
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Computational Geometry 37 (2007) 72–103

www.elsevier.com/locate/comgeo

Complexity of the minimum-length corridor problem

Arturo Gonzalez-Gutierrez 1, Teofilo F. Gonzalez ∗

Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA

Received 30 May 2005; received in revised form 3 October 2006; accepted 11 October 2006

Available online 4 December 2006

Communicated by K. Clarkson

Abstract

We study the Minimum-Length Corridor (MLC) problem. Given a rectangular boundary partitioned into rectilinear polygons, the
objective is to find a corridor of least total length. A corridor is a set of line segments each of which must lie along the line segments
that form the rectangular boundary and/or the boundary of the rectilinear polygons. The corridor is a tree, and must include at least
one point from the rectangular boundary and at least one point from the boundary of each of the rectilinear polygons. We establish
the NP-completeness of the decision version of the MLC problem even when it is restricted to a rectangular boundary partitioned
into rectangles.
© 2006 Elsevier B.V. All rights reserved.

Keywords: NP-completeness; Minimum-length corridor; Minimum wire length; Minimum optical fiber length

1. Introduction

In this paper we study the Minimum-Length Corridor (MLC) problem and some of its variants. The MLC problem
is stated as follows. Given a pair (F,P) where F is a rectangular2 boundary partitioned into the set P of rectilinear
polygons P1,P2, . . . ,Pr , find a set S of line segments each of which lies along the line segments that form the
rectangular boundary F and/or the boundary of the rectilinear polygons. The line segments in S form a tree, and
include at least one point from the rectangular boundary F and at least one point from the boundary of each of the
rectilinear polygons. The sum of the length of the line segments in S is called the edge-length or simply the length
of S, and is denoted by L(S). The objective of the MLC problem is to construct a minimum edge-length set of line
segments S with the above properties.

One may view the pair (F,P) as a floorplan with r rooms, and the set S of line segments as a corridor connecting
the rooms. A corridor is called a partial corridor if there is at least one room that is not reached by the corridor,
i.e., at least one room is not exposed to the corridor. Fig. 1 shows a problem instance and two possible corridors are

* Corresponding author.
E-mail addresses: aglez@cs.ucsb.edu (A. Gonzalez-Gutierrez), teo@cs.ucsb.edu (T.F. Gonzalez).

1 On leave under the PROMEP program from the Universidad Autonoma de Queretaro. Supported in part by a Grant from UC MEXUS-
CONACyT.

2 Throughout this paper we assume that all the rectangles and rectilinear polygons have their boundaries orthogonal to the x or y axis, i.e., they
are all orthogonal rectangles or orthogonal rectilinear polygons.

0925-7721/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2006.10.002

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 73

Fig. 1. An instance of the MLC problem.

represented by thick lines. An access point of a corridor (or partial corridor) is any point shared with the rectangular
boundary F . Any corridor may be used to connect all the rooms to the outside of F through an access point.

This problem and its variants have applications when laying optical fiber for data communication or wires for
electrical connection in floorplans. In these applications, the rectangular boundary F corresponds to the floorplan;
the partition P of polygons corresponds to the configuration of the floorplan; each rectilinear polygon corresponds
to an individual room in the floorplan; and a corridor for an MLC problem instance corresponds to the placement
of the optical fiber or wires that provides data communication or power to all the rooms in the floorplan. In all our
applications we are interested in a minimum edge-length corridor which corresponds to the minimum length optical
fiber or wire needed to provide connectivity. Other applications with different objective functions include the laying
of water, sewer, and electrical lines on parcels in housing developments, and laying of wires for power or signal
communication in circuit layout design.

For the MLC problem instance in Fig. 1, the corridor given by the thick lines in Fig. 1(a) is not an optimal corridor
simply because one can obtain a shorter corridor by deleting part of the top line segment. However, the corridor in
Fig. 1(b) is an optimal one. A restricted version of the MLC problem is when all the rooms are rectangles. This
problem is called the MLC-R problem. In this paper we show that even the decision version of the MLC-R problem
is NP-complete.

The MLC problem was initially defined by Naoki Katoh [3] and subsequently Eppstein [4] introduced the MLC-R
problem. Experimental evaluations of several heuristics for the MLC problem are discussed in [8]. The question as
to whether or not the decision version of these problems are NP-complete is raised in the above three references. In
Section 2 we discuss related problems and in Section 3 we establish some preliminary results, and present our notation.
In Section 4 we define the general approach and architecture of our polynomial time reductions. In Sections 5 and 6
we show that two restricted versions of the MLC and MLC-R problems are NP-complete. Finally in Section 7 we
discuss our results and point out some open problems.

2. Related problems

Another restricted version of the MLC problem is when all the possible corridors must include the top-right corner
of the rectangular boundary F as an access point. In this case we refer to the problem as the top-right access point
version of the problem or simply the TRA-MLC and TRA-MLC-R problems. An optimal solution to the TRA-MLC
problem instance defined above is given in Fig. 1(a). Note that the set of thick line segments shown in Fig. 1(b) is not a
corridor (feasible solution) for the TRA-MLC problem. Fig. 2 summarizes the relationship between the variants of the
MLC problem defined so far and its generalization to graphs (N-MLC), which is formally defined below. In this figure
a thick arrow represents polynomial time reducibility and a thin arrow represents problem restriction. A polynomial
time reduction from TRA-MLC-R to MLC-R is given in Theorem 3.1. The same reduction shows that TRA-MLC α

MLC.
A more general version of the problems allows a set or forest of partial corridors rather than just a corridor, with

the partial corridors connecting all the rooms to access points on F . We call this problem the MLCf problem. The
multiple access point (MA-MLCf) version restricts the partial corridors to be rooted at a given set of access points
on F . When the top-right corner of F is the only access point, the MA-MLCf problem corresponds to the TRA-

Aut
ho

r's

pe
rs

on
al

co

py

74 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Fig. 2. Relationship between variants of the MLC problem.

MLC problem. From our results it follows that the MA-MLCf problem with one access point is NP-complete. Later
on we establish that the decision version of the MA-MLCf (when there are two or more access points) and MLCf

problems are NP-complete. Our problems may also be generalized to ones where F is a rectilinear polygon. These
more general versions of the MLC problem are NP-complete because they include the MLC problem which we show
to be NP-complete.

We may further generalize the MLC problem to graphs. In this case we are given a connected undirected edge-
weighted graph and the objective function is to find a tree with least total edge-weight such that every cycle in the
graph has at least one of its vertices in the tree. We call this problem the network MLC (N-MLC) problem. In graph
theoretic terms the set of vertices that break all the cycles in a graph is called a feedback node set (FNS). One may
redefine the N-MLC problem by requiring that the vertices in the corridor form a feedback node set for the graph.
Thus, this problem can also be referred to as the tree feedback node set (TFNS) problem, and is formally defined as
follows:

Input: A connected undirected edge-weighted graph G = (V ,E,w), where w :E → R
+ is an edge-weight function.

Output: A tree T = (V ′,E′), where E′ ⊆ E, V ′ ⊆ V , and V ′ is a feedback node set (i.e., every cycle in G includes
at least one vertex in V ′) and the total edge-weight

∑
e∈E′ w(e) is minimized.

The TFNS problem has not been defined elsewhere, but a similar problem, the tree vertex cover (TVC) problem is
discussed in [1]. The difference between the TFNS and TVC problems is that instead of the set V ′ being a feedback
node set for G, it must be a vertex cover for G.

The Group Steiner Tree (GST) problem may be viewed as a generalization of the MLC problem. Reich and Wid-
mayer [11] introduced the GST problem, motivated by applications in VLSI design. The GST problem is defined by
Reich and Widmayer as follows.

Input: A connected undirected edge-weighted graph G = (V ,E,w), where w : E → R
+ is an edge-weight func-

tion; a non-empty subset S, S ⊆ V , of terminals; and a partition {S1, S2, . . . , Sk} of S.
Output: A tree T (S) = (V ′,E′), where E′ ⊆ E and V ′ ⊆ V , such that at least one terminal from each set Si is in the

tree T (S) and the total edge-length
∑

e∈E′ w(e) is minimized.

Approximation algorithms to the GST problem are given in [2,6,7]. The graph Steiner tree (ST) problem is a special
case of the GST problem where each set Si is a single vertex. Karp [9] proved that the decision version of the ST
problem is NP-complete. Since the GST problem includes the ST problem, the decision version of the GST problem

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 75

is also NP-complete. There is a simple and straight forward reduction from the MLC problem to the GST problem,
which can be used to show that any constant ratio approximation algorithm for the GST problem is a constant ratio
approximation algorithm for the MLC problem. However there is no known constant ratio approximation algorithm for
the GST problem. Other authors [12–14] defined a more general version of the GST problem where {S1, S2, . . . , Sk}
of S is not a partition, but each Si ⊆ S, i.e, a vertex may be in more than one set Si . This version of the GST problem is
called the Tree Errand Cover (TEC) problem and it was studied by Slavik [13,14]. Safra and Schwartz [12] established
inapproximability results for the 2D version of the GST problem when each set is connected and the sets are allowed
to intersect, but again, these results do not seem to carry over to the MLC problem.

As we have seen, our problems are restricted versions of more general ones reported in the literature. But previous
results for those problems do not establish NP-completeness results, inapproximability results, nor constant ratio
approximation algorithms for our problems.

3. Preliminaries and definitions

In the decision version of our minimum edge-length corridor problems we are given an additional input value B

and the question is to decide whether or not there is a corridor with length at most B . Hereafter when we refer to any
of our problems we mean the decision version of our problems.

In Theorem 3.1 we show that our NP-completeness result for the TRA-MLC-R problem extends to the MLC-R
problem.

Theorem 3.1. TRA-MLC-R α MLC-R.

Proof. Consider any instance (F,P) of the TRA-MLC-R problem and embed it in the rectangle F ′ to create an
instance (F ′,P ′) of the MLC-R problem as shown in Fig. 3(a). We claim that the instance of the MLC-R problem has
a corridor of length at most B ′ = B + 4Y + h + w + 8 if, and only if, the instance of the TRA-MLC-R problem has a
corridor of length at most B , where Y = B + h + w + 9, and B,w, and h are greater than 2.

If the instance of the TRA-MLC-R problem has a corridor of edge-length B , then the addition of the thick line
segment in Fig. 3(a) shows that there is a corridor for the MLC-R problem with edge-length B + 4Y + h + w + 8.

Suppose now that there is a corridor with length at most B +4Y +h+w+8 for the instance of the MLC-R problem.
We show that the TRA-MLC-R instance has a corridor of length at most B . Consider any corridor S for the MLC-R
problem. If corridor S includes any of the line segments on the boundary of F ′, these line segments can be moved
to their closest parallel line segments inside F ′. We then delete superfluous line segments (if any). The edge-length

Fig. 3. Polynomial time reductions.

Aut
ho

r's

pe
rs

on
al

co

py

76 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

of the resulting corridor S is not longer than before. Suppose now that S does not include the line segment (α,β).
Then the corridor must include at least one of the horizontal line segments below (α,β) to reach rectangle RC , and
must include a portion of line segment (α,β) of length at least Y to reach rectangle RA. These segments must have
total length at least 3Y . Now to join RD to the corridor on the top side of F ′ we need at least one of the three vertical
line segments with length at least 2Y . But then the total length of line segments identified so far is at least 5Y which
exceeds B + 4Y + h + w + 8. So it must be that the line segment (α,β) must be part of the corridor S. Similarly, we
can argue that (δ, ε) must also be part of corridor S. The segments (α,β) and (δ, ε) have total length 4Y +h+w + 3.
Since the length of the corridor is at most B + 4Y + h + w + 8, then the remaining part of the corridor has length at
most B + 5. One can show that the only possible corridor must have the thick line segments given in Fig. 3(a) plus
the line segments inside F of length at most B to connect all the rectangles inside F ′. Therefore, the instance of the
MLC-R problem has a corridor of length at most B + 4Y +h+w + 8 if, and only if, the instance of the TRA-MLC-R
problem has a corridor of length at most B , where Y = B + h + w + 9, and B,w, and h are greater than 2. This
concludes the proof of the theorem. �

Now consider any instance (F,P) of the TRA-MLC-R problem and embed it in rectangle F ′ to create an instance
(F ′,P ′) of the MLCf -R problem as shown in Fig. 3(b). Clearly, the instance of the MLCf -R problem has a solution
with length at most B ′ = B + 1 if, and only if, the instance of the TRA-MLC-R problem has a corridor with length
at most B , when B > 2. Notice that the solution consists of two trees, one with only one point, so its length is zero,
and the other has length B + 1. It is simple to show that the same transformation holds from the TRA-MLC-R to the
MA-MLCf -R problem when there are two or more access points. These observations establish Theorem 3.2.

Theorem 3.2. TRA-MLC-R α MLCf -R, and TRA-MLC-R α MA-MLCf -R with k access points, for k � 2.

Proof. By the above discussion. �
In Section 5 we show that the TRA-MLC problem is NP-complete and in Section 6 we show that even the

TRA-MLC-R is NP-complete. Clearly, the result in Section 6 implies the result in Section 5. However, we begin
by establishing that the TRA-MLC problem is NP-complete because that reduction is simpler to understand. Then we
show how to modify the reduction to a more complex one to establish that the TRA-MLC-R problem is NP-complete.
By Theorems 3.1 and 3.2; the problem restriction implied by the definitions; the fact that the MLC, MLC-R, MLCf ,
MLCf -R, MA-MLCf and MA-MLCf -R problems are in NP; and our NP-completeness result for the TRA-MLC-R
given in Section 6; it then follows that the MLC, MLC-R, MLCf , MLCf -R, MA-MLCf and MA-MLCf -R problems
are also NP-complete. The following theorem formalizes these results.

Theorem 3.3. The MLC, MLC-R, MLCf , MLCf -R, MA-MLCf and MA-MLCf -R problems are NP-complete.

Proof. By the above discussion. �
To establish our NP-completeness results we reduce Planar 3-SAT (P3SAT) given in a canonical planar embedding

(defined below) to our problem. Problem P3SAT is 3-SAT restricted to a formula whose graph representation is planar.
P3SAT was shown to be NP-complete by Lichtenstein [10]. Planar 3-SAT is formally defined as follows:

Input: Given I = (X,C), where X is a set of Boolean variables {x1, x2, . . . , xn} and C is a non-empty set of clauses
{C1,C2, . . . ,Cm} over X in conjunctive normal form (CNF); every clause has at least two and at most three
literals; and the graph GI = (V ,E) for (X,C) is planar, where

V = {Cj | 1 � j � m} ∪ {xi | 1 � i � n} and

E = {{Cj , xi} | xi ∈ Cj or x̄i ∈ Cj

} ∪ {{xi, xi+1} | 1 � i < n
} ∪ {x1, xn}.

Question: Is there a satisfying truth assignment for C?

Fig. 4 depicts a planar embedding D(GI) for the graph GI associated to the instance I = (X,C), where
X = {x1, x2, . . . , x9} and C = (C1,C2, . . . ,C14) = ({x1, x̄2}, {x1, x̄4, x5}, {x̄1, x2}, {x̄1, x̄2, x4}, {x2, x̄4}, {x̄2, x3, x4},

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 77

Fig. 4. A canonical planar embedding D(GI) of the graph GI representing the instance I = (X,C).

{x3, x̄4}, {x̄3, x4, x5}, {x̄4, x̄5}, {x̄5, x6, x̄7}, {x̄6, x7}, {x̄5, x8}, {x5, x̄7, x̄9}, {x5, x9}).3 For a planar embedding D(GI),
the set X of vertices are vertically aligned (in some order).

A planar embedding D(GI) is called a canonical planar embedding (drawing) if in addition to the above vertical
alignment property, the ring formed by the set X of vertices (thick line cycle in Fig. 4) is such that all the clause
vertices outside the ring are drawn to the left of the vertices in X, and the ones inside the ring are drawn to the right
of the vertices in X. A canonical planar embedding (drawing) can be generated by making simple additions to several
existing polynomial time algorithms including the algorithm (specified through the polynomial time reduction from
3SAT to P3SAT) given by Lichtenstein [10]. Any canonical planar embedding can be easily represented in O(n + m)

space. In what follows we assume without loss of generality that the Boolean variables in every instance of P3SAT
has been reordered so that there is a canonical planar embedding with the variables x1, x2, . . . , xn appearing from top
to bottom in that order.

For any instance I = (X,C) of P3SAT given in a canonical planar embedding, let N2 be the set of clauses with
exactly two literals, i.e., N2 = {c | c ∈ C and c has two literals}. Similarly we define the set of clauses N3 = {c | c ∈ C

and c has three literals}. Given any canonical planar embedding D(GI) for the graph GI we define the following
terms. The set C of clauses is partitioned into two sets: the set L of clauses whose clause vertex is located outside the
ring formed by the set X of vertices, and the set R of clauses whose clause vertex is located inside the ring. For every
clause c ∈ N2 we define as its ring the set of vertices c, xi1, xi1+1, . . . , xi2−1, xi2 , where i1 < i2 are the indices of the

3 This is equivalent to C = ((x1 ∨ x̄2) ∧ (x1 ∨ x̄4 ∨ x5) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x4) ∧ (x3 ∨ x̄4) ∧ (x̄3 ∨ x4 ∨ x5) ∧
(x̄4 ∨ x̄5) ∧ (x̄5 ∨ x6 ∨ x̄7) ∧ (x̄6 ∨ x7) ∧ (x̄5 ∨ x8) ∧ (x5 ∨ x̄7 ∨ x̄9) ∧ (x5 ∨ x9)).

Aut
ho

r's

pe
rs

on
al

co

py

78 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

literals in c. Similarly, for every clause c ∈ N3 we define as its rings the set of vertices c, xi1, xi1+1, . . . , xi2−1, xi2 and
c, xi2, xi2+1, . . . , xi3−1, xi3 , where i1 < i2 < i3 are the indices of the literals in c.

We refer to the clauses whose clause vertex is not inside the ring of another clause as peripheral clauses. The depth
of a peripheral clause is defined as the maximum number of clause vertices inside any of its rings plus one. The depth
of the left side of the canonical planar embedding D(GI) is defined as the maximum depth of the peripheral clauses
whose clause c ∈ L. Similarly, the depth of the right side of the canonical planar embedding D(GI) is defined as the
maximum depth of the peripheral clauses whose clause c ∈ R. Let l and r be the depth of the left and right side of the
canonical planar embedding D(GI), respectively. The canonical planar embedding D(GI) of Fig. 4 has the peripheral
clauses C2,C3,C8,C13,C14, and its depth on the left and right side is l = 4 and r = 3, respectively.

4. Architecture of the reductions

Let us now define the general approach for our polynomial time transformations from P3SAT given in a canon-
ical planar embedding to the decision version of the TRA-MLC and TRA-MLC-R problems. For any instance
I = (X,C) ∈ P3SAT given in a canonical planar embedding D(GI), our polynomial time transformation constructs
the instance f (I) of the TRA-MLC or TRA-MLC-R problem inside a rectangular boundary F .

From the planar embedding D(GI) we define the instance f (I) of our problem. This instance consists of four
different types of components: (truth) setting, clause-checking, top-frame and setting-terminator. Each setting com-
ponent corresponds to a Boolean variable and its size, which will be defined formally later on, is related to the number
of occurrences of the Boolean variable or its complement in the clauses. As we establish later on, every corridor with
length at most B for f (I) corresponds to the assignment of the value of true or false for each variable in instance
I . These assignments can be easily identified by the way the corridor visits the rectilinear polygons in the setting
components. Furthermore, the values assigned to the variables in each of these assignments satisfy all the clauses
in C. To ensure this last property we have the clause-checking components. There is a clause-checking component for
each clause c ∈ C on the left side of the setting components when c ∈ L, and on the right side when c ∈ R in D(GI).
A clause-checking component will be reached by a feasible corridor only when at least one of the literals in the clause
it represents has the value of true. The top-frame component is used to allow for the setting of the value of the topmost
Boolean variable in D(GI), and the setting-terminator component allows for adjacent variables to be assigned values
independent from each other. Fig. 5 shows the overall architecture and all the components. In Sections 5 and 6 we
discuss each of the components separately and then explain their interactions.

Fig. 5. Overall architecture.

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 79

For the reduction in Section 5, the width of the rectangles circumscribing the left and right clause-checking compo-
nents is given by αL = 2l+1 and αR = 2r +1, respectively. The values for the reduction in Section 6 are βL = 4(l+1),
and βR = 4(r + 1), respectively. Remember that we define the depth l and r for the left and right side of the canonical
planar embedding D(GI) in the previous section.

The horizontal dimension of the clause-checking components depends on the indentation of the clause in D(GI).
The indentation function, I :C → Z+, is defined recursively as follows. For c ∈ L, if c is a peripheral clause in
D(GI), its indentation I (c) is the depth of the left side. Otherwise, for a non-peripheral clause c, its indentation I (c)

is defined as the minimum indentation of a clause whose ring includes the clause vertex for clause c minus 1. The
indentation I (c) for c ∈ R is defined similarly. The indentation value for every clause in D(GI) given in Fig. 4 is
given in Table 1. We also define the parameter γ = max{βL,βR} which will be used to define the dimensions of the
components in the construction given in Section 6. Note that γ � 4(I (c) + 1) for any c ∈ C; and γ > 0 because the
set C of clauses is non-empty.

For every xi ∈ X, we define λi and ρi as the number of edges of the form {xi, c} for any c ∈ C in the canonical pla-
nar embedding D(GI) leaving the vertex xi from the left side (when c ∈ L) and right side (when c ∈ R), respectively.
The size si of the setting component for variable xi is max{λi, ρi}. Table 2 gives the values for λi and ρi for Fig. 4.

For every edge in D(GI) of the form {c, xi} such that c ∈ L we define its relative order as y if there are exactly
y − 1 edges of the form {c′, xi} with c′ ∈ L that appear above edge {c, xi} in D(GI). Similarly we define the relative
order for the edges of the form {c, xi} for c ∈ R. Table 3 gives the relative order for every edge of the form {c, xi} in
the canonical planar embedding given in Fig. 4.

Table 1
Indentation for the canonical planar embedding given in Fig. 4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

I (c) 2 4 3 3 2 1 2 3 2 3 1 2 4 3

Table 2
The values of λi and ρi for the canonical planar embedding given in Fig. 4

x1 x2 x3 x4 x5 x6 x7 x8 x9

λi 2 3 1 4 3 1 2 0 1
ρi 2 2 2 3 4 1 1 1 1

Table 3
The relative order for every edge of the form {c, xi } in the canonical planar embedding given in Fig. 4

Edge (left side) Relative order Edge (right side) Relative order

{C2, x1} 1 {C3, x1} 1
{C4, x1} 2 {C1, x1} 2
{C4, x2} 1 {C1, x2} 1
{C5, x2} 2 {C3, x2} 2
{C6, x2} 3 {C8, x3} 1
{C6, x3} 1 {C7, x3} 2
{C6, x4} 1 {C7, x4} 1
{C5, x4} 2 {C8, x4} 2
{C4, x4} 3 {C9, x4} 3
{C2, x4} 4 {C9, x5} 1
{C2, x5} 1 {C8, x5} 2
{C13, x5} 2 {C14, x5} 3
{C10, x5} 3 {C12, x5} 4
{C10, x6} 1 {C11, x6} 1
{C10, x7} 1 {C11, x7} 1
{C13, x7} 2 {C12, x8} 1
{C13, x9} 1 {C14, x9} 1

Aut
ho

r's

pe
rs

on
al

co

py

80 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Table 4
The values of t (c), m(c), and b(c) for the canonical planar embedding given in Fig. 4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

t (c) 2 1 1 2 2 3 2 1 3 3 1 4 2 3
m(c) – 4 – 1 – 1 – 2 – 1 – – 2 –
b(c) 1 1 2 3 2 1 1 2 1 1 1 1 1 1

For each clause c such that c ∈ L and c ∈ N2 we define t (c) as the relative order of the edge {c, xi1}, and b(c) as
the relative order of the edge {c, xi2}, where i1 < i2 are the indices of the literals in c. For each clause c such that
c ∈ L and c ∈ N3, we define t (c) as the relative order of the edge {c, xi1}, m(c) as the relative order of the edge {c, xi2}
and b(c) as the relative order of the edge {c, xi3}, where i1 < i2 < i3 are the indices of the literals in c. We define
similarly t (c), m(c) and b(c) for all the clauses c ∈ R. Table 4 gives the t (c), m(c), and b(c) values for all the clauses
for the canonical planar embedding given in Fig. 4. The values of t (c),m(c) and b(c) are used to define how the
clause-checking components join to the setting components in our construction.

5. TRA-MLC problem

Let us now define our polynomial time transformation from P3SAT given in a canonical planar embedding to
the decision version of the TRA-MLC problem. For any instance I = (X,C) ∈ P3SAT given in a canonical planar
embedding D(GI), our polynomial time transformation constructs the instance f (I) of the TRA-MLC problem. The
overall architecture of the reduction and all the components of our construction are given in Fig. 5. It is important
to point out that the setting-terminator component is not actually needed in this reduction. However, we added it in
order to use the same architecture for the reduction given in the next section. In what follows we discuss each of the
components separately and then explain their interactions.

Setting component. Each setting component is associated with a Boolean variable and the way the corridor visits its
rectilinear polygons identifies the assignment of a value to the variable. For Boolean variable xi , a setting component
consists of si basic setting components stacked on top of each other with a pair of rectilinear polygons joining them.
The basic setting component consists of variable-repository rectangles, horizontal-fixing rectangles, and vertical-
fixing octagons.

A basic setting component, s, has four variable-repository rectangles (light gray colored), two vertical-fixing oc-
tagons (dark gray colored), and two horizontal-fixing rectangles (darker gray colored) (see Fig. 6). A basic setting
component has also five rectilinear polygons (white colored) with eight or twelve corners. The variable-repository
region represents the literals xi and x̄i . The top-left variable-repository rectangle corresponds to xi , and the top-
right variable-repository rectangle corresponds to x̄i . As we proceed downwards the literals are assigned to the
variable-repository rectangles in an alternating way. Fig. 6 shows the length of each line segment of the basic set-
ting component s. Let hb and wb be the height and width of s, respectively. Let hr and wr be the height and width of
the variable-repository rectangle, respectively. The height hr of the variable-repository rectangle is equal to 5wr , and
the height hb of the basic setting component is equal to 14wr . Every horizontal line segment that joins two variable-
repository rectangles on opposite sides of basic setting component s has length d which is set to 2hb + 4wr . Note that
the scale of Fig. 6 is not proportional to the length of its segments. The specific values in our reduction for hb and wr

are 14 and 1, respectively.
Suppose that there is a partial corridor PC that ends both on the top-left and top-right corners of the basic setting

component s and does not include any other point of s. Remember that every partial corridor for the TRA-MLC
problem instance includes the top-right corner of the rectangular boundary F .

Consider all the possible sets of line segments that extend the partial corridor PC to reach all the rectilinear poly-
gons inside the basic setting component s. Additionally, each of those sets of line segments inside s reaches its
bottom-left and bottom-right corners in order to provide connection to the other basic setting component that will
be placed under s. Lets refer to a subset of those resulting partial corridors as the collection S . Each partial corridor
S ∈ S consists of PC plus a set of line segments connecting all the rectilinear polygons inside s and its bottom-left
and bottom-right corners. As we prove below, every partial corridor S ∈ S consists of PC plus either one of the two
sets of line segments of the general form given in Fig. 7.

Formally, the collection S consists of all partial corridors S that satisfy the following properties:

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 81

Fig. 6. Basic setting component.

1. Partial corridor S includes PC as well as the bottom-left and bottom-right corners of the basic setting component s,
and at least one point from each of the rectilinear polygons inside s.

2. All line segments in S \ PC must be inside or on the boundary of s.
3. L(S \ PC) � 2hb + 4wr .

Since d = 2hb + 4wr it must be that the line segments of every set S \ PC, where partial corridor S belongs to S ,
consists of two disjoint sets of line segments. One set joins the top-left to the bottom-left corner of s and the other set
joins the two remaining corners of s. Suppose that for some S ∈ S these sets are simply two line segments both of
which start at the top and end at the bottom of s, one goes through the left and the other goes through the right side
of s. Their total length is 2hb . However, these extensions to the partial corridor PC do not reach the horizontal-fixing
rectangles nor the vertical-fixing octagons of s. One way to reach the horizontal-fixing rectangles is by adding line
segments of least possible length. But then, the length of the resulting partial corridor minus L(PC) is greater than
2hb + 4wr . So the only way such rectangles and octagons could be reached, under the line segment length constraint,
is when the partial corridor is routed through the interior side of the variable-repository rectangle. Each time this
takes place we need to add horizontal line segments with length equal to 2wr . Therefore, the only feasible partial
corridors with edge-length 2hb + 4wr plus L(PC) are the ones where the above detour takes place only once for each
horizontal-fixing rectangle at the same level. Since there are two levels, we have several sets of line segments each
with total length 2hb + 4wr . But a feasible set of corridors must also reach the vertical-fixing octagons. It is easy to
prove that this can only be accomplished by the two paths of line segments (dark thick lines) given in Fig. 7. In both
cases the partial corridor S has edge-length equal to 2hb + 4wr plus L(PC).

The partial corridor given in Fig. 7(a) corresponds to the variable xi being assigned to the value of true and Fig. 7(b)
corresponds to the value of false. It is important to remember that when the corridor goes through the exterior vertical
edge of the variable-repository rectangle that represents xi , and through the interior vertical edge of the variable-
repository rectangle for x̄i , then the variable xi has the value of true. Otherwise, when the corridor goes through the
interior vertical edge of xi and through the exterior vertical edge of x̄i , the value for xi is false.

Aut
ho

r's

pe
rs

on
al

co

py

82 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Fig. 7. Sets S \ PC of line segments for a basic setting component corresponding to setting xi to the values of true and false.

From the above discussion it is simple to see that the horizontal-fixing rectangle ensures that one of the left and
right variable-repositories will have the corridor running through its internal side, whereas the vertical-fixing octagon
guarantees an alternating detour behavior of the corridor going through the repositories on each of the sides. The
following lemma characterizes the set of partial corridors for the basic setting component.

Lemma 5.1. The set S is not empty and every partial corridor S ∈ S will traverse the basic setting component s

by either visiting the exterior vertical edge of the variable-repository rectangle that represents xi , and traverse s by
visiting the interior vertical edge of the variable-repository rectangle for x̄i ; or vice-versa. Furthermore, L(S \ PC) =
2hb + 4wr .

Proof. By the above discussion. �
The setting component associated to the Boolean variable xi consists of si basic setting components stacked on

top of each other as shown in Fig. 8. Between every pair of adjacent basic setting components there are two vertical-
fixing octagons joining the variable-repository rectangles on each side of the setting component. These are introduced
to ensure consistency for the value of xi along the setting component. Remember that the size, si , of the setting
component for xi was defined in Section 4 as max{λi, ρi}. The whole sequence of variable-repository rectangles
contains the variable xi and its complement x̄i , alternating along each side. The height of the setting component
for variable xi is hb · si , and the total length of line segments needed to extend the corridor PC all the way to the
bottom-left and bottom-right sides of the setting component is (2hb + 4wr)si . The set of line segments, extending the
partial corridor PC, of the form given in Fig. 8(a) corresponds to the value of xi equal to true and the one in Fig. 8(b)
corresponds to the value of false. We establish these claims in Lemma 5.2.

Let Q be the obvious generalization of S for the basic setting component to a setting component. In this case every
partial corridor S ∈Q has length at most (2hb + 4wr)si plus L(PC).

Lemma 5.2. The set Q is not empty and every set of line segments S \ PC for S ∈ Q must be of the form given in
Fig. 8. Furthermore, L(S \ PC) = (2hb + 4wr)si .

Proof. By Lemma 5.1 and the above discussion. �

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 83

Fig. 8. Sets of line segments for a setting component corresponding to setting xi to the values of true and false.

Aut
ho

r's

pe
rs

on
al

co

py

84 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Clause-checking component. The clause-checking component, for each clause c ∈ C, consists of a rectilinear poly-
gon which joins to certain variable-repository rectangles of the literals in c on the left side if c ∈ L or on the right side
when c ∈ R. These variable-repository rectangles are said to be associated with the clause-checking component. Each
of these variable-repository rectangles will not be the associated with another clause-checking component. We will
elaborate on this property later on.

Fig. 9(a) shows the clause-checking component for c = {yi1, yi2} ∈ N2, c ∈ L, and yi1 (yi2 , resp.) is either xi1 or
x̄i1 (xi2 or x̄i2 , resp.). Fig. 9(b) shows the clause-checking component for c = {yi1, yi2, yi3} ∈ N3, c ∈ L, and yi3 is
setting similarly as yi1 and yi2 above. The clause-checking components on the right hand side are symmetric. On the
vertical axis the clause-checking component for c ∈ N2 spans from the middle of the variable-repository rectangle
for literal yi1 on the basic setting component number t (c) (from top) for variable xi1 , to the middle of the variable-
repository rectangle for literal yi2 on the basic setting component number b(c) (from top) for variable xi2 . Remember
that t (c) and b(c) for each clause c ∈ C were defined in Section 4. The clause-checking component for c ∈ N3 spans
from the middle of the variable-repository rectangle for literal yi1 on the basic setting component number t (c) (from
top) for variable xi1 , to the middle of the variable-repository rectangle for literal yi3 on the basic setting component
number b(c) (from top) for variable xi3 . The middle variable-repository rectangle that is used for literal yi2 is the basic
setting component number m(c) (from top) for variable xi2 . Remember that m(c) was also defined in Section 4. For
example, the clause C4 = {x̄1, x̄2, x4} for the problem instance whose canonical planar embedding is given in Fig. 4
has its clause-checking component ending at the variable-repository rectangle corresponding to the literal x̄1 for
the second basic setting component of the first variable (because its t (c) value is 2), the variable-repository rectangle
corresponding to the literal x̄2 for the first basic setting component of the second variable (because its m(c) value is 1),
and the variable-repository rectangle corresponding to the literal x4 for the third basic setting component of the fourth
variable (because its b(c) value is 3). Fig. 9 gives the precise dimensions of the clause-checking component. Note
its dependence on I (c). This guarantees that every pair of line segments from different clause-checking components
are at least one unit apart. The implication of this construction is that the existing partial corridor through the setting
component will reach the clause-checking component without the need to add any new line segments when at least
one of the literals satisfies the corresponding clause. On the other hand, one needs additional line segments so that the
partial corridor reaches the corresponding clause-checking component when the values assigned to the variables do
not satisfy the corresponding clause. By setting the value of B appropriately none of these additional segments can be
included in a feasible corridor. We summarize these claims in the following lemma.

Lemma 5.3. Let S ∈Q be a partial corridor that reaches all the setting components and it is of the form given by
Lemma 5.2. All the clause-checking components will be exposed to the corridor S if, and only if, all the clauses c ∈ C

are satisfied by the corresponding values for the variables assigned by S.

Proof. By the above discussion. �
Setting-terminator component. As we mentioned above, the setting-terminator component is not needed for this

transformation. However, we added it to use the same overall architecture in both reductions. Thus, the setting-
terminator has the function of ending the setting component for each variable. This allows for the possibility of
adjacent variables to have different values. Fig. 10(b) shows the setting-terminator and the corridor through it. The
component has height ht and width wb .

Top-frame component. The top-frame component is used to distribute the corridor from the top-right corner of F

to the two exterior vertical sides of the setting components. Fig. 10(a) shows the top-frame component. It has width
equal to αL + wb + αR , and its height is hf + wr . Remember that in Section 4, the width of the left and right clause-
checking components were defined as αL = 2l + 1 and αR = 2r + 1, respectively. A feasible partial corridor with
length αR + wr + wb + 2hf that ends at the two points that place on the top-left and top-right corners of the topmost
setting component is also given in Fig. 10(a).

Finally, the value of B is set to

n∑

i=1

(
(2hb + 4wr)si

) + 2(n − 1)ht + αR + wr + wb + 2hf .

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 85

Fig. 9. Clause-checking component.

Fig. 10. (a) Top-frame component. (b) Setting-terminator component.

Applying the reduction. Before we illustrate the whole process we should point out that our reduction results in
an instance f (I) with large height, whose drawing would be hard to read in this media. Thus, instead of drawing in
this paper such an instance f (I) we draw an equivalent compressed version of the instance which we call fc(I). The
equivalent compressed instance has s′

i � si basic setting-components for each Boolean variable xi . We accomplish
the compression process by moving up as much as possible and resizing the clause-checking components so that their
ends are aligned with equivalent variable-repository rectangles. Of course one needs to change the value of B to one

Aut
ho

r's

pe
rs

on
al

co

py

86 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Table 5
Original size si and compressed size s′

i
of the setting component for

each variable xi

x1 x2 x3 x4 x5

si 2 3 2 4 2
s′
i

1 2 1 2 1

we call Bc . The formula depends on s′
i rather than on si . We will use the compressed version in Figs. 11 and 12. We

illustrate in Example 1 all the components assembled together following to the above overall architecture (Fig. 5).

Example 1. This instance is a shorter version of the instance I = (X,C) given in Section 3, whose canonical planar
embedding D(GI) is in Fig. 4. This shorter version includes only the edges and vertices induced by the clauses
C1,C2, . . . ,C9 and the vertices x1, x2, . . . , x5; and the edge {x1, x5}. The resulting instance is a yes-instance. The size
si of each setting component is given in Table 5. Thus the instance f (I) is formed by 13 setting components. However,
one can resize almost all of the clause checking components. The resizing of the clause checking components reduces
the number of setting components to 7. The compressed value of the size of the setting components s′

i is given also in
Table 5. We will use this equivalent compressed version fc(I) in all our figures. Fig. 11 gives the resulting compressed
instance of the TRA-MLC problem. In this figure we show two sets of line segments (medium thick lines) with length
Bc . The first one is a partial corridor (i.e., the black filled octagon is not exposed), but the second one is a corridor (i.e.,
all the polygons are exposed). The partial corridor corresponds to the truth assignment with all the variables having
the value of true, which does not satisfy the clause C9, and the corridor corresponds to the truth assignment with all
the variables having the value of false, which satisfies all the clauses.

Example 2. Consider the following instance I = (X,C = ({x1, x̄2}, {x1, x̄3}, {x̄1, x2, x3}, {x̄1, x̄2}, {x2, x3}, {x2, x̄3})),
and a canonical planar embedding D(GI) with the clauses C2,C4 and C5 on the left side and C1,C3 and C6 on the
right side. It is simple to show that this instance is a no-instance.

Applying our reduction and then compressing it results in the instance of the TRA-MLC problem that is given in
Fig. 12. In this figure we show 8 partial corridors (medium thick lines) with length Bc of the form given in Fig. 8 for
each variable. In the bottom side of each sub-figure we give the values for x1, x2 and x3 corresponding to the corridor.
Each of these partial corridors corresponds to a truth assignment for the variables in the instance I . For each of the
truth assignments, the black filled dodecagon and octagons are not exposed to the partial corridor. This corresponds
to a clause not being satisfied by the corresponding truth assignment. For example the clause-checking component,
corresponding to {x2, x̄3} in the assignment x1 = true, x2 = false, x3 = true, is the only one which is not reached by
the corridor in the sub-figure labeled TFT in Fig. 12 and therefore instance I is not satisfied by that truth assignment.

Let us now use our reduction to show that the TRA-MLC problem is NP-complete.

Theorem 5.1. The TRA-MLC problem is NP-complete.

Proof. The TRA-MLC can be solved by a nondeterministic polynomial time Turing machine. Given a set of line
segments one can verify in polynomial time whether or not the segments form a corridor and its length is at most B .
Therefore, TRA-MLC is in NP.

Now we show that the problem transformation defined above is a valid transformation. Since the proof that the
transformation takes polynomial time with respect to the instance I = (X,C) ∈ P3SAT problem given in a canonical
planar embedding D(GI) is simple, we omit it. In what follows we show that no matter what instance I given in any
canonical representation D(GI) we start from, the instance f (I) ∈ TRA-MLC problem has a corridor with length at
most B iff the instance I ∈ P3SAT used to construct f (I) is satisfiable.

We now show that if the instance I is satisfiable then the instance f (I) has a feasible corridor with length at
most B . Let A be a truth assignment for instance I that satisfies all the clauses in C. The corridor that we construct
corresponds to the assignment A and starts on the top-frame component as in Fig. 10(a). The corridor will follow the
routes given in Fig. 8(a) or (b), depending on whether or not the variable xi has the value true in A on each setting
component, with length equal to (2hb + 4wr)si . The corridor in the setting-terminator component consists of the

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 87

Fig. 11. Instance fc(I) constructed from Example 1.

Aut
ho

r's

pe
rs

on
al

co

py

88 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Fig. 12. Partial corridors for instance fc(I) constructed from Example 2.

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 89

segments on its left and right sides. Clearly the total length of the corridor is exactly B . By construction and the fact
that assignment A satisfies all the clauses, all the polygons, including the ones for the clause-checking components,
are exposed to the corridor. Therefore the instance f (I) has a feasible corridor.

We establish now that if the instance f (I) has a feasible corridor then the instance I is satisfiable. Let S be a
corridor of length at most B that starts at the top-right corner of the rectangle F . By using a proof similar to Lemma 5.2
we can show that a feasible corridor cannot zigzag from the left edge to the right edge of the setting components, and
one can establish that a feasible corridor cannot traverse the edges of the clause-checking components that do not
coincide with the repository rectangles. So it must be that the corridor S traverses each setting component as shown
in Fig. 8(a) or (b), and the transition to the next setting component is by using the left and right sides of the setting-
terminator component. The way the corridor visits the setting components (shown in Fig. 8(a) or (b)) corresponds to
the values of true or false that we assign to the Boolean variables X. Since the length of the segments of the corridor
we have identified is equal to B , it then follows that no other segments can be in S. Since all the clause-checking
components are exposed to the corridor S, it follows from our construction rules, that the values assigned to the
variables satisfy all the clauses. Therefore instance I is satisfiable. �
6. TRA-MLC-R problem

In this section we establish that the TRA-MLC-R problem is NP-complete, i.e., the TRA-MLC problem when
the rectangular boundary F is partitioned into rectangles. The reduction in the previous section does not apply here
because some of the rectilinear polygons are not rectangles. For example, the white basic setting component polygons
in Fig. 6 have 8 or 12 corners each, and the vertical-fixing octagons have 8 corners. Rectilinear polygons that lie
between the clause-checking components in Figs. 11 and 12 may have more than 12 corners.

Our reduction in this section follows the same approach as the one in the previous section, however it is much more
complex. As we said before, the reduction in this section implies the result in the previous section. However, once you
understand the reduction in the previous section, the one in this section is easier to follow.

The overall architecture of our construction is the same as the one given in Fig. 5. We have the same type of
components with the same functionality as in the previous reduction, but their internal composition is different. Also,
the corridor must include several “short” line segments, to join the clause-checking components to the corridor along
the variable-repository regions. This is different from the reduction in the previous section where additional segments
to expose the clause-checking component were not required.

As in the previous section, for any instance I = (X,C) ∈ P3SAT given in a canonical planar embedding D(GI), our
polynomial time transformation constructs the instance f (I) ∈ TRA-MLC-R. In what follows we discuss separately
each of the components in our reduction and then explain their interaction.

Setting component. Each setting component is associated with a Boolean variable and the way the corridor visits its
rectangles identifies the assignment of a value to the variable. For Boolean variable xi , a setting component consists
of si basic setting components stacked on top of each other. The basic setting component is formed by: variable-
repository regions, horizontal-fixing regions, and vertical-fixing regions.

A basic setting component, s, has four variable-repository regions (light gray colored), two vertical-fixing regions
(dark gray colored), and two horizontal-fixing regions (white) with five, eighteen, and five rectangles each one, respec-
tively (Fig. 13). The rectangles r1, r2, r3, l1, l2, and l3 as well as the special points a1(z), a2(z), b1(z), b2(z), c1(z),
c2(z), d(z), e(z), f1(z), f2(z), g1(z), g2(z), h(z), i1(z), and i2(z), for z ∈ {L,R}, are identified in Fig. 13. These
names will be used later on. The rectangles inside the horizontal-fixing regions are referred to as middle rectangles.
The remaining rectangles are referred to as left or right rectangles depending on the side of the component where they
reside. The rectangle that includes the center point of a horizontal-fixing region is called the h-central rectangle.

As in our previous reduction the variable-repository region represents the literals xi and x̄i . The top-left variable-
repository region corresponds to xi , and the top-right variable-repository region corresponds to x̄i . As we proceed
downwards the literals are assigned to the variable-repository regions in an alternating way.

Let hb and wb be the height and width of s, respectively. The value of hb is equal to 240γ and wb is equal to
6γ + wI , where wI has the value 988γ . Remember that γ is defined in Section 4. The height hr and width wr of
the variable-repository region is 60γ and 3γ , respectively. Fig. 14 shows the length of each line segment of the basic
setting component s. The dimensions for the vertical-fixing and horizontal-fixing regions are also given in Fig. 14.
The rectangles of size 18γ by γ in the vertical-fixing regions are called the v-central rectangles.

Aut
ho

r's

pe
rs

on
al

co

py

90 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Fig. 13. Basic setting component architecture.

Suppose that there is a partial corridor PC that ends both on the top-left and top-right corners of the basic setting
component s and does not include any other point of s. As in the previous section, remember that every partial corridor
includes the top-right corner of the rectangular boundary F .

Consider all the possible sets of line segments that extend the partial corridor PC to reach all the rectangles inside
the basic setting component s except for either some of the rectangles r1, r2, and r3, or some of the rectangles l1, l2,
and l3. Additionally, each of those sets of line segments inside s reaches its bottom-left and bottom-right corners in
order to extend the partial corridor to the other basic setting component placed below s. The collection S , formally
defined below, includes a special subset of the resulting partial corridors. As we prove below, every partial corridor
S ∈ S consists of PC plus either one of the two sets of line segments of the general form given in Fig. 15.

Formally, the collection S consists of all partial corridors S that satisfy the following properties:

1. Partial corridor S includes PC as well as the bottom-left and bottom-right corners of the basic setting compo-
nent s, and at least one point from each of the rectangles inside s except for either some of the rectangles r1, r2,
and r3, or some of the rectangles l1, l2, and l3. For any given partial corridor S the exception only applies to one
of the two sets of rectangles.

2. All segments in S \ PC must be inside or on the boundary of s.
3. L(S \ PC) � 494γ .

The exterior edge of the variable-repository region r is the intersection of the boundary of s and the vertical
boundary edges of the variable-repository region r . We say that a set S′ = S \ PC of line segments for a partial
corridor S ∈ S is completely visible from the outside of the basic setting component s at the variable-repository region
r if S′ includes the exterior edge of r . When it includes at most two points (the top and bottom point of the exterior
edge of r) we say that S′ is hidden from the outside of s at the variable-repository region r . We say it is partially
hidden from the outside of s at the variable-repository region r if it includes only a non-empty portion of the exterior
edge of r . Note that a set S′ that is hidden might also be partially hidden. In the following lemma we show that every

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 91

Fig. 14. Measurements for the basic setting component.

Fig. 15. Sets S \ PC of line segments for a basic setting component corresponding to setting xi to the values of true and false.

Aut
ho

r's

pe
rs

on
al

co

py

92 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

set S \ PC of line segments is either hidden at the xi variable-repository regions and completely visible at the x̄i

variable-repository regions or vice versa. In this sense all the sets S \ PC of line segments, for S ∈ S , are equivalent
to the ones (thick line segments) given in Fig. 15. It is important to note that when the set S \ PC of line segments is
completely visible from the outside of the basic setting component at a variable-repository region that represents xi ,
then the variable xi has the value of true, and when the set S \ PC of line segments is hidden from the outside of the
basic setting component at a variable-repository region that represents xi , the variable xi has the value of false.

The following lemma characterizes the set of line segments S \ PC for S ∈ S .

Lemma 6.1. The set S is not empty an every set S \ PC of line segments for the partial corridor S ∈ S is either hidden
at both of the xi variable-repository regions and completely visible at both of the x̄i variable-repository regions, or
vice versa. Furthermore, L(S \ PC) = 494γ .

Proof. Let S be any set in S . By definition L(S \ PC) � 494γ . We will show that S satisfies the conditions of
the lemma. Since wI = 988γ it must be that the set S \ PC of line segments consists of two disjoint sets of line
segments which we will refer to as the set S(L) of left line segments (along the rectangles labeled left) and the set
S(R) of right line segments (along the rectangles labeled right). The set S(L) includes the top-left (a1(L)) and the
bottom-left (i1(L)) corners of the basic setting component and S(R) includes the top-right (a1(R)) and bottom-right
(i1(R)) corners of the basic setting component. Furthermore, each of these two sets of line segments do not reach any
rectangles on the opposite side of the basic setting component.

Clearly, there must be one path from a1(L) to i1(L) in S(L), and one path from a1(R) to i1(R) in S(R). We refer
to these paths as p(L) and p(R), respectively. The vertical distance from the top-left to the bottom-left and from the
top-right to the bottom-right corners of the basic setting component is 240γ . Therefore the total edge-length of the
vertical line segments in p(L) and p(R) is at least 480γ .

The sets of line segments S(L) and S(R) fall into two types depending on whether all of the rectangles l1, l2 and
l3, or r1, r2 and r3 are exposed to the corridor.

Case 1: All the rectangles l1, l2 and l3 are exposed to the corridor.
Since all the vertical fixing rectangles are exposed to the partial corridor S it must be that d(L) or e(L), and h(L)

or i2(L) must be part of S(L). If any of these four points are in p(L), then p(L) has horizontal line segments
with length at least 6γ . Otherwise, the paths from any of these four points to p(L) have horizontal line segments
with length at least 6γ , or the total length of the vertical line segments in S(L) \ p(L) is at least 60γ . In the latter
case the total length of the segments in S exceeds 494γ . In all the remaining cases we know that the length of the
horizontal line segments in S(L) is at least 6γ .
Since all the rectangles in the top vertical-fixing region are exposed to S, it must be that d(R) or e(R) must be
part of S(R). Therefore, the length of the horizontal line segments in S(R) must be at least 3γ .
The horizontal and vertical line segments so far identified in S(L) and S(R) have total length at least 489γ . The
remaining line segments in S(L) and S(R) must have length at most 5γ .
We claim that the line segments (d(L), e(L)), (h(L), i2(L)), (d(R), e(R)), and (h(R), i2(R)) may not be part of
the corridor S. The reason is that if any such segments were present then one would need vertical line segments
with length at least 21γ to reach the v-central rectangle of the corresponding vertical-fixing region. But then
there would be line segments with length at least 21γ not included with the segments with length at least 489γ

previously identified and the 494γ bound would be exceeded.
The set S(L) must include exactly one of the segments (b1(L), c1(L)) or (b2(L), c2(L)), and exactly one of the
segments (f1(L), g1(L)) or (f2(L), g2(L)). Note that if either line segments (b1(L), c1(L)) and (b2(L), c2(L)),
or (f1(L), g1(L)) and (f2(L), g2(L)) are part of S(L) then there would be line segments with length at least 12γ

that are not included in the previous count and the 494γ bound would be exceeded. The same argument can be
used for S(R).
We now show that if (b2(L), c2(L)) and (f2(L), g2(L)) are both in p(L) then the total length of the segments in
S(L) is greater than 494γ . The reason for this is that the path from a1(L) to b2(L) must contain horizontal line
segments with length at least 3γ . The same holds for the path from g2(L) to i1(L). As we established above the
segment (d(L), e(L)) is not part of S(L). Therefore, the vertical line segments in S(L)−p(L) and the horizontal
line segments in S(L) located between line segments (c1(L), c2(L)) and (f1(L),f2(L)) (including both lines)

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 93

must have length at least 6γ . Therefore we have identified line segments in S(L) with length at least 12γ which
together with the horizontal segments in S(R) with length at least 3γ and the 480γ vertical segments in p(L) and
p(R) exceeds 494γ . So S(L) must contain at most one of (b2(L), c2(L)) and (f2(L), g2(L)). The same argument
can be used to show that S(R) must contain at most one of (b2(R), c2(R)) and (f2(R), g2(R)).
Lets now consider the h-central rectangles. It cannot be that (b1(L), c1(L)) is in p(L) and (b1(R), c1(R)) is in
p(R) because then there is at least one vertical line segments with length 5.5γ that is not in p(L) or p(R) joining
the topmost h-central rectangle to at least one of the points b1(L), c1(L), b1(R), or c1(R). This segment plus
the previously identified ones have length greater than 494γ . So it cannot be that (b1(L), c1(L)) is in p(L) and
(b1(R), c1(R)) is in p(R). The same arguments can be used to show that it cannot be that (f1(L), g1(L)) is in
p(L) and (f1(R), g1(R)) is in p(R).
Suppose now that (b2(L), c2(L)) and (f1(L), g1(L)) is in p(L) and (b1(R), c1(R)) and (f2(R), g2(R)) is in
p(R). Since (f2(R), g2(R)) is in p(R) we know that the horizontal line segments in p(R) must have length at
least 6γ . Since (b2(L), c2(L)) is in p(L) the horizontal line segments in the path p(L) from a1(L) to g1(L) must
have length at least 6γ . The horizontal line segments below the line (f1(L),f2(L)) must be at least 3γ since one
of the vertices h(L) and i2(L) must be part of S(L). Therefore we have identified segments with length at least
15γ which together with the vertical segments identified in p(L) and p(R) will exceed the 494γ .
It is easy to show that the only remaining possibility is when (b1(L), c1(L)) and (f2(L), g2(L)) is in p(L) and
(b2(R), c2(R)) and (f1(R), g1(R)) is in p(R). Since line segment (f2(L), g2(L)) is in p(L) there must be at
least 6γ horizontal segments in p(L), and since line segment (b2(R), c2(R)) is in p(R) there must be at least
6γ horizontal segments in p(R). In order for all the rectangles in the horizontal-fixing region to be exposed to
S, the rectangle in the upper horizontal-fixing region must be exposed to S(R) and the lower rectangle in the
horizontal-fixing region must be exposed to S(L). To expose all the rectangles in the vertical-fixing region one
needs four vertical segments each with length 0.5γ . The total length of the segments is equal to 494γ . So there
are no other segments in S and the corridor is visible at the xi variable-repository rectangles and hidden at the x̄i

variable-repository rectangles. Fig. 15(a)) gives one such corridor.
Case 2: Some of the rectangles l1, l2 and l3 might not be exposed to the corridor.

A proof similar to the one for Case 1 can be used to show that in this case the total length of the segments in S(L)

and S(R) is equal to 494γ , and the corridor is hidden at the xi variable-repository rectangles and visible at the x̄i

variable-repository rectangles. Fig. 15(b)) gives one such corridor. This completes the proof of the lemma. �
From Lemma 6.1, the only two possible types of partial corridors in S have length equal to 494γ plus L(PC), and

are completely visible at both of the variable-repository regions for xi and hidden at both of the variable-repository
regions for x̄i , or vice versa. The line segments given in Fig. 15(a) correspond to the variable xi being assigned the
value of true and the ones in Fig. 15(b) correspond to the variable xi being assigned the value of false. As in the
previous reduction, it is simple to see that the rectangles of the horizontal-fixing region ensure that one of the left
and right variable-repository regions will have the corridor running through its internal boundary edges, while the
rectangles of the vertical-fixing region guarantee an alternating detour behavior of the corridor going through the
variable-repository region on each of the sides.

The setting component associated to the variable xi consists of si basic setting components stacked on top of each
other as shown in Fig. 16. Remember that the size, si , of the setting component is defined in Section 4 as max{λi, ρi}.

As in the case of Lemma 5.2 one can establish that the line segments in a partial corridor that include the top-left,
top-right, bottom-left and bottom-right of the setting component for xi have total length at least 494γ · si + 3γ . Note
that the last term is added to reach all the rectangles in the bottommost basic setting component, i.e., to include l1,
l2 and l3, or r1, r2 and r3 from the bottom basic setting component. One can also establish that all the feasible sets
of line segments are of the form given in Fig. 16, in the sense that either they are completely visible at all the xi

variable-repository regions and hidden at all the x̄i variable-repository regions, or vice versa. The set of line segments
of the form given in Fig. 16(a) corresponds to the value of xi equal to true and the one in Fig. 16(b) corresponds to
the value of false. We establish these claims in Lemma 6.2.

Let Q be the obvious generalization of S for the basic setting component to the setting component, except that all
the rectangles must be exposed to the partial corridor (including the ones in the bottommost basic-setting component).
In this case every partial corridor S ∈Q has length at most 494γ · si + 3γ plus L(PC).

Aut
ho

r's

pe
rs

on
al

co

py

94 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Fig. 16. Sets of line segments for a setting component corresponding to setting xi to the values of true and false.

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 95

Lemma 6.2. The set Q is not empty and every set of line segments S \ PC for the partial corridor S ∈ Q must be
of the form given in Fig. 16 in the sense that every set of line segments S \ PC is either completely visible at all
the xi variable-repository regions and hidden at all the x̄i variable-repository regions, or vice versa. Furthermore,
L(S \ PC) = 494γ · si + 3γ .

Proof. The proof follows from Lemma 6.1 and the fact that the set of line segments from every partial corridor for
adjacent basic setting components in the setting component must be of the same form and thus expose the rectangles
r1, r2, and r3, or l1, l2, and l3 that were not previously exposed. These corridors have total segment length equal to
494γ · si . The extra 3γ is used to expose the uncovered r1, r2, and r3, or l1, l2, and l3 rectangles in the bottommost
basic setting component. �

Clause-checking component. The clause-checking component, for each clause c ∈ C, consists of a rectangle that
is partitioned into three regions called: contact, isolation, and satisfaction regions. The overall architecture of the
clause-checking component is given in Fig. 17. Notice that the architecture is very similar for the clauses with two
and three variables. The contact region of the clause-checking component for clause c must be adjacent to certain
variable-repository regions corresponding to the literals in the clause. These variable-repository regions are said to be
associated with the clause-checking component. These variable-repository regions will not be associated with other
clause-checking components. We will elaborate on this property later on.

Fig. 17(a) shows the horizontal dimensions for the regions of the clause-checking component for c = {yi1, yi2}
such that c ∈ N2, c ∈ L, and yi1 (yi2 , resp.) is either xi1 or x̄i1 (xi2 or x̄i2 , resp.). Fig. 17(b) shows the regions for the
clause-checking component for c = {yi1, yi2, yi3} such that c ∈ N3, c ∈ L, and yi3 is defined similarly as yi1 and yi2

above. The clause-checking components on the right hand side are symmetric. On the vertical axis the three regions
of the clause-checking component for c ∈ N2 span from the middle of the variable-repository region for literal yi1 on
the basic setting component number t (c) (from top) for variable xi1 , to the middle of the variable-repository region
for literal yi2 on the basic setting component number b(c) (from top) for variable xi2 . Remember that t (c) and b(c) for

Fig. 17. Clause-checking components.

Aut
ho

r's

pe
rs

on
al

co

py

96 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

each clause c ∈ C is defined in Section 4. For c ∈ N3 the three regions span from the middle of the variable-repository
region for literal yi1 on the basic setting component number t (c) (from top) for variable xi1 , to the middle of the
variable-repository region for literal yi3 on the basic setting component number b(c) (from top) for variable xi3 . The
middle variable-repository region that is used for literal yi2 is the basic setting component number m(c) (from top)
for variable xi2 . Remember that m(c) is also defined in Section 4. The width of the clause-checking component is
4(I (c) + 1) and the width of the contact region is 4I (c). The isolation region is three units wide and the satisfaction
region has unit width.

The clause-checking component for clause c = {yi1, yi2} ∈ N2 is simple. The satisfaction region is just one rec-
tangle and refer to it as the satisfaction rectangle. The isolation region consists of three rectangles. But the contact
region may consist of several rectangles. In Fig. 17(a) the shaded regions correspond to clause-checking components
nested directly inside the clause-checking component for c, i.e., the clauses corresponding to those clause-checking
components have indentation value equal to I (c) − 1 and their clause nodes are inside the ring for c in D(GI). In
Fig. 17(a) there are three clause-checking components nested directly, so the contact region consists of four rectangles,
excluding the three shaded regions.

Suppose that every clause-checking component for the clauses in C is connected to the partial corridor S that goes
through the setting-components, except for one clause c ∈ N2. Furthermore, suppose the connection for c′ ∈ C − {c}
is by line segments with length 4I (c′) + 3 < γ when c′ ∈ N2 and 12I (c′) + 6 < 3γ when c′ ∈ N3.

From the construction one can easily verify that the shortest segments needed to connect the satisfaction rectangle
of the clause-checking component for clause c ∈ N2 to the variable-repository region corresponding to its literals, yi1

and yi2 , is by adding a line segment with length 4I (c) + 3 that goes through the top or bottom boundaries of the
contact and isolation regions (see Fig. 18(b)). When the partial corridor is completely visible at either of the variable-
repository regions corresponding to the literals in clause c, i.e., one of the literals has the value of true, then the total
length of the line segments needed to expose the satisfaction rectangle to the corridor is exactly 4I (c) + 3. When
both of the literals have the value of false (see Fig. 18(a)), any possible connection has edge-length greater than γ

(by definition, we know that γ > 4I (c) + 3). This is because the isolation region prevents any direct connection to
the satisfaction region of the clause checking component for c from partial corridor line segments for clause-checking
components that are nested directly inside the one for c, or from those going through the variable-repository regions.
Also, clause-checking components that have the clause-checking component for c nested directly inside them have
all their corridor line segments at a distance greater than γ from the satisfaction rectangle for the clause-checking
component for c. Therefore, when both the literals have the value of false, the line segments needed to expose the
satisfaction rectangle have total length greater than γ . We summarize these observations in the following lemma.

Lemma 6.3. Suppose that there is a partial corridor S ∈Q that reaches all the setting components and it is of the
form given by Lemma 6.2. Suppose that the connection from every clause-checking component c′ ∈ C, except for
the one for c ∈ N2, joins to the partial corridor S by line segments with length 4I (c′) + 3 < γ for c′ ∈ N2 and
12I (c′) + 6 < 3γ for c′ ∈ N3, originating at the variable-repository regions associated with them. Then by adding
line segments with length 4I (c) + 3 to the partial corridor S ∈ Q, it is possible to expose all the rectangles in the
clause-checking component for clause c ∈ N2 if, and only if, the partial corridor corresponds to an assignment of
values to the variables such that at least one of the literals for clause c has the value true.

Proof. By the above discussion. �
For clause c = {yi1, yi2, yi3} ∈ N3, the construction is more complex. As before, the satisfaction region is just one

rectangle, that we refer to as the satisfaction rectangle. The isolation region is subdivided into three equal-width
regions, and each of these regions consists of several rectangles as shown in Fig. 17(b). The contact region contains at
least four rectangles. There are exactly four rectangles when the clause-checking component corresponds to a clause
whose rings in D(GI) do not contain any clause vertices inside them. Fig. 17(b) shows an example where the contact
region consists of 8 rectangles, excluding the four shaded regions. The shaded regions correspond to clause-checking
components for clauses that are nested directly within clause c, i.e., these clauses have indentation value equal to
I (c) − 1 and their clause vertices are inside the ring for c.

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 97

Fig. 18. Possible sets of line segments for a two-literal clause-checking component.

Suppose that every clause-checking component for the clauses in C is connected to the partial corridor S that goes
through the setting-components, except for one clause c ∈ N3. Furthermore, suppose the connection for c′ ∈ C − {c}
is by line segments with length 4I (c′) + 3 < γ when c′ ∈ N2 and 12I (c′) + 6 < 3γ when c′ ∈ N3.

From the construction one can easily verify that the only way one may expose the satisfaction rectangle to the cor-
ridor that goes through the setting components is by introducing line segments. More specifically, the segments have
total length equal to 4I (c) + 3 if the segments emanate from the top or bottom variable-repository region associated
with the clause, and 4I (c) + 4 when they emanate from the middle variable-repository region. Since we are restricted
(at this time) to partial corridors S ∈ Q, this can only happen when the partial corridor is completely visible at a
variable-repository region corresponding to the literals in the clause c, i.e., one of its literals has the value true (this
assumes that the partial corridor at each setting component is of the form given in Fig. 16). On the other hand, when
the three literals have the value of false (Fig. 19(a)), any possible connection to the satisfaction rectangle has edge
length greater than 3γ . This is because the isolation region prevents any direct connection to the satisfaction rectangle
of the clause-checking component for c from other partial corridor segments for clause-checking components that are
nested directly inside the one for c, or from those going through the variable-repository regions. Also, the partial cor-
ridor segments in a clause-checking component that have the clause-checking component for c nested directly inside
it are at a distance greater than 3γ from the satisfaction rectangle for the clause-checking component for c. Therefore,
when the three literals in c have the value of false, the line segments needed to expose the satisfaction rectangle will
have total length greater than 3γ .

It is simple to see that all the rectangles in the contact region are exposed to the partial corridor S. However, we
need to show how to expose the other rectangles in the isolation region to the corridor. We now establish that line
segments with length at least 12I (c) + 6 are needed to expose all the rectangles in the clause-checking component.
There are two cases depending on which line segments are added to expose the satisfaction rectangle to S.

Case 1: The line segments added to expose the satisfaction rectangle join to S in the middle of the top or the bottom
variable-repository region associated with the clause c.

Aut
ho

r's

pe
rs

on
al

co

py

98 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

Assume without loss of generality the connection is through the top variable-repository region. Clearly, the length
of the line segment introduced so far is 4I (c) + 3. Some of the rectangles that need to be exposed to the corridor
are the left upper-central, left lower-central, lower-left and lower-middle rectangles. There are three sub-cases
depending on the set of line segments introduced to expose the lower-left rectangle.
Case 1.1: The lower-left rectangle is exposed to the corridor by introducing two horizontal and a vertical line

segment starting in the middle point of the middle variable-repository region associated with the clause c.
These three line segments have total length equal to 4I (c) + 3. The lower-middle rectangle needs to be joined
to S. This requires line segments with length equal to 4I (c)+ 1. This final segment also exposes the remaining
rectangles to S in the clause-checking component. All the segments introduced have total length equal to
12I (c) + 7.

Case 1.2: The lower-left rectangle is exposed to S by introducing a line segment starting in the bottom point of
the middle variable-repository region associated with clause c.
This segment has length equal to 4I (c) + 2. The left upper-central rectangle needs to be joined to S. This
requires a segment with length equal to 4I (c) + 1. This final segment also exposes all the rectangles in the
clause-checking component and the line segments introduced have total length equal to 12I (c) + 6. This cor-
responds to Fig. 19(d) (Fig. 19(b) shows the symmetric case).

Case 1.3: The lower-left rectangle is exposed to S by introducing a line segment starting in the middle point of
the bottom variable-repository region associated with the clause c.
This segment has length equal to 4I (c) + 2. We need to expose the left upper-central and left lower-central
rectangles. This requires line segments of length at least equal to 4I (c) + 2. This final segment exposes all
the rectangles in the clause-checking component and the line segments introduced have total length equal to
12I (c) + 7.

Case 2: The line segments added to expose the satisfaction rectangle join to S in the middle of the middle variable-
repository region associated with the clause c.

Fig. 19. Possible sets of line segments for a three-literal clause-checking component.

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 99

Clearly, the total length of the additional segments introduced so far is 4I (c)+4. Some of the rectangles that need
to be exposed to the corridor are the upper-middle and lower-middle rectangles. Lets consider the possible ways
to expose the upper-middle rectangle since the other case (exposing the lower-middle rectangle) is similar. One
can expose the upper-middle rectangle through the middle point of the top variable-repository region associated
with clause c by introducing line segments with length 4I (c)+ 1; or through the top point of the middle variable-
repository region associated with clause c by line segments with length 4I (c) + 1. So the segments introduced
have total length equal to 12I (c) + 6 in all cases. This corresponds to Fig. 19(c).

Notice that the feasible set of line segments extending the partial corridor S ∈ Q with length 12I (c) + 6 for
Cases 1.2 and 2 do not have vertical line segments except for the one with length one parallel to the middle variable-
repository region (see Fig. 17(b)). Thus, we can establish that no other partial corridors different to the ones analyzed
in Cases 1.2 and 2 above are shorter than 12I (c) + 6 as they all include at least one vertical line segment with length
greater than 3γ > 12(I (c) + 6) connecting the satisfaction rectangle associated with clause c to the partial corridor
connecting clause-checking components for clauses nested inside one of the rings in D(GI) for clause vertex c, or to
the partial corridor connecting clause-checking components of clauses that have the clause vertex c nested inside one
of their rings in D(GI).

The above arguments can be used to prove the following lemma.

Lemma 6.4. Suppose that there is a partial corridor S ∈Q that exposes all the setting components and it is of the
form given by Lemma 6.2. Suppose that every clause-checking component c′ ∈ C, except for the one for c ∈ N3,
is exposed to the partial corridor S by line segments with length 4I (c) + 3 < γ for c′ ∈ N2 and 12I (c) + 6 < 3γ

for c′ ∈ N3, originating at the variable-repository regions associated with them. Then by adding line segments with
length 12I (c) + 6 to the partial corridor S ∈Q, it is possible to expose all the rectangles associated with the clause-
checking component for clause c ∈ N3 if, and only if, the partial corridor S corresponds to an assignment of values
to the variables such that at least one of the literals for clause c has the value true.

Proof. By the above discussion. �
Setting-terminator component. The setting-terminator component has the function of ending the setting component

for each variable. This allows for the possibility of adjacent variables to have different values. Fig. 20(b) shows the
setting-terminator component and a possible corridor (thick black lines). The component has height ht and width wb .

Top-frame component. The top-frame component is used to distribute the corridor from the top-right corner of F

to the two exterior sides of the setting components. Fig. 20(a) shows the top-frame component. It has width equal to

Fig. 20. (a) Top-frame component. (b) Setting-terminator component.

Aut
ho

r's

pe
rs

on
al

co

py

100 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

βL + 6γ + wI + βR , and its height is 21γ . A feasible partial corridor with length βR + wI + 47γ that ends at the two
points that place on the top-left and top-right points of the first setting component is given in Fig. 20(a).

Lemma 6.5. There is a partial corridor with total edge-length at most βR + wI + 47γ that connects the rectangles
of the top-frame component and the two points that place on the top-left and top-right points of the topmost setting
component to the top-right corner of F (see Fig. 20(a)).

Proof. By the above discussion. �
Finally, the value of B is equal to

βR + wI + 47γ +
n∑

i=1

(494γ · si + 3γ) + 2(n − 1) · ht +
∑

c∈N2

(
4I (c) + 3

) +
∑

c∈N3

(
12I (c) + 6

)
.

Applying the reduction. Before we illustrate the whole process we should point out that our reduction results in an
instance with very large height. So instead of drawing in this paper such an instance which would be hard to read in
this media, we draw an equivalent compressed version of the instance which we call fc(I). The compressed instance
has size s′

i � si for the setting component for Boolean variable xi . We accomplish the compression process by moving
up as much as possible and resizing the clause-checking components so that their ends are aligned with equivalent
variable-repository regions. Of course one needs to change the value of B to one we call Bc . The formula depends on
s′
i rather than on si . We will use the compressed version in Fig. 21. The assembling of all the components is illustrated

using the instance given in Example 1 in Section 5.
This instance is a yes-instance. In Fig. 21(a) we show the corridor corresponding to all variables having the value

of false, an assignment that satisfies all the clauses. In Fig. 21(b) and (c) we show two partial corridors. One is for the
assignment in which all the variables are false except for x3, and the other one corresponds to all variables having the
value true. These two assignments do not satisfy all the clauses, and as we shall prove later on the problem instance
does not have a corridor with the desired edge-length. The partial corridor exposes the maximum number of rectangles
and have length less than Bc. In order to expose the rectangles that have not been reached by the partial corridor, one
needs to add line segments, increasing the total length of the corridor to more than Bc.

We establish the NP-completeness of the TRA-MLC-R problem in the following theorem.

Theorem 6.1. The TRA-MLC-R problem is NP-complete.

Proof. Since the more general problem TRA-MLC is in NP, then so is the TRA-MLC-R problem.
We show now that the problem transformation defined above is a valid transformation. Since the proof that the

transformation takes polynomial time with respect to the instance I = (X,C) of the P3SAT problem given in a
canonical planar embedding D(GI) is simple, we omit it. In what follows we show that no matter what instance I we
start from, the instance f (I) of the TRA-MLC-R problem has a corridor with length at most B iff the instance I is
satisfiable.

We show now that if the instance I is satisfiable then the instance f (I) has a feasible corridor. Let A be a truth
assignment for instance I = (X,C) that satisfies all the clauses. The corridor that we construct corresponds to the
assignment A and starts with the partial corridor for the top-frame component given in Fig. 20(a). This connects the
top-right corner of F with the top-right and top-left points of the topmost setting component. The corridor will follow
the routes given in Fig. 16(a) or (b) on each setting component depending on whether or not the Boolean variable
xi has the value of true in A. The corridor in the setting-terminator component consists of the segments on its left
and right sides. Clearly the total length of the line segments so far introduced is exactly B − ∑

c∈N2
(4I (c) + 3) −∑

c∈N3
(12I (c) + 6). Since A satisfies all the clauses in C we can show by using Lemmas 6.3 and 6.4 that all the

rectangles, in the clause-checking components, can be exposed to the corridor by introducing line segments with
length

∑
c∈N2

(4I (c) + 3) + ∑
c∈N3

(12I (c) + 6). It then follows that if instance I is satisfiable, then f (I) has a
corridor with length at most B .

We now establish that if the instance f (I) has a feasible corridor, then the instance I is satisfiable. Let Q be a
corridor with length at most B that starts at the top-right corner of F . We try to transform Q into another corridor

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 101

Fig. 21. Instance fc(I) constructed from Example 1.

Aut
ho

r's

pe
rs

on
al

co

py

102 A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103

with edge-length which is smaller than the original one. Then we show the resulting corridor must have edge-length
at least B . But since the original corridor edge-length is at most B , then its edge-length must be exactly B . This is
possible only if none of the following corridor transformations can be applied. Then we show that an assignment
that satisfies all the clauses in instance I can be constructed from the resulting corridor. Lets begin with the corridor
transformations.

The first step is to eliminate from Q any superfluous line segments, i.e. any line segments that can be deleted
without affecting the connectivity of all the rectangles.

Define the window WI as the area covering all the setting components, the setting-terminator components, and the
top-frame-component. The window WO is the area delimited by F excluding WI .

Delete from Q the set of all the vertical line segments along the center line of the vertical fixing regions, and all
the horizontal line segments along the middle rectangles in the horizontal fixing regions. The resulting corridor line
segments partitions the set of rectangles R into k groups such that there is a path along the resulting corridor between
every pair of rectangles in a group, but there is no path along the resulting corridor between rectangles in different
groups. Furthermore the length of the line segments deleted is at least 60γ k. Now find the shortest path in WI plus
the top component that joins two groups of rectangles. By case analysis one can show that the length of these line
segments is at most 25.5γ . After repeating this corridor transformation at most k −1 times, we obtain another corridor
with smaller length than before when k > 0, otherwise the corridor was not transformed.

We say that a vertical line segment z ∈ Q is exchangeable if L(z) � 30γ − 1, z is on the boundary of only two
rectangles, and z ∈ WO .

While Q has an exchangeable line segment z do the following corridor transformation. Delete z and all the su-
perfluous line segments from Q. This creates at most two components. Find a shortest path that joins these two
components and add it to Q. By case analysis one can show that the length of these line segments is at most 25.5γ .
Thus the resulting corridor will have smaller length than before.

At this point one can show that the corridor segments in the top frame component can be transformed to the ones
given in Fig. 20 without increasing the edge-length of Q. Again, delete all the superfluous line segments from Q.

Proofs similar to the ones for Lemmas 6.2 and 6.5 can be used to show that the corridor Q inside the top frame
component and WI , has edge-length at least B −∑

c∈N2
(4I (c) + 3)− ∑

c∈N3
(12I (c) + 6). By using lemmas similar

to Lemmas 6.3 and 6.4 we can show that the line segments required to expose all the rectangles in the clause-checking
components have length at least

∑
c∈N2

(4I (c)+3)+∑
c∈N3

(12I (c)+6). Since the original corridor had edge-length
at most B , it must be that the above segments have length exactly equal to B −∑

c∈N2
(4I (c)+ 3)−∑

c∈N3
(12I (c)+

6), and
∑

c∈N2
(4I (c) + 3) + ∑

c∈N3
(12I (c) + 6), respectively. Note that this happens only if the above corridor

transformations that decreased the corridor’s edge-length were not possible. The resulting corridor Q can be modified
without changing its edge-length to be of the exact form given in Fig. 16 for each setting component. The Boolean
variable can be assigned values as in Lemma 6.2. From Lemmas 6.3 and 6.4 we can show that the values assigned
to the Boolean variable satisfy all the clauses. This implies that I is satisfiable. This completes the proof of the
theorem. �
7. Discussion

We have established that the MLC problem is NP-complete as well as its restricted versions of MLC-R, TRA-
MLC, and TRA-MLC-R. We have also shown that the MLC-R problem remains NP-complete even when one allows
a forest rather than a tree as the corridor (MLCf -R and MA-MLCf -R). The TRA-MLC-R problem remains NP-
complete even when the partition of the rectangles is a guillotine partition, i.e., generated by recursive guillotine cuts.
Our reductions can be easily modified to show that the TRA-MLC-R problem remains NP-complete even when we
restrict the corridor to connect to one corner of two (fixed) opposite corners or a special point (defined in [5]) of each
rectangle.

The most important open problem in this area is to either develop a constant ratio approximation algorithm or
establish inapproximability results for the TRA-MLC problem. We have developed a constant ratio approximation
algorithm for the TRA-MLC-R problem [5]. As we have seen, known results for more general problems do not
resolve these issues for our corridor problems.

Aut
ho

r's

pe
rs

on
al

co

py

A. Gonzalez-Gutierrez, T.F. Gonzalez / Computational Geometry 37 (2007) 72–103 103

References

[1] E.M. Arkin, M.M. Halldorsson, R. Hassin, Approximating the tree and tour covers of a graph, Information Processing Letters 47 (6) (1993)
275–282.

[2] C.D. Bateman, C.S. Helvig, G. Robins, A. Zelikovsky, Provably good routing tree construction with multi-port terminals, in: ISPD ’97:
Proceedings of the 1997 International Symposium on Physical Design, ACM Press, 1997, pp. 96–102.

[3] E.D. Demaine, J. O’Rourke, Open problems from CCCG 2000, in: Proceedings of the 13th Canadian Conference on Computational Geometry
(CCCG 2001), 2001, pp. 185–187.

[4] D. Eppstein, Some open problems in graph theory and computational geometry, PDF file (3.89 Mb), World Wide Web, http://www.ics.uci.
edu/~eppstein/200-f01.pdf, November, 2001.

[5] A. Gonzalez-Gutierrez, T. Gonzalez, Approximation algorithms for the minimum-length corridor problem, Tech. Rep. 2006-12, Department
of Computer Science, University of California at Santa Barbara, http://www.cs.ucsb.edu/research/tech_reports/, 2006.

[6] C.S. Helvig, G. Robins, A. Zelikovsky, An improved approximation scheme for the group Steiner problem, Networks 37 (1) (2001) 8–20.
[7] E. Ihler, Bounds on the quality of approximate solutions to the group Steiner problem, in: WG ’90: Proceedings of the 16th International

Workshop on Graph-theoretic Concepts in Computer Science, Springer-Verlag, New York, 1991, pp. 109–118.
[8] L.Y. Jin, O.W. Chong, The minimum touching tree problem, PDF file (189 Kb), World Wide Web, http://www.yewjin.com/research/

MinimumTouchingTrees.pdf, National University of Singapore, School of Computing, 2003.
[9] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations (1972) 85–103.

[10] D. Lichtenstein, Planar formulae and their uses, SIAM J. Computing 11 (1982) 329–343.
[11] G. Reich, P. Widmayer, Beyond Steiner’s problem: a VLSI oriented generalization, in: WG ’89: Proceedings of the Fifteenth International

Workshop on Graph-theoretic Concepts in Computer Science, Springer-Verlag, New York, 1990, pp. 196–210.
[12] S. Safra, O. Schwartz, On the complexity of approximating TSP with neighborhoods and related problems, in: Proc. of the 11th. Annual

European Symposium on Algorithms, 2003, pp. 446–458.
[13] P. Slavik, The errand scheduling problem, Tech. Rep. 97-02, Department of Computer Science and Engineering, University of New York at

Buffalo, http://www.cse.buffalo.edu/tech-reports/, 1997.
[14] P. Slavik, Approximation algorithms for set cover and related problems, Ph.D. Thesis 98-06, Department of Computer Science and Engineer-

ing, University of New York at Buffalo, http://www.cse.buffalo.edu/tech-reports/, 1998.

