CIC “02 International Conference

A-co

19

n-Cube Search Algorithm for Finding (n — 1)-Pairwise Node
Disjoint Shortest Paths

Teofilo Gonzalez and David Serena
University of California at Santa Barbara
Department of Computer Science

Abstract In parallel and distributed sys-
tems many communications take place con-
currently, so the routing algorithm as well
as the underlying interconnection network
plays a vital Tole in delivering all the mes-
sages efficiently. Fault tolerance and per-
formance are often obtained by delivering
the messages through node disjoint shortest
paths. In this paper we present an efficient
algorithm to construct, under certain condi-
tions, pairwise node disjoint shortest paths
for pairs of vertices in an n-cube in the pres-
ence of faulty nodes. The vertices in each
pair are assumned to be at a distance n. The
time complezity of our algorithm is O(m?),
where m is the input length.

Keywords: routing, fault-tolerance, n-cube,
k-pairwise node disjoint shortest paths.

1 Introduction

The n-cube is a vital structure for parallel com-
puting. Several systems with this communica-
tion architecture have been built in the past.
The SGI Origin 2000 is such a computing sys-
tem with an n-cube interconnection network.
There are many algorithms utilized for finding
disjoint shortest paths given a routing request
on an n-cube connected network. In this pa-
per we present an efficient algorithm for a re-
stricted routing request problem prevalent in
many applications.

The node disjoint shortest paths problem for
the n-cube is given p pairs of nodes and ¢ block-
ing nodes denoted by

X = {XlaX27 s 1Xp1Xp+l’ Xp+2a s 7-Xp+q}

where X; = (s;,¢t), for 1 < ¢ < p, and
Xi = (a;) for p+1 < i < p+ q, find node
disjoint shortest paths in the n-cube for all the
pairs X; that do not include blocking nodes
and such that no two such paths have a node
in common. Each pair X; = (s;, ;) consists of
two endpoints which are called the source and
target respectively. The nodes a; (or block-
ing nodes or faulty processors) may also be in-
cluded as part of the input. Every node in
the n-cube is represented by an n-bit string of
bits and there is an edge between two nodes
if their bit representation disagrees in exactly
one bit. The distance between the source and
target nodes of pair X; in the n-cube is de-
noted by d(X;) = d(s;,%;) and it is the number
of bits that differ in the bit representation of
s; and t;. By a shortest path for the pair X; we
mean any path from s; to ¢; with length equal
to d(X,), i.e. the path is the shortest path in
the graph between the two nodes independent
from any other blocking nodes or endpoints of
pairs sy and ty for i # i. The nodes a; (or
blocking nodes or faulty processors) may also
be included as part of the input. In this pa-
per we show that when p+¢ < n—1 a so-
lution always exists and we present a O(m?)
time algorithm, where m is the input length
(©((p+4q)n)), to construct a set of such paths.

Both the decision problems and-the search
problems are important for analysis. In the
undirected n-cube there are yes and no in-
stances of the k-pairwise node disjoint short-

20

CIC ‘02 International Confe

est paths decision problem. In the 2-cube
X = {{00,11},{01},{10}} has no solution
because any path between 00 and 11 must
go through 01 and 10. On the other hand,
y = {{00,11},{01}} does have such a solu-
tion with pair {00,11} yielding route 00 <
10 <+ 11. The algorithms presented herein are
search algorithms in the sense that they con-
struct for yes instances of the decision problem
a set of node disjoint paths. For problem in-
stance Y given above a successful routing is
00 < 10 <+ 11. Note that while problem in-
stance Z = {{000,011},{001},{010}} has no
shortest path solution, it does have a routing
with any length paths: 000 +» 100 + 101 «
111 4> 011. To clarify the problem the possible
shortest path routings are 000 010 «+ 011
and 000 < 001 + 011. Though these paths
are shortest paths by our definition, neither of
these paths may be traversed due to the block-
ing nodes in the input: {001} and {010}.

Node disjoint paths have been studied ex-
tensively. Karp [6] showed that determining
whether or not there exist node disjoint paths
for a set of pairs of points in a graph is an NP-
complete problem. Madhavapeddy and Sud-
borough [8] developed an O(n3logn) time al-
gorithm to find disjoint paths for k pairs in
an n-cube when £ > 2 and n > 4. Fach of
the paths is of length at most 2n. Then Gu
and Peng [4] presented an algorithm that takes
O(knlogn) time to find node disjoint paths for
k pairs even if there are n—2k+1 faulty clusters
of diameter 1 and k < [n/2].

The main difference between the work men-
tioned above and ours is that we are interested
in finding node disjoint shortest paths rather
than just node disjoint paths. Rabin [9] pro-
posed algorithms in which an attempt is made
to simultaneously analyze fault-tolerance, se-
curity and load balancing.

Gu and Peng [5] address an interesting and
very similar problem; the problem of construct-
ing set-to-set node disjoint paths. The main
difference between their problem and ours is
that they just need to find a path from ev-
ery vertex in one set to a (different) vertex
in the other set; where as, in our problem

one constructs shortest paths for a given set
of pairs of vertices. Our problem has ap-
plications when network traffic endpoints are
defined by empirically observed flows; or are
specifically initiated by the individual nodes
in the network to designated destinations. Gu
and Peng’s paper [5] also presents algorithms
for the node-to-set node disjoint paths prob-
lem. Gao, Novick and Qiu [1] present an al-
gorithm for finding node-to-set node disjoint
shortest paths. Gao, Novick and Qiu’s pa-
per [1] exploits the fact that local n-cube con-
straints, the existence of a first step in a path,
dominate in determining the existence of node-
to-set node disjoint paths. Node-to-set ap-
proaches in the n-cube are highly pragmatic
in the sense that it has applications in the
context of fault-tolerant distributed networks.
There are several important papers which also
address this issue for the n-cube, [1, 7]. The
node-to-set problem reduces to our problem af-
ter finding the first link for each path and of
course iterating over destination nodes. Find-
ing k disjoint paths between two nodes in the
hypercube has also been studied [4], but for
brevity we do not discuss in detail these re-
sults.

Gonzalez and Serena [2] have shown that
finding k& node disjoint shortest paths in an
n-cube is NP-hard even when the length of
each of the paths is at most three, but polyno-
mially solvable, even on general graphs, when
the length of each path is at most two. The
problem remains NP-hard even when arbitrary
length node disjoint paths are allowed. Since
the problem of finding node disjoint shortest
paths is NP-hard, we propose an algorithm for
a restricted version of this problem.

2 Previous Algorithms

An n-cube, or equivalently an n dimensional
hypercube, is an undirected graph G = (V, E)
with vertex set V' = {0,1,...,2" — 1} rep-
resented by a string of bits (|V| = 2" and

CIC ‘02 International Conference

The undirected edges E are given by the set
{{a,b} | d(a,b) = 1}, where d(a,b) is the num-
ber of bits with value one in the binary repre-
sentation of ab and & is the bitwise “exclusive
or” operation.

Hereafter we assume that the vertices in
each pair X; are at a distance n. Gonzalez
and Serena [3] proved that when p < [n/2]
and 2p +¢ < n+1 node disjoint shortest paths
exist. These constructive proofs can be easily
implemented to take O(m?), where m = O(n?)
is the input length [3]. Gonzalez and Serena’s
[3] approach constructs a set of node disjoint
shortest paths as follows. First find an integer
k which represents the position of one of the
bits in the binary representation of the ver-
tices and satisfies the property that for each
endpoint z € X; in every pair X;, 1 < 1 < p,
and its neighbor g(z) = z @ 2* (¢ and g(z)
differ only on bit k) in the n-cube are such
that all the g(z) nodes are distinct and every
g(z) & e(X), where e(X) is the set of all end
points and blocking nodes in X.

The selection of this bit k& is very important
because it is used to reduce the original prob-
lem of finding node disjoint paths in an n-cube
for p pairs of vertices in the presence of ¢ block-
ing nodes to two independent problems. One
subproblem, which is rather simple, is in the
sub-cube where bit k is zero and the other one
in the sub-cube where bit k is one. The first
subproblem consists of finding a path for one
pair in the presence of a number of blocking
nodes. One isolates this subproblem by tran-
sitioning on an endpoint of one pair using bit
k. It is relatively simple to establish that a
solution exists for the first subproblem. The
other subproblem has p — 1 pairs of vertices
with another set of blocking nodes, which is
solved inductively. Gonzalez and Serena [3]
showed that this result is tight in the sense

1Hereafter binary numbers will appear without the

@ n

subscript “2.

that for p < [n/2] + 1 there exist problem
instances which do not have a set of k£ node
disjoint shortest paths for the p pairs. In the
next section we show that whenp+¢<n-—1a
solution always exists and we present a O(m?)
time algorithm, where m is the input length,
to construct a set of such paths. The input
length m is of ©((p + g)n).

Let us illustrate this approach with the fol-
lowing example. The value of n is 3, X; =
{000,111}, and X, = {100,011}. Transition-
ing on the bit £ = 0 is not allowed because the
neighbor of 000 along bit 0 is 100 € e(X), but
bit 1 and bit 2 are possible choices for k. Using
bit £ = 1 our approach is to select from X the
endpoint e; = 000 and from X, the endpoint
ez = 011. Their corresponding neighbors are
g(e1) = 010 and g(e2) = 001. Now the prob-
lem is to find a shortest path from 010 to 111
and one from 001 to 100. Since both paths
have to go through nodes in which bit one is
never changed (the bit is always one for the
first subproblem and zero for the second one),
it follows that the resulting problems are in-
dependent of each other. Therefore, we may
refer to the resulting problems as finishing up
the path for X; in the sub-cube K(010,111)
2 with blocking node 011 and finishing up the
path for X, in the sub-cube K(001,100) with
blocking node 000. By deleting bit &k the re-
sulting problems reduce to finding a path in
K (00, 11) with blocking node 01 and finding a
path in K(01, 10) with blocking node 00. Once
we find these paths we add the bit just deleted
as well as the transition introduced on bit &
and we get the node disjoint shortest paths in
the 3-cube.

We use (n,p,q) to represent all problem in-
stances in an n-cube with p paths and g block-
ing nodes. Note that these equivalence classes
do not correlate with the underlying decision
problem of whether or not node disjoint short-

2The sub-cube defined by the source and destination
nodes s and ¢ is defined by

K(s,t) = {u] (d(s,u) + d(u, t) == d(s,))}.

In other words, the sub-cube includes all the nodes in
any shortest path from s to t.

est paths exist between the endpoints. For ex-
ample note that some instances of (4,2,3) do
not have node disjoint paths where as others
do. For example {{0000, 1111}, {0011,1100},
{0101}, {0110}, {1001}} has no solution, but
{{0000, 1111}, {0011, 1100}, {0001}, {0110},
{1001} } does. ‘

For the case when n = 4 it is impossi-
ble to strengthen our results because for p =
/2] +1 =3 al the problem instances do
not have a solution, i.e., node disjoint short-
est paths do not exist. One such instance is
given in Example 1 and the proof of our claim

appears in (3].

Example 1 The instance of (n,pyq) =
(4,3,0) with

x = {{0000,1111},{1100,0011}, {1010,0101}}

has no solution in the A-cube. i.e., node dis-
joint shortest paths do not exist for this prob-
lem instance.

However note that there is a bit k£ = 3 (i.e.
0000 & 2° = 1000) as noted in Lemma 1 of
[3]. Applying the 1-bit step we end up with
the problems {X1 = {000,111}, X2 = {100},
X5 = {010}}, and {X1 = {100,011}, Xo =
{010,101}, X3 = {000}}. The former problem
can be solved, but not the latter one simply
because there are not enough vertices in 2 3-
cube for two paths of length 3 and a blocking
node.

As will be shown, the conditions p < [n/2]
and 2p +q¢ S n+ 1 can be improved when
the value of n is larger. Example 2 gives a
problem instance with n = 7 and p = 6 for
which node disjoint shortest paths exist while
the algorithm and proof technique in [3] does
not cover this scenario.

Example 2 Instance (n,p,q)=(7,6,0) with the
pairs defined by

X =1 {0000000,1111111},{0000001,1111110},
(0000010, 1111101}, {0000100, 1111011},
(0001000, 1110111}, {0010000, 1101111}}

CIC ‘02 International Confeg

Even though there exist two bits for tran-
sition, after applying the divide and conquer
step twice, we end up with the problem in-
stance in Example 1 which we know does not
have node disjoint paths. Our approach in the
next section covers the problem in Example 2.
The main reason is that the partition into two
subproblems is different.

3 The p+gq<n-—1Problem

By adding dummy pairs transform any prob-
lem for which p+¢q < n—1 to one withp = n—1
and ¢ = 0. We refer to this problem as the
(n,p,0) problem. To construct node disjoint
shortest paths for any instance of this prob-
lem we use the 1-bit balanced transformation.
This transformation begins by selecting a bit
k, which we can prove it always exists, since
p < n. The reduction uses [p/2] transitions of
an endpoint of each of these p pairs from 1 to
0 along the k™ bit and [p/2] transitions from
0 to 1 for an endpoint of the remaining pairs.
The subproblem in which all the k*® bit posi-
tions are 1 will have the |p/2] pairs that make
transitions from 0 to 1, plus one endpoint of
the [p/2] pairs that make the transition from
1 to 0. Therefore the resulting problem is an
instance of (n — 1,(p/2],[p/2]). The other
subproblem in which all the k'™ bit positions
are 0 will have the [p/2] pairs that make tran-
sitions from 1 to 0, plus one endpoint of the
|p/2] pairs that make the transition from 0
to 1. This resulting problem is an instance of
(n —1,[p/2],|p/2]). The resulting subprob-
lems will not fall into the induction hypothesis.
So another transformation needs to be applied,
which we call the g-dependent transformation.
In order to use the ¢ dependent transforma-

tion we need to find a bit & in which to transi-

tion. The bit & may have at most one conflict

which we can avoid. The existence of this bit

is established in Lemma 1.

Lemma 1 Let X = {Xl,Xz,...,Xp} be pairs
of vertices inside the an n-cube with d(X;) =n
for 1 <1 £ p, and (Xps1, Xpros s Xptq}
be a set of blocking nodes such that 1 < p <

¢ ‘02 International Conference

p+qg<n,p<n and n > 3. There ezist at
least n —p — g + 1 bit positions k such that the

cardinality of the set

e(X) | J{si@2"|1<i<p}
Ufte2fl1<i<p}

is 4p+q— 1 (conflict or blocked case) or 4p+q
(conflict-free or unblocked case). This means
that for each of these bil k positions there is
at most one conflicting transition. Further the
conflict is incident on a blocking node: for fized
L it occurs due to one unique £ € {1,...,p}
and either sp @ 2F or t; &® 2k but not both, is a
conflicting blocking node.

Proof: Omitted for brevity. 0

For the g-dependent transformation we start
by selecting the bit & for the transformation
which can be shown to exist because p + ¢ <n
and p < n. Let 7 be the number of ¢ blocking
nodes with a one in the k*® bit position. With-
out loss of generality assume that ¢ < lg/2].
Because if this is not the case all the vertices
may be complemented with 2" —1 and the new
value for ¢ will be at most |g/2]-

First lets discuss the case where there is a
bit k that is conflict-free, i.e., none of the end-
points has another endpoint of X as its neigh-
bor along bit k. As it turns out we may assume
that p > ¢ whenever we apply the g-dependent
transformation. The transformation makes 1
transitions for a endpoint of the p pairs from
1 to 0 along the &kt bit and p — ¢ transitions
from 0 to 1 for all of an endpoint of the re-
maining pairs. Therefore, the subproblem in
which all the k% bit positions are 1 will have
the p—i pairs that make initial transitions from
0 to 1, plus the ¢ blocking nodes with a one on
the kth bit position plus one endpoint of the
i pairs that make the transition from 1 to C.
Therefore the resulting problem is an instance
of (n,p—1,27). The other subproblem in which
all the k0 bit positions are 0 will have the 1
pairs that make transitions from 1 to 0, plus
the g — 4 blocking nodes with a zero on the kth

bit position plus one endpoint of the p—1 pairs
that make the transition from 0 to 1. This re-
sulting problem is an instance of (n, ¢, p+g—2).

Now let us consider the case when each pos-
sible bit k has a conflict with a blocking node.
By definition when ¢ = 0 all the g blocking
nodes have a one in the k-bit position. There-
fore a transition from a 1 to a 0 along bit &k in
a pair will not have a conflict with a blocking
node. Since all pairs make this type of tran-
sition, it then follows that our transformation
rules are valid. When ¢ > 0 one may always
select pairs for a 0 to 1 transition on bit %
that do not have a conflict since at most p/2
pairs make a 0 to 1 transition. Therefore the
above g-dependent transformation is valid on
all cases. Using the above transformations we
can prove the following theorem.

Theorem 1 Given X consisting of p pairs of
nodes and q blocking nodes in an n-cube. If for
all i and 7 such that 1 <1 <p <7 <p+yq,
d(X;)=n>6,dX;)=0,p+g<n—1then
node disjoint shortest paths exist for X.

Proof: Omitted for brevity. 0

An algorithm based on a straightforward im-
plementation of the construction proof of The-
orem 1 takes exponential time. Let us explain
why this is the case with an example. Con-
sider an instance of (64,63,0). The algorithm
generates an instance of (63,32,31) and one
of (63,31,32). The instance of (63,31,32) re-
duces to (63,32,31) by transforming a block-
ing node into a pair. Further reduction of the
instance of (63,32,31) using the conflict-free
part of Lemma 1 and applying the g-dependent
transformation yields an instance of (62,32 —
i,24) and one of instance (62,1,63 — 2i). When
i = 2 the resulting instances are (62,30, 4) and
(62,2,59). Now applying the induction hy-
pothesis we transform the instance of (62, 2, 59)
into one of (62, 61,0). Therefore to solve the in-
stance (64,63, 0) we need to solve two instances
of (62,61,0) plus we need to do some extra
work. So the time complexity of the algorithm
appears to be exponential, because we are con-

24
' . CIC ‘02 International Conf

Gk verting blocking nodes into pairs per the sim-
T plification of the proof of Theorem 1. However,
the algorithm does not really need to produce
paths for the dummy pairs being introduced.
To reduce the time complexity the algorithm
mimics the conversion of blocking nodes into
dummy pairs. If there are no (original) pairs,
then the algorithm is done; if there is only one
pair it is trivial to find a path; and if there
is more than one pair, it applies the construc-
tive proof of Theorem 1 to construct the paths. .
When the dimension is 7 or 8 then it just ap- Find.Paths 1(n, X = {X;’CXQ’ w02 Xpy
plies the constructive proof for the base case assume that d(X;) = d(X,,p)_i'_l__’ ok 2'5{})) —n
2) =...=d(X,) =n,

.,rp/Z]-'r-l""XIg'f'QO}’ [p/2] pairs reduced in
size by transition from a 0 to 1 on bit k.
Endpoints of the remaining {p/2| with a one
in the & bit position are returned as blocking
nodes. Further go is the number of singleto;l
nodes with a ome in the A bit position.
X" = OneToZeroBalanced Transition(k, X)
returns the complement albeit returning [p/2 |
paths with g — go + [p/2] singleton nodes.

of Theorem 1 to find the paths. The algorithm
uses the proof of Theorem 1 in a two stage pro-
cess to partition the problem. Our algorithm

d(Xp+1) = d(Xpr2) = ... = d(Xptq) =0,
all the X; pairs are in the same n dimensional
sub—cube, andp+¢<n

if p = 0 return;

if p =1 construct path and return;

if n < 8 return the paths constructed by the
base case in Theorem 3;

if p+ g < n then Find Paths 0(X);

else { // p+qg=n

is initially invoked with Find Paths.0(n, X).
Theorem 1 may be used in a two stage pro-
cess to partition the problem. Our algorithm
is initially invoked with Find Paths_0(n,X).
The routine Find Paths_1 implements the g¢-

dependent transformation.

Find_Paths 0(n, X = {X1,Xa, ..., Xp,
Xpstr- .- Xpral)

{
assume that d(X1) = d(Xa) = ... =d(Xp) =n,
d(Xp+1) = A Xpya) = ... = d(Xptq) =0,
all the X; pairs are in the same n dimensional
sub—cube, andp+g<n-—1
if p = 0 return;

//Find an appropriate bit for the transition.
k + Find Bit(X);

// X a conflict-free bit exists select it.

// Define CountBlockingNodesWithOne(k, X)
// as the number of blocking nodes with a
// 1 bit in the £*® position.

if (CountBlockingNodesWithOne(k, X) > |g/2])
then X = ComplementProblem(n, X);

i = CountBlockingNodesWithOne(k, X);

X' + OneToZero gTransition(i, k, X);

X" + ZeroToOne_gTransition(i, k, X);

Output_Paths(k, X);
Find Paths 0(n — 1, X");
Find Paths. 0(n — 1, X");

if p =1 construct path and return;
if n < 8 return the paths constructed by the
base case in Theorem 3;
//find an unobstructed bit k for transition }

k + Find_Bito(X);
X' + OneToZeroBalanced Transition(k, X);
X" « ZeroToOneBalancedTransition(k, X);
Output_Paths(k, X);
Find_Paths_ 1(n — 1, X");
Find_Paths_1(n — 1, X");

Both OneToZero_qTransition(, k, X} and
ZeroToOne_qTransition(s, k, X) are based on
the g-dependent transformation. Function
CountBlockingNodesWithOne(k, X) returns
) the number of blocking nodes with a one in the

kB bit position. ComplementProblem(n, X)

The ZeroToOneBalancedTransition(k, X) complements all nodes with 27 ~ 1 v&;bile

and OneToZeroBalanced Transition(k, X) maintaining the pair and blocking node struc-
return the problem partitioned via the ture. Note that under complementation the
balanced transformation. The bit & is conflict- procedure Output_Paths must complement its
free due to the proof given in [3]. The output. To simplify the presentation of the

algorithm we omit the details.
Due to the aforementioned complementation

ZeroToOneBalancedTransition(k, X) takes all
pairs and returns X' = {Xi’Xéw“’Xfp/zp

cIC ‘02 International Conference

function OneToZero_gTransition(, k, X) does
not have a conflict. This procedure is given
p pairs and it selects p — ¢ of them for transi-
tion from 1 to 0. The residual blocking nodes
from pairs is 2i. However in the event that
; = 0 and there is a conflict with a blocking
node then an additional path is added to its
output and blocking nodes with a zero in the
ktP bit position are selected.

The function
7eroToOne_qTransition(s, k, X) returns ¢
pairs which are capable of transitioning from
0 to 1 on bit k. If there is a conflict, then
when 7 = 0 one removes that pair from the
output. If however ¢ > 0 one simply selects
i other paths for transition from 0 to 1. The
qumber of residual blocking nodes with a one
in the kB bit position are selected.

For brevity we omit the proof from the fol-
lowing theorem. Given that the input length
m the overall time complexity is O(m3). The
input length m is of ©((p + qn).

Theorem 2 Given X consisting of p pairs of
nodes and g blocking nodes in an n-cube. If
for all 1 andjsuchthat1§i§p<j§
p+gq dX;) =n>6 dX;) =0, ptas
n — 1 then algorithm Finds Paths 0 constructs
node disjoint shortest paths for X and can be
implemented to take O((p? + g)n®) time.

4 Conclusion

We have presented a polymomial time algo-
rithm for the case when p+¢ < n—1. Note that
there are instances of (n,p,q) withp +g=n
that do not have node disjoint shortest paths,
so one cannot solve the more general search
problem. The problem of determining whether
or not node disjoint shortest paths exist in
an n-cube is an NP-hard problem even when
d(X;) < 3,butitis polynomially solvable when
d(X;) < 2 [2]. The problem remains NP-hard
even for node disjoint paths. The extreme ver-
sion of the problem is not known to to be NP-

complete.

References

(1] S. Gao, B. Novick, and K. Qui. From
hall’s matching theorem to optimal routing
on hypercubes. Journal of Combinatorial
Theory, Series B, 74(2):291-301, Novem-
ber 1998.

[2] T. F. Gonzalez and F. D. Serena. n-cube
network: Complexity of node disjoint paths
for k-pairs of vertices. Technical Report
TRCS-2001-16, UCSB, Sep. 2001.

[38] T. F. Gonzalez and F. D. Serena. Node
disjoint shortest paths for pairs of ver-
tices in an n-cube network. In Proceedings
of the International Conference on Paral-
lel and Distributed Computing and Systems
(PDCS2001), pages 278-282. IASTED,
2001.

[4] Q.-P. Gu and S. Peng. k-pairwise clus-
ter fault tolerant routing in hypercubes.
IEEE Transactions on Computers, 46(9),
September 1997.

[5] Q.-P. Gu and 3. Peng. Node-to-set and
set-to-set cluster fault tolerant routing in
hypercubes. Parallel Computing, 24:1245~
1261, 1998.

[6] R. Karp. On the computational complexity
of combinatorial problems. Networks, 5:45~
68, 1975.

[7] S. Latifi, H. Ko, and P. K. Srimani. Node-
to-set vertex disjoint paths in hypercube
networks. Computer Science Technical Re-
port, Colorado State University, CS-98-107,
1998.

(8] S. Madhavapeddy and L. H. Sudborough. A
topological property of hypercubes: Node
disjoint paths. Proc. Second IEEE Symp.
Parallel and Distributed Processing, pages
532-539, 1990.

(9] M. O. Rabin. Efficient dispersal of infor-
mation for security, load balancing, and
fault tolerance. Journal of the Associa-
tion of Computing Machinery, 36(2):335~
348, April 1989.

