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Abstract 

Given a set of n points, P, in Ed (the plane when d = 2) that lie inside a d-box (rectangle when 
d = 2) R, we study the problem of partitioning R into d-boxes by introducing a set of orthogonal 
hyperplane segments (line segments when d = 2) whose total (d - 1)-volume (length when d = 2) 
is the least possible. In a valid d-box partition, each point in P must be included in at least one 
partitioning orthogonal hyperplane segment. Since this minimization problem is NP-hard and 
thus likely to be computationally intractable, we present an approximation algorithm to generate 
a suboptimal solution. This solution is obtained by finding an optimal guillotine partition, i.e., 
a special type of rectangular partition, which can be generated in 0 (dn’*+ ‘) time. We present 
a simple proof that the (d - 1)-volume of an optimal guillotine partition is not greater than 
2d - 4 + 4/d times the (d - 1)-volume of an optimal d-box partition. 

Key words; Approximation algorithms; d-Box partitions; Polynomial time complexity; Guillo- 
tine partitions, Computational geometry 

1. Introduction 

Given a set of points, P, in E2 that lie inside a rectangle R, we study the problem of 

partitioning R into rectangles by introducing a set of orthogonal line segments whose 

total length is the least possible, and each point in P is included in at least one of the 

partitioning line segments. We shall refer to this problem as the RG-P2 problem, 
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Table 1 

Approximation algorithms for partitioning a rectangle 

Approximation Time Complexity Reference Method 
Bound Bound 

4 O(n log n) c31> Cl01 divide the conquer 
3 OW) 151 transformation 
1.75 O(n5) C61 dynamic programming 

where RG stands for rectangle, P for a set of points, and the two for 2-D. We use E(Z) 

to represent a set of partitioning line segments in a feasible solution for I = (R, P). The 

RG-P2 problem was shown to be NP-hard in [S]. Approximation algorithms for the 

RG-P, problem appear in [3-61. The currently best approximation algorithms for the 

RG-P, problem are summarized in Table 1. 

In VLSI design, the problem of dividing routing regions into channels can be 

reduced to the RG-P, problem with interior holes instead of points ([ll]). Several 

approximation algorithms for this more general problem exist (see [l, 7, 9, lo]). The 

algorithms with the smallest approximation bound are the ones reported in [9] and 

[lo]. The algorithm given in [lo] invokes the algorithm reported in [4] for the RG-P2 

problem as a sub-procedure. The algorithms in [4,6,3] generate guillotine partitions, 

but the ones in [6], and [3] are in the worst case ‘closer’ to optimal. Therefore, 

a smaller approximation bound for the general problem can be obtained by using 

these algorithms in the procedure reported in [lo]. 

Let R be a rectangle and let P be a set of points inside R. A rectangular partition 

E(Z), for I = (R, P), has a guillotine cut if there is a line segment in E(Z) that partitions 

the rectangular boundary R into two rectangles. We say that a rectangular partition 

E(Z) is a guillotine partition if either E(Z) is empty or E(Z) has a guillotine cut that 

partitions R into RI and R2, and both E(Z,) (edges from E(Z) in R,) and E(Z,) (edges 

from E(Z) in R,) are guillotine partitions for I, = (RI, PI) and Z2 = (R,, P2), respec- 

tively. The minimum edge length guillotine partitioning problem consists of finding 

a guillotine partition of least total length, i.e., the sum of the lengths of the edges in the 

partition. It is simple to see that any guillotine partition is a rectangular partition, but 

the converse is not necessarily true (see Fig. 1). Du et al. [2] studied the problem of 

finding an optimal guillotine partition for any instance Z = (R, P) of the RG-P2 

problem. They showed that such a partition can be found by dynamic programming 

in O(n5) time, where it is the total number of points. Du et al. [2] also showed that the 

length of an optimal guillotine partition is at most twice the length of an optimal 

rectangular partition for the RG-P2 problem. Their proof of this bound is lengthy and 

complex. Our proof, which can be easily generalized to the problem defined over an 

arbitrary number of dimensions, is simpler. A complex proof showing that for 2-D the 

length of an optimal guillotine partition is within 1.75 times the length of an optimal 

rectangular partition is given in [6]. 



T.F. Ganzalez et al. /Computational Geometry 4 (1994) I-11 

II!4 LE 
(a) Optimal Rectangular Partition. (b) Optimal Guillotine Partition. 

Fig. 1. Rectangular and guillotine partitions. 

We also consider a more general version RG-P1, denoted by RG-I’*, which is 

defined over Ed. Specifically, given a set P of points in Ed that lie inside a d-box R, we 

study the problem of partitioning R into d-boxes by introducing a set of orthogonal 

hyperplane segments’ whose total (d - 1)-volume is the least possible. In a valid 

partition, each point in P must be included in at least one partitioning orthogonal 

hyperplane segment. In what follows, when we refer to a guillotine cut (partition) we 

mean the obvious d-dimensional generalization of a guillotine cut (partition). 

Gonzalez, Razzazi and Zheng [3] present an O(dn log n) algorithm that generates 

solutions that are within 2d of optimal for the RG-Pd problem. In Section 2, we 

present a simple proof that the (d - 1)-volume of an optimal guillotine partition is not 

greater than 2d - 4 + 4/d times the (d - 1)-volume of an optimal d-box partition. In 

theorem 2, we show that an optimal guillotine partition can be obtained via dynamic 

programming in O(dn2d+ ’ ) time, where n is the number of points in P. Therefore, an 

optimal guillotine partition provides a polynomial time approximation to the d-box 

partition problem when d is bounded by some fixed constant. It is worthwhile 

mentioning that the algorithm in this paper always generates solutions that are not 

farther from optimal than the ones generated by the algorithm in [3], since both 

algorithms generate guillotine partitions, and our algorithm generates an optimal 

guillotine partition. However, the algorithm in [3] is always faster. 

For more than two dimensions, our problem is far removed from its original 

application; however, it has other applications when d = 3. For example, suppose we 

have a solid block of material and we know exactly the location of all its ‘impure’ 

points. Our problem consists of partitioning the block into sub-blocks without 

impure material inside them in such a way that the total area of the cuts is the 

least possible. This is in general a good estimate for the cost of partitioning the block 

into sub-blocks. The objective function can be modified to include the more tradi- 

tional setup cost to align the machine in the various directions. Our dynamic 

IBy a d-box (in Ed space) we mean a d-dimensional rectangle, whereas by hyperplane we mean a (d - l)- 
dimensional plane. Whenever we refer to a hyperplane segment, we mean a (d - 1)-dimensional d-box. 
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programming algorithm can be easily modified so that it finds optimal guillotine 

partitions with respect to this criteria. However, it is not clear whether or not this type 

of partition would also be a good approximation for the corresponding d-box 

partition problem. 

2. Bounds for d-dimensional guillotine partitions 

An instance I = (R = (0, X), P) of the RG-PB problem consists of a d-box R (where 

0=(0i,&,..., od) is the ‘lower-left’ corner of the boundary R (origin of R), and 

X=(X,,X,,..., X,) are the dimensions or sizes of R) and a set of points 

P= {P1>ZJ2>...,Z&) inside R. Let E(Z) denote the set of orthogonal hyperplane 

segments in a valid d-box partition of I, and let G(Z) denote the set of orthogonal 

hyperplane segments in a minimum (d - 1)-volume guillotine partition. We show 

that V(G(Z)) < (2d - 4 + 4/d). V(E(Z)), where V(S) represents the sum of the (d - l)- 

volume of the segments in set S. To prove our bound we define, via pro- 

cedure TRANSE-TO-G, a set of orthogonal hyperplane segments E’(Z) such 

that E’(Z) u E(Z) forms a guillotine partition for Z and V(E’(Z) u E(Z)) d 

(2d - 4 + 4/d). V(E(Z)). 

In what follows we refer to the dimensions of Ed by the integers 1,2, . . . , d (in 

2-space we have the first dimension or lst-axis, and the second dimension or 2nd-axis). 

Let Ej(Z) be the set of hyperplane segments orthogonal to axisj in E(Z). An orthogonal 

hyperplane segment to the jth-axis that partitions the d-box R into two d-boxes is 

called a jth-axis orthogonal cut. A d-box partition E(Z) has a half jth-axis overlapping 

cut 1 ifl is a jth-axis orthogonal cut such that V(Z n E(Z)) 2 0.5 ni +jXi. We say that 

E(Z) has a jth-axis guillotine cut, I, if I is a jth-axis orthogonal cut such that 

V(1 n E(Z)) = ni +jXi. Suppose R is partitioned by a jth-axis orthogonal cut into two 

d-boxes, R, and R2. With respect to such a partition we define E(Z,) and E(Z,) as the 

set of hyperplane segments E(Z) inside RI and R2, respectively. 

Assume that E(Z) is non-empty, and assume without loss of generality that the 

d-box has been rotated so that V(Ej(Z)) < V(E,(Z)) for all 1 <j < d. As we shall see 

later on, this is a very useful property in the proof of theorem 1. It is very important to 

remember that dimension d will remain dimension d throughout the transformation 

process. We use E’(Z) to denote all of the portions of the segments introduced by 

procedure TRANS E _ TO _ G that do not overlap with the segments in E(Z). Initially 

E’(Z) is empty and none of the facets2 of R are colored. When a facet of R is colored it 

indicates that procedure TRANS _ E TO _ G has introduced a hyperplane segment (or 

part of it) whose (d - 1)-volume is equal to the (d - 1)-volume of this facet, and which 

has not yet been accounted for by hyperplane segments in E(Z). Procedure 

2By facets of R we mean only the 2d outer facets of R, and not the facets of the d-boxes within R. 
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TRANS _ E TO _ G, which we formally define below, first checks if there is a half 

d-overlapping cut and if so, it introduces a &h-axis orthogonal cut along the half 

&h-axis overlapping cut. As a result of introducing this cut two subinstances are 

generated and a hyperplane segment is added to E’(I). It is simple to verify that the 

(d - 1)-volume of the newly introduced segment in E’(I) is at most equal to the 

(d - 1)-volume of the segments in E(Z) that overlap with the &h-axis orthogonal cut. 

Such a segment is not part of E(I,) or E(Z,). The facets of RI and R2 that were parts 

of colored facets of R remain colored. At this point we invoke procedure 

TRANS_E_TO_G recursively on the two resulting subinstances. If there is no half 

&h-axis overlapping cut, TRANS_E_TO_ G checks if there is a lst-axis guillotine 

cut, and if so, it partitions the rectangle through one such cut and at most two 

subinstances are generated. All of the facets of RI and R2 that were parts of colored 

facets of R lose their coloring at this point. The reason for this is that the (d - l)- 

volume of the lst-axis guillotine cut will account for the (d - 1)-volume of the colored 

facets of R. We apply procedure TRANSE_TO_G recursively to each non-empty 

subinstance. If there is no lst-axis guillotine cut, TRANS_E_TO_ G introduces 

a lst-axis orthogonal cut, called a mid-cut, that intersects the center of the d-box (i.e., it 

includes the point (oi + X1/2, o2 + X,/2,. . . , od + x,/2)). As we shall prove later on, 

when a mid-cut is introduced each of the two resulting subinstances has at least one 

segment inside it which is not orthogonal to the d-axis. Suppose that RI contains 

point o of R. The facets in R, and R, that were colored in R remain colored. The facet 

in RI orthogonal to the lst-axis which does not include point o gets colored at this 

point. The (d - 1)-volume of such facet is equal to the (d - 1)-volume of the mid-cut 

just introduced. The procedure is 

The procedure is formally defined 

d-box partition E(I) of R. 

applied recursively to the resulting subinstances. 

below. The first invocation involves an uncolored 

procedure TRANS_E_TO_G(I = (0, X), E(I), d) 
begin 

Relabel the dimensions so that Xi b X2 > ... X&i; 

/*Note that dimension d is never relabeled. Extreme care must be taken after this 

step since the axes have been relabeled. For clarity we do not include all the 

details needed because of the relabeling.*/ 

/*In what follows we partition R into RI and R2 by introducing a hyperplane 

segment along a cut. We assume that RI contains point o of R.*l 
case 

:E(I) has a half dth-axis overlapping cut: 

Introduce a hyperplane segment in R along one such cut3; 

3Remember that we are interested in E’(I), the portions of the segments introduced by the procedure that 
do not overlap with the segments in E(I). 
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The facets of RI and R2 which were colored in R remain colored (even if 

sliced); 

:E(Z) has an lst-axis guillotine cut: 

Introduce a hyperplane segment in R along one such cut3; 

Delete all colors from the facets of RI and R,; 

:else: 

Introduce into R a lst-axis orthogonal cut3 that intersects the center of R;/* 

mid-cut */ 

All the facets of RI and R2 which were parts of colored facets of R (even if 

sliced) remain colored; 

Color the facet of RI orthogonal to the lst-axis which does not include point o; 

end case 

if E(Z,) # 8 then invoke TRANSE-TO-G recursively with (Zr, E(Z,), d); 

if E(Z,) # 0 then invoke TRANS_E_TO_G recursively with (Z2, E(Z,), d); 

end 

It is important to note that procedure TRANS _ E _ TO _ G is only used to establish 

our approximation bound. Let E’(Z) be the set of hyperplane segments introduced by 

procedure TRANS _ E _ TO _ G that do not overlap with the segments in E(Z). Clearly, 

E(Z) u E’(Z) is a guillotine partition. Remember that Ej(Z) represents the set of 

hyperplanes in E(Z) orthogonal to axisj. We define E;(Z) similarly, but with respect 

to E’(Z). We define X,ras fli +jXi, for 1 d j < d - 1. In what follows, we assume that 

xl>xz> ..’ 3X,_,.Ad-boxR=(o,X)issaidtobeoftypei(ldidd-l)ifiis 

the largest integer such that Xi < 2Xi. Since Xi < 2X1 for all I, the type of a d-box is 

uniquely defined. Before proving our main result (Theorem l), we prove the following 

intermediate results (Lemmas 1 and 2). It is important to remember that once 

TRANS _ E _ TO _ G begins, dimension d will not be relabeled. 

Lemma 1. Every invocation made to procedure TRANS_E_ TO_ G (I, E(Z), d), satisJies 

the following conditions: 

(a) E(Z) is non-empty, and 

(b) if E(Z) has a dth-axis guillotine cut then none of the facets of R are colored; 

otherwise the only facets of R which could be colored are those facets orthogonal to the 

jth-axis which do not include point o, for 1 < j < i, where i is the type of R. 

Proof. Initially, E(Z) # 0 and none of the facets of R are colored. Therefore, the first 

invocation to procedure TRANS _ E _ TO G satisfies (a) and (b). We now show that if 

upon entrance to the procedure the conditions are satisfied, then the invocations made 

directly from it will also satisfy (a) and (b). Assume (I, E(Z), d) satisfies conditions (a) 

and (b). There are three cases depending on the type of cut introduced by procedure 

TRANS_E_TO_G. 

Case 1: Procedure TRANS E _ TO _ G partitions R along a halfdth-axis overlapping 

cut. 
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Suppose that E(Z) has a &h-axis guillotine cut. From (b) we know that none of the 

facets of R are colored, and no facet will get colored at this step. Since each invocation 

made directly from the current invocation is on non-empty problem instances, it 

follows that invocations made directly from this call satisfy both properties (a) and (b). 

On the other hand, if E(Z) does not have a &h-axis guillotine cut, then the half &h-axis 

overlapping cut cannot be a &h-axis guillotine cut. Therefore, there is at least one 

hyperplane segment orthogonal to the jth-axis, for some 1 < j < d, on each side of the 

half &h-axis overlapping cut. Since a &h-axis orthogonal cut over this half &h-axis 

overlapping cut is introduced, the resulting two d-box partitions (E(Z,) and E(Z,)) 

must be non-empty, otherwise E(Z) is not a d-box partition. Clearly, RI and R2 are of 

type i (since the first d - 1 dimensions of RI, R, and R are identical), there are no 

&h-axis guillotine cuts (since R had no guillotine cuts and a cut orthogonal to the 

d-axis was introduced) and the only facets of RI and R2 which could be colored are 

those facets orthogonal to the jth-axis which do not include point o, for 1 6 j d i. 

Therefore, each invocation made directly from the current invocation satisfy both 

properties (a and b). This completes the proof for this case. 

Case 2: Procedure TRANS_E_TO_G partitions R along a lst-axis guillotine cut. 

Since just after partitioning R all of the facets in R, and R2 lose their coloring, and 

we invoke procedure TRANSE _ TO _ G only if their corresponding d-box partition is 

non-empty, then the invocations made in this case satisfy (a) and (b). This completes 

the proof of this case. 

Case 3: Procedure TRANSE- TO_ G introduces a mid-cut. 

Since E(Z) does not have a lst-axis guillotine cut, because Case 2 does not apply, 

then each of the resulting d-box partitions has at least one hyperplane segment 

orthogonal to thejth-axis for some 1 d j < d - 1. Since R is of type i, and a mid-cut is 

introduced orthogonal to the lst-axis, then the type of RI and R, is k, for some integer 

k 3 i. Clearly, the second subinstance satisfies (a) and (b). Since o is in RI, the facet 

orthogonal to the lst-axis which does not include o is not colored in RI when the 

mid-cut is introduced. Immediately after that step it gets colored. Therefore, the first 

subinstance also satisfies (a) and (b). This completes the proof for this case and the 

lemma. 0 

Lemma 2. For any non-empty d-box partition E(Z) of any instance Z of the RG-P, 

problem, procedure TRANS_E_ TO-G generates a set E’(Z) of (d - 1)-dimensional 

hyperplane segments such that 

VEXZ)) d VE,(Z)), 

and 
d-l d-l 

jTl V(EI(Z)) d (2d - 3) C V(Ej(O). 

j=l 

Proof. First we show that V(E;(Z)) < V(E,(Z)). This is simple to prove because 

dth-axis orthogonal cuts are only introduced over half dth-axis overlapping cuts. Each 
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time a &h-axis orthogonal cut is introduced the segment 1’ added to E;(I) has (d - l)- 

volume that is at most equal to the (d - 1)-volume of the segments in the half &h-axis 

overlapping cut I in E,(Z). Since neither 1 nor 1’ are in the interior of the resulting 

subinstances after this operation, these hyperplane segments of Ed(l) are never 

charged more than once, and thus V(Ei(Z)) d V(E,(I)). 
Let us now show that 

d-l d-l 

jzl V(Ej(I)) d (2d - 3) C l’(Ej(r)). 
j=l 

It is simple to verify that procedure TRANS-E-TO-G does not color a facet more 

than once, and at the end none of the facets are colored. The only place where facets 

lose their color is when procedure TRANS_E_TO _ G introduces a lst-axis guillotine 

cut. Let us examine this case in more detail. Since R is of type i, and the only facets 

which could be colored are those that do not include o and which are orthogonal to 

axis j for 1 d j < i < d (by the Lemma l), we know that the (d - 1)-volume which 

could be colored is at most xi= 1 Xj; The (d - 1)-volume of the lst-axis guillotine cut 

is XI. Since X1 < 2X,, for 1 < j < i < d, we know that 2XI > Xj; Therefore, 

i X7 < XT + 2(d - 2)X7 = (2d - 3)X7. 
j=l 

Since the (d - 1)-volume of each segment introduced in E;(I), 1 < j < d - 1, corres- 

ponds to the (d - 1)-volume of every facet colored by procedure TRANS E _TO _ G, 

and the (d - 1)-volume of a set of jth-axis guillotine cuts identified by procedure 

TRANS _E _TO _ G is at most (2d - 3) times the (d - 1)-volume of the facets colored 

by procedure TRANS -E-TO-G, it then follows that 

d-l d-l 

C V(Ej(I)) < (2d - 3) C V(Ej(I)). 
j= 1 j=l 

This concludes the proof of the lemma. 0 

Theorem 1. Let E,,,,,(I) be an optimal d-box partition for any instance I of the RG-Pd 
problem, and let G(Z) be an optimal guillotine partition for I. Then V(G(Z)) d 

(2d - 4 + 4/d) V(E,&)). 

Proof. Let E(Z) be any d-box partition for I. Assume without loss of generality that 

v(Ed(r)) >, V(Ej(l)) for 1 <j < d - 1 (i.e., the sum of the (d - 1)-volume of the 

hyperplane segments orthogonal to the jth-axis is larger than the ones orthogonal to 

the ith-axis), as otherwise a simple initial relabeling is performed before we start the 

transformation. It is important to keep in mind that this relabeling is performed 

only once. Apply procedure TRANS _ E _ TO G to E(I). Combining the fact that 
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V(Ej(Z)) for 1 <j < d - 1 together with Lemma 2 and the assumption 

we know that 

d-l 

V(E(Z) U E’(I)) < (2d - 2) C V(Ej(1)) + ZV(Ed(I)). 

j=l 

This function achieves its maximum value when V(Ej(Z)) = 

V(E(Z) u E’(Z)) < ((2d - 2)(d - 1) + 2) V(E(Z))/d = (2d 

Since E(Z) u E’(Z) is a guillotine partition for I, 

V(G(Z)) d VW(Z) u E’(Z)). 

Hence, 

J’(G(Z)) d (2d - 4 + 4/d) V(E(Z)). 0 

V(E(Z))/d. Therefore, 

- 4 + 4/d) V(E(Z)). 

Theorem 2. An optimal guillotine partition for a KG-P, problem may be constructed in 

O(dnzdtl) time. 

Proof. Let g(Zi, Z2, . . . , Id) be the (d - l)-volume of an optimal guillotine partition for 

the d-box defined by the intervals Ii, Z2, . . . , Id, where Zj = [Zj, rj], Zj < rj, and Zj(rj) iS 

the jth-coordinate value of a point in P. For any Ii, Z2, . . . , Id, one can easily compute 

g(Zi, Zz, . . , 1,) recursively by trying all dn guillotine cuts (where IZ is the number of 

points in the d-box formed by I,, Z2, . . . , Id) and then selecting the minimum one. 

Since there are 0(n2d) of such g’s that need to be computed in order to find the (d - l)- 

volume of an optimal partition, then by using dynamic programming the overall time 

complexity is O(dn 2d+ ‘). By recording all valid guillotine partitions while computing 

volumes, this procedure can be easily modified to construct an optimal guillotine 

partition, rather than only computing the optimal (d - 1)-volume. 0 

3. Discussion 

For any d 3 2, it is simple to find a problem instance Z such that V(G(Z)) is about 

1.5 V(E,,,(Z)) [2]. One of such problem instances is an obvious generalization of the 

d-box partition in Fig. 2. Although we have obtained the upper bound 2d - 4 + 4/d, it 

is not clear whether or not there are problem instances that achieve (asymptotically) 

this bound for d > 2. 

In our transformation procedure, TRANS _ E -TO _ G, one may replace a lst-axis 

guillotine cut by a jth-axis guillotine cut (1 d j < d). This has no effect in the worst 

case approximation bound obtained in this paper; however, most of the time it will 

introduce a set of hyperplane segments with smaller (d - 1)-volume. 
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Fig. 2. 

By using standard speed-up techniques [12] it seems impossible to reduce the 

O(dP+l ) time complexity bound. It would be of theoretical interest to try to improve 

the time required to find an optimal guillotine partition. 
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