1988.

[J2] Jung, D., "On Constructing the Constrained Delaunay Triangulation,"” Technical Report
100, Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic
Institute, 1988.

[F] Fortune, S.J., "A Sweepline Algorithm for Voronoi Diagrams," Algorithmica, 1987.

Tuly 27, 1991

Towwi

A

[GS]

[L]

[LS]

[LL]
[NF]

[PS]
[S]

[SH]

[WS]

28

Guibas, L. and Stolfi, J., "Primitives for the Manipulation of General Subdivision and the

Computation of Voronoi Diagrams," ACM Transactions on Graphics, Vol. 4, No 2, pp 74
- 123, April 1985.

Lawson, C. L., "Software for C'; Surface Interpolation," in Mathematical Software III (J.
R. Rice, Ed.), Academic Press, New York, 1977, pp. 161 - 194.

Lee D. T. and B. J. Schacter, "Two algorithms for Constructing Delaunay Triangula-

tions," International Journal of Computer and Information Sciences, 9, 3, (1980), pp 219
-242.

Lee D. T. and A. K. Lin, "Generalized Delaunay Triangulation for Planar Graphs,"
Discrete Computational Geometry, 1, (1986), 201 - 217.

Nielson G. N. and Richard Franke, "Surface Construction Based Upon Triangulations,"
Surfaces in CAGD, North-Holland Publishing Co., 1983, 163 - 177.

Preparata, F. P. and M. 1. Shamos, "Computational Geometry,” Springer-Verlang, 1985.

Seidel, R., "Constrained Delaunay Triangulations and Voronoi Diagrams with Obsta-

cles," Computer Science Division, UC Berkeley, June 1989.

Shamos, M. 1. and D. Hoey, "Closest Point Problems," Proceedings of the 16th Sympo-

sium on Foundations of Computer Science, October 1975, 151 - 162.

Wang C. and L. Schubert, "An Optimal Algorithm for Constructing the Delaunay Tri-

angulation of a Set of Line Segments," Proceedings of the 3rd

July 27, 1991

