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ABSTRACT

Given two simple polygons P and Q we define the weight of a bridge (p, ¢), with p € p(P)
and ¢ € p(Q), where p() denotes the compact region enclosed by the boundary of the
polygon, between the two polygons as gd(p, P) + d(p, q) + 9d(q, Q), where d(p, q) is the
Euclidean distance between the points p and ¢, and gd(z, X) is the geodesic distance
between z and its geodesic furthest neighbor on X. Our problem differs from another
version of the problem where the additional restriction of requiring the endpoints of the
bridge to be mutually visible was imposed. We show that an optimal bridge always exists
such that the endpoints of the bridge lie on the boundaries of the two polygons. Using
this critical property, we present an algorithm to find an optimal bridge (of minimum
weight) in O(n?logn) time. We present a polynomial time approximation scheme that
for any € > 0 generates a bridge with objective function within a factor of 1 + € of the
optimal value in O(knlogkn) time, where k = 2 x [m] An improved polynomial
time approximation scheme and algorithms for generalized versions of our problems are
also discussed.

Keywords: Optimal bridge between polygons; polynomial time approximation scheme;
exact algorithm.
1. Introduction

Given two disjoint simple polygons P and @, a line segment that connects the two
polygons is called a bridge. We may think of polygons P and @ being disjoint islands
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and the objective is to build a bridge between the islands. We may also think of
each polygon to be a community or region in which wireless communications may
take place. Furthermore, the regions or communities are separated by mountains
or obstacles which prevent wireless communications between the two communities.
Our problem is to introduce a bridge or wire to allow for inter-community com-
munication. The objective function is to locate a bridge such that the Euclidean
length of the path that every message travels from a point in one region to a point
in the other region through the bridge is least possible. We use p(X) to denote the
compact region defined by polygon X, and use 6(X) to denote the boundary of X.
Note that p(X) N §(X) = §(X). Formally, for points p € p(P) and g € p(Q) we
define the weight of the bridge (p,q) as

mazy eop){9d(®’,p)} + d(p, q) + mazy cp@){9d(e,qd")}, (1)

where d(z,y) denotes the Euclidean distance from z to y, and gd(z, y) is the geodesic
distance between = and y in their corresponding polygon (i.e., the shortest distance
between ¢ and y without leaving the polygon where they are located). A pair (p, q)
that minimizes the above expression is called an optimal bridge. In Section 2 we
show that an optimal bridge always exists between points on the boundary of each
of the polygons. Furthermore, points on the bridge just before the bridge endpoints
are on the exterior of the two polygons. It is important to note that the endpoints
of an optimal bridge are not necessarily mutually visible when the polygons are not
convex. Figure 1 depicts a problem instance such that the bridge defined by the
solid thick line has total weight ~ z + 2y, but any bridge between any two visible
points (one in P and one in @) has weight at least 2z + 2y. Since z >> y >> z,
it follows that this problem instance does not have an optimal bridge in which its
two endpoints are mutually visible. Another way to define the bridge problem is to
replace d(p, q) by gd(p, q), (in this case the geodesic path is outside P and Q). We
call this problem the all-geodesic bridge problem or simply the ag-bridge problem.
As shown in Figure 1 the endpoints in an optimal ag-bridge (dotted line) are not
necessarily mutually visible when the polygons are not convex.

Note that an optimal bridge may touch a vertex of P or @). Also, the geodesic
furthest neighbors of the endpoints of an optimal bridge must be vertices in their
corresponding polygons.

1.1. Related work

The problem of finding an optimal bridge connecting two convez polygons has been
solved to optimality. The problem was first studied by Cai, Xu and Zhu! for the case
when the polygons are convex. They proved that for this case the optimal bridge
is between points on the boundary of the polygons. Furthermore, such points are
visible from each other. Their algorithm takes O(n? logn) time to construct an opti-
mal bridge between any two given disjoint convez polygons. Because this problem is
related to other geometric problems (e.g. diameter problems, minimum separations
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problems, and minimum spanning tree problems), much progress was made imme-
diately after the problem was posed. For the convex polygon case, different optimal
(linear time) algorithms have been developed independently by Bhattacharya and
Benkoczi,? Tan,? and Kim and Shin.* The high-dimensional version of the problem
has been studied in Refs. [3, 5].

The more general version of the problem, when the input polygons are not nec-
essarily convex, has also been studied by several researchers. However, the version
of the problem they considered restricts bridges to have endpoints on the boundary
of the polygons that are visible from each other. We call this version of the problem
the optimal v-bridge problem. Note that the optimal v-bridge problem and the opti-
mal bridge problem are identical when the polygons are convex; however, as we have
shown in the previous subsection, the problems defined over simple (non-convex)
polygons have different solutions. This inequivalence holds even for rectilinear poly-
gons, as shown in the previous subsection. The optimal v-bridge problem for simple
polygons has so far resisted linear time algorithms. Kim and Shin* introduced this
problem and developed a quadratic algorithm to solve this problem. Currently the
fastest algorithm for the ezact solution of the problem is by Tan,® which runs in
O(nlog®n) time. This algorithm is quite complex and it makes substantial use of
a hierarchical structure that consists of segment trees, range trees and persistent
search trees, and a structure that supports dynamic ray shooting and shortest path
queries. A restricted version, where the input polygons are simple, but rectilinear
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Fig. 1. Problem instance that does not have an optimal bridge defined by two visible points.
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and the distance between points is measured by the Manhattan distance or L;
distance, can be solved in linear time using Wang’s algorithm.”

A linear-time 2-approximation algorithm, which finds a bridge with objective
function value at most twice that of the optimal one, for convex polygons was pre-
sented in Ref. [1]. Kim and Shin* showed that this approximation strategy also
works for the v-bridge problem when the polygons are not convex. The time com-
plexity of this approximation scheme is that of finding the least distance between
(the boundaries of) the two polygons, which can be computed in linear time using
the algorithm by Amato.® Kim and Shin* raise the question as to whether or not
a better approximation algorithm exists. Note that this approximation algorithm
always generates a bridge whose endpoints are mutually visible. Ahn, Cheong, and
Shin® presented v/2-approximation algorithm for convex polygons and showed that
their technique generalizes to multidimensional space as long as P and @ are are
convex regions.

It is easy to see that a closest pair of points between two polygons (the approach
in Refs. 1, 4]) forms a bridge with total weight within a factor of 2 times the weight
of an optimal bridge between the two polygons. As mentioned before, a closest pair
of points between two polygons can be computed in linear time. Since a closest pair
of points supports a valid v-bridge, an optimal v-bridge between two polygons has
weight less than or equal to the one between a closest pair of points between the two
polygons. It thus follows that an optimal v-bridge has total weight within a factor
of 2 times the weight of an optimal bridge between the two polygons. Furthermore,
the problem instance given in Figure 1 can be used to show that the bound of 2 is
asymptotically the best possible.

1.2. Main results

In this paper we consider the optimal bridge problem without the restriction im-
posed in previous papers. Their main difference is that in the former problem the
bridge must connect points that are visible to each other (e.g., bridges starting and
ending at beaches that are visible from each other), but in the latter problem the
bridge endpoints may be inside the region (like the Bay Bridge adjacent to San
Francisco, CA). In this situation we want bridges to connect directly to established
highways which may be modeled as the actual edges of the polygon that might not
be visible from the other polygon. First we establish some important properties of
optimal solutions to the bridge problem that will allow us to develop efficient exact
and approximation algorithms for this problem. Specifically, we show that an opti-
mal bridge always exists between points on the boundary of each of the polygons.
Furthermore, points on the bridge just before the endpoints of the bridge are on
the exterior of the polygons. As we showed in the previous section, it is important
to note that the endpoints of an optimal bridge are not necessarily mutually vis-
ible when the polygons are not convex. This is why our problem is different from
the optimal v-bridge problem. In Section 2 we show that an optimal bridge always
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exists between O(n?) special points defined on the boundary of the polygons.

In Section 2 we establish some important properties of optimal bridges between
two simple polygons. We use these properties to develop two O(n?logn) time al-
gorithms to generate an optimal bridge between two simple polygons. In section
2.1 we present an algorithm to find an optimal vertex bridge (of minimum weight)
in O(nlogn) time. Based on this algorithm we present an exact algorithm for the
optimal bridge problem that takes O(n?logn) time (Section 2.1). We also present
an approximation scheme that given any positive integer k constructs a bridge with
objective function value within a factor of 1 + ﬁ times that of the optimal one
in O(knlogkn) time. The scheme is presented in Section 3 and it is based on our
O(nlogn) time algorithm for the for the optimal vertex bridge problem. In Section
4 we present a polynomial time approximation scheme that given any € > 0 gener-
ates a bridge with objective function within a factor of 1+ € times the optimal one
in O(knlog kn) time, where k =2« [ Eg(i_+e)]' In Section 5 we discuss the changes
we need to make in order to apply our results to the ag-bridge problem as well as to
other generalized versions of our problem. Qur approximation algorithm introduces
k artificial points on each line segment and then returns as the bridge an optimal
vertex (including the artificial points) bridge. This technique has also been used for
finding suboptimal paths between two points in 2D and 3D.10:11,12

2. Preliminary Results

In this section we establish some important properties of optimal solutions to the
bridge problem that will allow us to develop efficient exact and approximation
algorithms for this problem. Specifically, we show that an optimal bridge always
exists between points on the boundary of each of the polygons. Furthermore, points
on the bridge just before the endpoints of the bridge are on the exterior of the
polygons. Then we show that an optimal bridge always exists between O(n?) special
points on the boundary of the polygons that we define later. We establish our first
result in the following theorem.

Theorem 1. For every problem instance there is an optimal solution to the bridge
problem in which both endpoints of the bridge are boundary points of the polygons.
Furthermore, one such optimal bridge, from p to q, is such that in a small neigh-
borhood of p (q) the point on (p,q) closest to p and the one closest to q are on the
exterior of P and Q.

Proof. We prove this theorem by showing that an optimal solution can be
transformed to another optimal solution that satisfies the properties of the theorem.
Suppose that we have a problem instance in which one or both the endpoints of an
optimal bridge are not boundary points of the polygon. Figure 2 gives a problem
instance with an optimal bridge between points p € p(P) and q € p(Q) which are
not boundary points of the polygons. We now show that there is also an optimal
bridge that satisfies the conditions of the theorem. First we show that the bridge
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from p € p(P) to ¢' € §(Q), where ¢’ is located at first intersection from ¢ of the
boundary of @ and line (p, g), is also an optimal bridge. Let point r be such that
gd(q,Q) = gd(g,r) and ' is such that gd(q’, Q) = gd(q',r’). Note that r may be
the same point as r'.

Since the line (¢, q) always stays inside the polygon @, we have

gd(q',r') < d(q',q) + gd(g,")
And by definition, we know

9d(q, Q) = gd(q,r) > gd(g,r')
It follows that

gd(q',r') < d(q',q) + gd(q,7).

By substituting the above definitions we know that

9d(q',Q) < d(q',q) + 9d(q,Q).
Adding to both sides of the equation gd(p, P) + d(p,q') we know that

gd(p, P) + d(p,q') + 9d(¢', Q) < gd(p, P) + d(p, q) + 9d(q, Q).

This expression establishes that the bridge (p,q') is not worse than bridge (p, q).
If the inequality holds in the previous expression then it contradicts that (p, ) is
an optimal bridge. But if equality holds, then since (p,q) is an optimal bridge it
follows that (p,¢q') is also an optimal one.

Using the same arguments with point p completes the proof of the first part of
the theorem. The proof of the second part of the theorem is simple because if the

Fig. 2. There is an optimal bridge between boundary points of the polygons.
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points in a small neighborhood of p in line (p,q) are inside P or the points in a
small neighborhood of ¢ in line (p, q) are inside @, one may apply arguments similar
to the ones above and obtain a new optimal bridge that satisfies the conditions of
the theorem. a

The previous theorem simplifies the optimal bridge problem because we only
need to consider points on the boundary of the polygons to be the endpoints of
optimal bridges. Note that as we point out in Section 2, the two boundary points
may not be visible from each other as it is the case of the optimal v-bridge problem.

The next theorem limits the number of points on the boundary of the polygons
which may be the endpoints of an optimal bridge. Before we establish this result
we need to introduce additional notation.

In Figure 3 the furthest neighbors of point ¢ inside @) are points 7 and r'. The
thick dashed line segments indicate the furthest geodesic paths from ¢ to r and the
one from ¢q to r'. As we traverse these paths starting at point ¢ the first vertex
of the polygon that we visit is called the first-vertez of the corresponding furthest
point geodesic path. The line segment from ¢ to the first-vertex is called the first
link. In the case of Figure 3 the vertices a and a’ are the first-vertices and the line
segments (g,a) and (g,a’) are called the corresponding first-links.

A point ¢ on the boundary of @ is called an anchor if it is not a vertex of
polygon @, and there are at least two different vertices that are the first-vertex of
a geodesic furthest path for g. We define anchors for polygon P in a similar way.

In Figures 3 and 4 we show two bridges. The dashed lines emanating from ¢
in both of these figures indicate all furthest point geodesic paths. Point ¢ in both
of these figures is an anchor point. However, point ¢ in Figure 5 is not an anchor
point because all the geodesic furthest paths for point ¢ have the same first-vertex,
which is vertex a.

A point p on the boundary of P that is not a vertex of the polygon nor an
anchor point is called a pseudo-anchor of P if there is a vertex z in P and a vertex
or anchor y in @ such that p lies on the line (z,y), and it is the first point on the
boundary of P hit by a ray originating at z in the direction (z,y). In other words,
p is the point closest to z among all intersection points between (z,y) and P. We
define pseudo-anchors for @ similarly by reversing the roles of P and Q.

The anchor points of P and @ can be identified from the geodesic furthest
point Voronoi diagram which can be computed in O(nlogn) time by the algorithm
in Ref. [13]. More specifically, these points correspond to the intersection of the
boundary of the polygon and a Voronoi edge under the assumption that each vertex
is not (geodesic) equidistant to two other vertices (note that this is not true for the
point ¢ in Figure 5). One way to avoid this condition is to perturb the vertices by
moving them slightly. This “equidistant” condition is used to compute the Voronoi
edges inside the polygon. However, we do not need to go this far because in the first
part of of the algorithm in Ref. [13]. the boundary of the polygon is partitioned
into regions with the same set of geodesic furthest points. The juncture of any two
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of such regions are the anchors. There are only O(n) such points. Note that this
latter computation does not require the previous “equidistant” condition.

There are O(n?) pseudo-anchors and they can be computed in O(n? logn) time.
Their identification is performed as follows. Since each polygon has O(n) vertices
and anchors, we need to consider O(n?) pairs of points (for each vertex of one
polygon, we consider all the vertices and anchors from the other polygon). For each
pair we need the first edge on each polygon they intersect. By preprocessing each
polygon separately in O(nlogn) time using Chazelle and Guibas technique!* one
may find the first place where each of the O(n?) lines intersect each of the polygons.
Finding each of these (first) intersections takes O(log n) time.!* Therefore the O (n?)

Fig. 3. Point ¢ is an anchor.

Fig. 4. Point ¢ is an anchor.
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pseudo-anchors which can be found in O(n?logn) time.
We now state an important theorem which forms the basis of our exact algorithm
for the optimal bridge problem.

Theorem 2. There is an optimal bridge whose endpoints are vertices, anchors, or
pseudo-anchors from P and Q.

Proof. Let p € P and ¢ € @ be an optimal bridge. Suppose that at least one of
p and ¢ is not a vertex, anchor or pseudo-anchor of its polygon. We now establish
a contradiction. Without loss of generality assume that p is not a vertex, anchor or
pseudo-anchor, but point ¢ may be one. Point p must be like point ¢ in Figure 5,
i.e., all the furthest geodesic paths for p have the same first-vertex.

Let us consider Figure 6(i) - (iii). Let a be the first-vertex for the furthest point
path for vertex p € P. Let 7 be the clockwise angle for apq. There are three cases
depending on the angle . Figure 6(i) - (iii) shows the three cases for point p. Let
us now consider each case separately.

Case 1: Angle 7 is less than 180 degrees (Figure 6(i)).
Clearly, in this case we can move p slightly higher to a point p*. In this
case the weight of bridge (p,q) is slightly smaller than the the one for
(p,q) and therefore contradicts that (p,q) is an optimal bridge.
Case 2: Angle v is greater than 180 degrees (Figure 6(ii)).
Clearly, in this case we can move p slightly lower to a point p~. In this
case the weight of bridge (p~,q) is slightly smaller than the the one for
(p,q) and therefore contradicts that (p, q) is an optimal bridge.
Case 3: Angle v is equal to 180 degrees (Figure 6(iii)).

Fig. 5. Point ¢ is not an anchor.
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If ¢ is a vertex or an anchor of @, then p is a pseudo anchor of P, which
contradicts our assumption. So, point ¢ must be like in Figure 5, i.e., all
the furthest geodesic paths have the same first-vertex. Let b be the first-
vertex for the furthest point path for vertex ¢ € Q. Let ¢ be the clockwise
angle for pgb. There are three cases depending on the angle ¢. Figure 6(iv)
- (vi) shows these three cases for point ¢g. Lets now consider the three cases
separately.

Case 3.1: The angle ( is less than 180 degrees (Figure 6(iv)).
Clearly, in this case we can move q slightly higher to a point ¢*. In
this case the weight of bridge (p,g") is slightly smaller than the one
for (p, q) and therefore contradicts that (p,q) is an optimal bridge.
Case 3.2: Angle ( is greater than 180 degrees (Figure 6(v)).
Clearly, in this case we can move ¢ slightly lower to a point ¢~. In
this case the weight of bridge (p,¢ ™) is slightly smaller than the one
for (p, q) and therefore contradicts that (p, q) is an optimal bridge.
Case 3.3: Angle ( is equal to 180 degrees (Figure 6(vi)).
In this case there is a straight line from a first-vertex for p to a first
vertex for ¢ that includes p and ¢ and by our definition p and q are
pseudo-anchor points, a contradiction.

Therefore there is an optimal bridge whose endpoints are vertices, anchors or
pseudo-anchors of P and Q. O

Note that a pseudo-anchor can support an optimal bridge only if it lies on the
line connecting a vertex or anchor in the other polygon to its first vertez (in its
own polygon). If this is not the case, then by the previous arguments we can get a
better bridge by moving the point in some direction along the edge of the polygon

Fig. 6. Possible bridge configurations.
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containing it.

At first glance it appears from Figure 6 (vi), that if the line segment (p, q) is
an optimal bridge, then so is the line segment (a,b). This would not contradict
Theorem 2.1, but would imply a stronger version of Theorem 2.2 that would state
that an optimal bridge exists whose endpoints are vertices or anchors. This new
theorem would allow us to use a simple brute force O(n?) time algorithm to solve
this problem by simply trying all bridges between vertices and anchors in the two
different polygons. Unfortunately, it is not always true that if line segment (p, q)
is an optimal bridge, then so is the line segment (a,b). The reason for this is that
gd(a, P) (gd(b,Q)) is not always equal to gd(p, P) — d(a,p) (9d(q,Q) — d(b,q)).
There are problem instances for which gd(a,P) > gd(p,P) — d(a,p) (gd(b,Q) >
g9d(q, Q) — d(b,q)).

From Theorem 2.2 we can derive a brute force O(n?logn) time algorithm to
find an optimal bridge. First we find all the anchor points (O(nlogn) time). Then
we consider every pair of points (vertices and anchors) from the two polygons (there
are O(n) such points). From each pair of points we generate at most 4 bridges as
follows. Suppose the two points are points a and b in Figure 6 (vi). Find points p
and ¢ (Figure 6 (vi)) if they exist, otherwise let p be a and/or ¢ be point b. Then
the four® bridges generated are (a,b), (a,q), (p,q) and (p,b). Now we compute the
weight of each of these bridges as follows. The geodesic distance between a point
and a polygon can be determined in O(logn) time once we have precomputed the
geodesic-furthest-point Voronoi diagram for the polygon, and the distance between
two points takes constant time. Then we just find the least weight bridge amongst
all the O(n?) bridges generated. Therefore, the total time complexity is O(n? logn)
time.

2.1. Algorithm for the optimal vertex bridge problem and optimal
bridge problem

In this section, we present an O(nlogn) time algorithm for finding an optimal
vertex bridge, which is a bridge with one endpoint being a vertex of P and the
other a vertex of (). Note that the endpoints of an optimal vertex bridge might not
be mutually visible. In this section we use our O(nlogn) time algorithm together
with the property of optimal solutions that we derived in the previous subsection
to produce another algorithm that generates an optimal bridge in O(n? logn) time.

We present an efficient algorithm that solves the optimal vertex bridge problem
by using the additively weighted nearest point Voronoi diagram,'5-'® which can be
built in O(nlogn) time. The technique yields an O(nlogn) time algorithm for the
optimal vertex bridge problem. In an additively weighted nearest point Voronoi
diagram, each input point s has an associated weight ws. If V' is the set of input

2Actually we can argue that if points p and ¢ exist, only the bridge (p, ¢) needs to be considered
since from Theorem 2.1 we know that w(p,q) < w(a,b). However, to keep the discussion simple,
we look at all the 4 bridges.
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points, for any given point p in the plane, a weighted-nearest query returns a point
v € V such that

d(p, U) Fw, = MINuGV{d(p7 u) + wu}

The additively weighted nearest point Voronoi diagram can be constructed in
O(nlogn) time given a set of n points and their associated weights. Furthermore,
any query can be answered in O(log n) time. This data structure was used in Ref. [1].
to obtain an O(n? log n) time algorithm for determining the minimum weight bridge
connecting two convex polygons. Using this Voronoi diagram data structure, an op-
timal vertex bridge can be easily computed by procedure OVB.

To compute the weights associated with each point in the above Voronoi dia-
gram, we compute the furthest-geodesic-point in P for each vertex of P, and in Q
for each vertex of Q. This particular problem can be solved in O(nlogn) time using
Suri’s algorithm.!”

Procedure OVB(P,Q): simple polygons P, Q

Compute the geodesic-furthest-point of each vertex in its polygon using Suri’s
algorithm.!”

For each vertex g of Q, set w, = gd(q,r) where r € Q is the geodesic-furthest-
point of q.

Using the w, values computed above, build an additively weighted nearest point
Voronoi diagram!%:16 for the vertices of Q;

Using the above constructed data structure, for each vertex p € P, find the vertex
g € Q such that gd(p,Q) = d(p,q) + wg = MINgco{d(p,q') + wy };

The weight of the optimal bridge with one endpoint as p € P is gd(p, P)+gd(p, @),
where gd(p, P) is the geodesic distance between p and its geodesic-furthest
point in P.

Choose the vertex of P which supports the bridge of minimal weight;

End Procedure 0OVB

Theorem 3. Given two simple polygons P and @Q, algorithm OVB finds an optimal
vertez bridge between P and @ in O(nlogn) time.

Proof. It is clear that the distance from every vertex ¢ € @ to its geodesic-
furthest point in @ is computed and stored correctly in w, by Suri’s algorithm.!”
From the additively weighted nearest point Voronoi diagram our procedure com-
putes for every vertex p, gd(p,@), which is defined as the minimum value of
{d(p,q) + w,} for any vertex ¢ € Q. In other words, for every vertex p we have
found the best possible vertex bridge with an endpoint at vertex p. In the last step
one just finds the vertex p with least gd(p, P) + gd(p, @) which is the optimal vertex
bridge.
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Suri’s algorithm for computing the geodesic furthest neighbors for all the points
of a simple polygon takes O(nlogn) time. Building both types of Voronoi dia-
grams (geodesic-furthest-point and additively-weighted-nearest-point) takes time
O(nlogn) where n = MAX(|P|,|Q|). Also, each weighted-nearest-point query and
geodesic-furthest-point query takes O(logn) time. There are at most n queries of
each type in the procedure OV B, thus taking a total time bounded by O(nlogn).
Thus, the overall time complexity of the algorithm OV B is O(nlogn) time. o

The next corollary follows from this theorem, the properties of an optimal bridge
established in the previous section, and the fact that the total number of vertices
plus anchors plus pseudo-anchors is O(n?).

Corollary 1. Given two simple polygons P and @, algorithm OVB when using
as vertices all the vertices, anchors and pseudo-anchors of the polygons, finds an
optimal bridge between P and Q in O(n? logn) time.

3. Approximation Schemes

In this section we present our approximation scheme for the optimal bridge problem.
The idea is to introduce k£ —1 artificial vertices along each edge of the input polygons
and then find an optimal vertez bridge. In the previous section we introduced an
O(nlogn) time algorithm to construct an optimal vertex bridge.

3.1. Artificial vertex approximation scheme

Our artificial vertex approximation scheme is a simple extension of the algorithm
OV B presented above. Given any integer k£ > 1, we partition each edge of the given
polygons in k equal intervals by introducing artificial vertices. We then invoke the
algorithm OV B with the input polygons having as vertices the original vertices
plus the artificial ones. Thus, the input polygons now have O(kn) vertices each.
Thus, the algorithm OV B takes O(kn log kn) time to compute a bridge which has
as endpoints either the original vertices of the polygons or the newly introduced
artificial vertices.

Procedure AV_OVB(P,Q,k): simple P, Q, int £ >0
Introduce k — 1 uniformly spaced points on each edge of the input polygons.
Call these polygons with the newly introduced artificial vertices P’ and @', re-
spectively.
Output the result returned by OVB(P', Q')
End Procedure AV_OVB

Let us now establish our approximation bound for the artificial vertex approxi-
mation scheme.
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Theorem 4. Algorithm AV_.OVB(P, @, k) generates a bridge such that f/f* <1 +%
in O(knlogkn), where f* is the weight of the optimal bridge and f is the weight of
the bridge computed by the procedure AV_OVB().

Proof. Assume (p,q) is an optimal bridge, with p € §(P) and ¢ € §(Q) (see
Figure 7). Let the optimal bridge have the point p lying on the edge (a,b) of P and
g on the edge (c,d) of Q. Also, let u be the geodesic furthest neighbor of p, with
gd(p,u) = z. Thus, the total weight of the bridge is w(p, q) = d(p, q) + gd(p,u) +
9d(q,Q) = d(p,q) + = + gd(q,Q).

Let us consider first the case when k£ = 1, i.e., there are no artificial vertices.
The algorithm AV _OV B investigates the bridges through the points a and b of the
polygon. We shall compare the weights of the bridges through these vertices to that
of the optimal bridge.

Without loss of generality, assume that p is no farther from a than from b and
q is no farther from c than from d. We investigate the bridge using a. The weight
of the bridge (a, ¢) is w(a,c) = gd(a, P) + d(a, c) + gd(c, Q).

Since gd(p, P) = gd(p,u) = =, we know that

d(p,a) = gd(p,a) <z

d(p,b) = gd(p,b) < =

= d(a,b) < 2z

gd(p,u)

2@y ,
gd(p.P) = gd(p.v)

Fig. 7. Case when k = 1 and p is on the line ab. Note that gd(a,u) < d(a,p) + gd(p,u) <
d(a,p) + gv(p,v) < 2z.
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If gd(a, P) = gd(a,v), then using triangle inequality, we have
gd(a, P) = gd(a,v) < d(a,p) + gd(p,v) < 2z

Similarly, gd(c, Q) < 2y, where y = ¢gd(q, Q) and (c,d) is the edge of the polygon Q
which contains the point ¢q. Applying the same arguments, we know that the length
of the segment (a, ¢), is

d(a,c) < d(a,p) +d(p,q) +d(g,c) < = +d(p,q) +y.

Therefore, the weight of the bridge (a, ¢) is bounded by

w(a,c) <2z + (z+d(p,q) +y) +2y =3z +d(p,q) + 3y

w(a,c) 3z+d(p,q)+3y <3.

Hence, w(p,g) = z+d(p,g)+y —

Let us now consider the case when & > 1. Extending the analysis for this
case is straightforward (see Figure 8). Since d(a,b) < 2z, for any 1 < i < k-1,
d(ai,air1) < 2% The algorithm AV _OV B investigates the bridges through all
the vertices of the polygons and all the artificial vertices introduced on the edges.
In other words, if the optimal bridge (p, ¢) has p lying between (a;,a;—1) for some
1 <4 < k-1, the bridges through a; and a;—; would also be investigated. Proceeding
in the fashion exactly as described for the case k = 1 above, we have

z T Y Y 2 2
ce) < = bl < Z = - -
w(ai, ¢j) < (z+ )+ (¢ +dpg) + )+ (L +y) =21+ ) +dpg) +y(1+ )
Thus the approximation ratio is
wai,c;) o1+ 2) +dp,g) +y(1+3) <142
w(p,q) z+d(p,q) +y k

Since procedure OV B takes O(nlogn) time, where n is the number of vertices
and the procedure AV _OV B’s main work is invoking procedure OV B with k *
n points, it follows that its overall time complexity of AV _OV B is bounded by
O(knlogkn). m]

Figure 9 (b) shows the bridge generated by algorithm AV-OVB with & = 1 and
Figure 9 (a) gives an optimal bridge for the problem instance. Figure 9 (d) shows
the bridge generated by algorithm AV-OVB with £ = 2 and Figure 9 (c) gives an
optimal bridge for the problem instance. These problem instances can be easily
generalized to problem instances for which our algorithm generates a solution with
an approximation bound that can be made arbitrarily close to 1+ % for k even, and
1+ k% for k odd. Therefore our approximation bounds are almost tight. Therefore
the approximation bound we have established for our approximation scheme cannot
be improved significantly.
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3.2. Improved approximation scheme
In this subsection we present an improved approximation algorithm with approxi-

mation factor of 1+ £37. However, this bound might not be tight. The examples
that achieve the approximation bound 1 + ﬁf given in the previous subsection,

have a slightly smaller approximation bound when executed by the algorithm i
this subsection.

gd(a(i+1),v_)_.»-"",-""'

sd(p2) = gdtp)

Fig. 8. General case: k — 1 artificial vertices. Point p is in the interval (a;, a;+1).
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Fig. 9. Worst case example for the case when k = 1. (a) Optimal solution, and (b) Solutiora

generated by AV-OVB with k = 1. Worst case example for the case when k = 2. (c) Optima-1
solution, and (b) Solution generated by AV-OVB with k = 2.
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The main idea behind our algorithm is similar to the one in the previous subsec-
tion. The main difference is the length of the intervals. In the previous subsection,
the intervals had uniform lengths. But the intervals close to the center of the line
segment (a,b) have the largest approximation error when the optimal bridge in-
cludes a point inside the interval, whereas the ones closer to the end points have a
smaller approximation error. The reason for this is that the bound for z (i.e., the
distance to the geodesic-furthest point in the polygon) increases as we move from
the center of the line segment (a,b) towards the extreme points, a and b. This is
because the maximum distance from any point p to a or b increases as we move p
from the center of the line to the extreme points, a and b.

Our strategy is to define the interval(s) closest to the center smaller than the
ones in the previous subsection so as to decrease the approximation error when the
optimal bridge has an endpoint inside the interval. Then we need to compensate
for the remaining intervals, i.e, make the intervals larger, so that the total number
of artificial points remain equal. Following the same lines for the analysis given in
the previous subsection, it is sufficient to establish that for each of the k intervals,
d(ai-1,a;) < 2z/(k+1) where z = gd(p, P) with p being the endpoint of the bridge
on §(P) and p located in the interval (a;—1,a;).

Let us consider first the case when the number of intervals & is even. The number
of points is m = k — 1. Let d = d(a,b). Let y be the point in the center of the line
from a to b. Define §; = 1/(k+1), 5, = 1/k, 03 = 1/(k—1),and for4 < i < (m—1)/2
let 8; = 1/k. There is a point located at y, and for 1 < ¢ < (m—1)/2 there is a point
at y+ 22-:1 §;*d and at y — Ej.:l d; * d. We shall refer to the algorithm AV_OV B
that uses this Non-Uniform distanced artificial vertices as procedure NAV _OV B.

Lemma 1. For each interval I as defined above, d(I) < 2z/(k + 1), where x =
gd(p, P) with p being the endpoint of the bridge on §(P) and p located in the interval
I.

Proof. Since the intervals are symmetric, we only consider the intervals between
the points located at y — Z;-:l §; *d for 1 <i < (m —1)/2 and a. There are four
types of intervals I.

Case 1: Interval I from y to y — 6;.

Since vertex b is located at a distance > d/2 from every point in the interval, if
the optimal bridge has an endpoint in this interval, we know that = > d/2 (or
equivalently d < 2z). By definition the interval has length d/(k + 1). Substituting
d < 2z in the previous expression we know that the length of the interval is at most
2z/(k+1).

Case 2: Interval I from y — 8; to y — 61 — ds.

Since vertex b is located at a distance > d/2 + d/(k + 1) from every point in the
interval, we know that z > d/2+d/(k+1) (or equivalently, d < 2(k+1)z/(k+ 3)).
By definition the interval has length d/k. Substituting d < 2(k + 1)z/(k + 3) in
the previous expression we know that the length of the interval is at most 2(k +
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1)z/(k(k + 3)) which is at most 2z/(k + 1) since k > 1.
Case 3: Interval I from y — §; — 82 to y — 61 — 62 — d3.
Since vertex b is located at a distance > d/2+ d/(k + 1) + d/k from every point in
the interval, we know that Clearly z > d/2+d/(k+1)+d/k > d/2+2d/(k+1) (or
equivalently, d < 2(k+1)z/(k+5)). By definition the interval has length d/(k — 1).
Substituting d < 2(k + 1)z/(k + 5) in the previous expression we know that the

length of the interval is at most 2(k+1)z/((k+5)(k—1)) which is at most 2z/(k+1)
since k > 2.

Case 4: Interval I from y — Z;;ll d;j toy — Z;ﬂ d;, for i > 3.
The proof in this case is as in Case 2 since we know that z > d/2 +d/(k + 1). This
completes the proof of the lemma. O

The proof when & is odd is similar, and for brevity we do not include it here. The
overall approximation bound for both cases is established in the following theorem.

Theorem 5. Algorithm NAV_OVB(P,,k) generates a bridge such that f/f* <1+
w1 in O(knlog kn).

Proof. The proof follows from Theorem 4 and Lemma 1, and the discussion
just before this theorem. a

4. Polynomial Time Approximation Scheme

In this section we present a polynomial time approximation scheme that given any
constant € > 0 generates a bridge such that f /f* < 14e€. The idea is similar to the
one in the previous section but instead of having three different types of intervals,
the length of the intervals vary, and are such that they generate an error bounded
by € when an optimal bridge has a point inside the interval. The interval(s) closest
to the center of the line from a to b are the smallest. The length of the interval
increases as they are located farther from the center. The reason why we selected
three different types of intervals in the previous section, was because defining the
length of these intervals to generate the same error for a given value of k is complex.
The idea in this section is to allow the user to specify the maximum error which
can be tolerated, and then we compute the number of intervals needed and hence
the number of points to be introduced along each line.

Lets consider first the case when k is even. Let d = d(a,b). Let y be the point
in the center of the line segment from a to b. We will define the values 41, s, ... in
terms of €. There is a point at y as well as at y+ Z;:l d;xd and at y — 23.:1 0 *d,
fori =1,2,..., until we pass points a and b. We define §; = ﬂﬁfgﬁ for i > 0. We

shall refer to the algorithm AV _OV B that uses artificial vertices defined in terms
of € as procedure AVe OV B.

Lemma 2. The length of each of the interval 6;*d is at most ex, where z = gd(p, P)
with p being the endpoint of the bridge on §(P) and p located in the current interval.
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Proof. Consider the ith interval from the center. Clearly z > d/2 + Zz ! d;d
(or equivalently, d < 2z/(1 + 2 Zl 1 6).

The length of the ith interval is 5 d. Substituting the above expression we know
that the length of the interval is at most 26; x/ (1+2 Zl L 6;)

Inductively one can establish that 1 + 2 E 105 =(1+ e) because

1—1
1+2Za =142 6;+20i =1+ +2x(¢/2)(1+ €)™ = (1 +¢)

j=1 j=1

Substituting 142 Ei = (1+¢)* as well as the definition for §; in 26; :v/ (1 +
2 Z d;), we know that the length of the interval is at most 2d;z/(1+2 Z =
€x.

This completes our proof of the lemma. |

Theorem 6. Algorithm AVe_OVB(P,Q,k) generates a bridge such that f/f* <1l+e
in O(knlogkn), where k, the number of intervals in each line, is even. The time
complezity of the algorithm is O(knlogkn), where k = 2 * [m]

Proof. The proof follows from Theorem 4 and Lemma 2, and the discussion
just before this theorem.

Now, since € > 0, we know 37", d; is Sy = ((14 €)™ — 1)/2. The least value
of m such that S,, > 1/2 indicates that to achieve the approximation error € one
needs 2(m — 1) + 1 = 2m — 1 points, with the intervals having length defined by
d; *d for 1 < i < m — 1. Therefore, m = [1/log(1l + €)] and the total number of
intervals k = 2m = 2[1/log(1 + €)]. O

For the case when we introduce an odd number of intervals the situation is
slightly different. For this case §; = 35 (1 + €)'~! and the artificial points are
located at y +0.56:d + Z;=2 d;*d, and y —0.56:d — E;:z dj*d fori=1,2,... until
we pass points a and b. Remember that y is the center point in line ab.

For this case we can prove a lemma identical to Lemma 2 and establish the

following theorem.

Theorem 7. Algorithm AVe_OVB(P,, k) generates a bridge such that f/f* <1l+4e€
in O(knlogkn), where k, the number of intervals in each line, is odd. The time
complezity of the algorithm is O(knlogkn), where k = 2x[1+1log(2+¢)/log(1+e€)]
+ 1.

Proof. The proof is similar to Theorem 6, but follows the definitions in the
above discussion. O

For some values of ¢ it is better to choose the number of intervals odd and for
other cases it is better to choose it even. The following table lists, for a set of
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values the least number of points needed to achieve the approximation bound ¢ as
well as the d; values.

Table 1. Number of points needed to achieve the approximation bound e.

€ k-1 51 02 43 N d5 J6 o7 ds
0.6667 2 0.2500 0.4167 - - - - - -
0.5000 3  0.2500 0.3750 - - - - - -
0.4000 4 0.1667 0.2333 0.3267 - - - - -
0.3333 4 0.1429 0.1905 0.2540 - - - - -
0.2857 5 0.1429 0.1837 0.2362 - - - - -
0.2500 6 0.1111 0.1389 0.1736  0.2170 - - - -
0.2222 6 0.1000 0.1222 0.1494 0.1826 - - - -
0.2000 7 0.1000 0.1200 0.1440 0.1728 - - - -
0.1818 8 0.0833 0.0985 0.1164 0.1376 0.1626 - - -
0.1667 9 0.0833 0.0972 0.1134 0.1323 0.1544 - - -
0.1538 9 0.0769 0.0888 0.1024 0.1182 0.1363 - - -
0.1429 10 0.0667 0.0762 0.0871 0.0995 0.1137 0.1300 - -
0.1333 11 0.0667 0.0756 0.0856 0.0970 0.1200 0.1247 - -
0.1250 11 0.0625 0.0703 0.0791 0.0890 0.1001 0.1126 - -
0.1176 12 0.0556 0.0621 0.0694 0.0776 0.0867 0.0969 0.1083 -
0.1111 13 0.0556 0.0617 0.0686 0.0762 0.0847 0.0941 0.1045 -
0.1053 13 0.0526 0.0582 0.0643 0.0711 0.0785 0.0868 0.0959 -
0.1000 14 0.0476 0.0524 0.0576 0.0633 0.0697 0.0767 0.0844 0.0928
0.0952 15 0.0476 0.0522 0.0571 0.0626 0.0685 0.0751 0.0822 0.0900
0.0909 15 0.04545 0.0496 0.0541 0.0590 0.0644 0.0702 0.0766 0.0836

5. Concluding Remarks

In this paper we have presented an exact algorithm and approximation schemes for
the optimal bridge problem, all of which are based on an efficient algorithm for the
optimal vertez bridge problem. We did not report other investigations with a few
other variations of the basic approximation schemes presented here. One of them
is based on the idea of introducing a number of artificial points per line segment
depending on the length of the segment. In general, this strategy allows the same
approximation bound while reducing the overall time complexity bound.

Our approximation algorithms are amenable to efficient implementations, and
the only external data structures and algorithms required are those for the
additively-weighted nearest-point Voronoi diagram, and Suri’s algorithm!7 for com-
puting the geodesic-furthest neighbors of all vertices of a simple polygon. A
geodesic-furthest-point Voronoi diagram,'® which is required for the exact algo-
rithm, can also be used instead of Suri’s algorithm.!?

Our approximation schemes can also be applied to the ag-bridge problem. To do
this we need to compute gd(p, q) for every pair of points belonging to different poly-
gons. If Tg4sp(n) represents the time required to build the tree of geodesic shortest
paths from a point to a given set of O(n) other points in presence of polygonal obsta-



Ezact and Approximation Algorithms for Finding an Optimal Bridge 629

cles in the plane, we can achieve the same approximation bounds for the ag-bridge
problem in O(k?-nTy4sp(n)) time since the shortest paths tree needs to be computed
for every vertex of the polygon P (or Q). The algorithm by Hershberger and Suri!8
builds the geodesic shortest paths tree of a point in O(n logn) time. This gives us an
approximation of the ag-bridge problem in O(k?n?logn) time. Since the number
of obstacles is fixed to 2 (the polygons P and Q) in our problem, the algorithm
by Kapoor, et al.!® can be used to build the tree in O(n) time, thus producing an
approximately optimal ag-bridge in O(k?n?) time. We should point out that results
“similar” to the ones in Theorems 2.1 and 2.2 can be established for the ag-bridge
problem. However, one cannot use the additively weighted nearest point Voronoi
diagram to compute gd(p,Q) because one uses gd(p,q) rather than d(p,q). But,
if we replace this step by a brute force approach the whole algorithm would now
take O(n*) time to solve the optimal ag-bridge problem between two polygons.
An efficient data structure supporting additively-weighted geodesic nearest-point
queries can significantly improve the time complexity. But unfortunately such data
structure does not currently exist.

Another interesting generalization of our optimal bridge problem similar to the
one introduced by Kim and Sin.* Given a set of points S of points in P and a set
T of points in @, find a bridge (p, q) such that

mazses{9d(p, s)} + d(p, q) + mazier{gd(q,t)},

is minimized. Our techniques can also be adapted to this problem to produce results
similar to the ones reported in this paper.

With respect to the well-studied visible bridge problem, we have shown that a
visible bridge has weight at most twice that of an optimal bridge. Furthermore,
we’ve constructed problem instances for which this bound is the best possible.

Some of the interesting open problems suggested by our work include design of
approximation schemes that do not use an optimal vertex bridge algorithm. Also,
it would be challenging to improve the O(n?logn) bound for the exact solution
of the problem. Another obvious open question is developing a faster algorithm
for the ezact solution of the ag-bridge problem, since the algorithm (mentioned
above) uses brute-force in a critical step. As stated above, the improvement can also
be achieved by an efficient data structure for additively-weighted-geodesic-nearest-
point queries. The time complexity of the above procedure for approximating the
ag-bridge problem is also pretty high, and admits a scope for improvement.
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