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Abstract: It is known that the problem of determining whether or not a planar layout is three-layer wirable
is NP-complete. Techniques of stretching the layouts to ensure wirability have been suggested. Lower
bounds and upper bounds for the wiring area under different conditions have been developed. In this paper
we show that for any € > O there exists planar layouts with certain properties can not be stretched and
three-layer wired in an area less than (7/6 - €) time of their original layout area.

L Introduction

The channel routing problem (CRP) is one of the fundamental problems in VLSI design
automation. As input, we are given a rectangular grid R (called a channel ) determined by the horizontal
lines with y-coordinate values i,0<i<n+1 ( called tracks ) and the vertical lines with x-coordinate values
j0<j<m+1 ( called columns ). The horizontal lines with y-coordinate values 0 and 7+1 and the vertical
lines with x-coordinate values 0 and m+1 form the boundary of R. Let N = (N, Ny, ..., N, }, where each
N; is a subset of grid points located on the boundary of R ( excluding the corner points of R ), such that N;
NN; =@ foralli = j. Each set N; is called a net and the grid points in any net are called terminals. We
ssume that there are k conducting layers L\, L,, ..., Ly, each is a copy of the channel grid, and L;,; is
considered to be laid upon L;, 1<i<k—1. Contacts between two layers ( vias ) can be introduced only at
grid points. Under the knock-knee model a wiring (which is the final routing solution) is a three
dimensional structure which can be characterized by two mappings: wire layout and layer assignment. A
wire layout for a CRP is a mapping that associate each net N; to a connected subgraph W; of the grid R
such that every terminal in N; is a vertex in W;, and W; does not share an edge with W; for all i # j. Such
a layout is called a path disjoint layout ( or a planar layout ). We use W = (W, W, ..., W, } to denote the
wire layout. The layer assignment of a planar layout is any mapping that associates each edge in W to a
layer in (L, Lo, ..., Ly} in such a way that for any W; and W, i # j, if edges (py, p2), (P2, p3) in W; are
assigned to L, and L., respectively, and (p,, p4) € W; is assigned to L, , then u >maxs ¢ or u <mins . A
wiring for a CRP is a composite mapping of wire layout and layer assignment. Obviously, in a wiring the
segments of the same wire W; can be connected through a via without sharing a grid point with a segment
of any other wire W;. Physically speaking, in a wiring all terminals from the same net are made

electrically common and no two distinct nets are connected.
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The above characterization of the wiring provides an approach for finding a wiring for a CRP by
finding a planar layout for the given CRP and then finding a layer assignment for the layout. This
approach is used by the routing algorithm for the two-shore two-terminal-net CRP ( where all terminals
reside on two opposite side of R and each net is of size 2 ) by Preparata and Lipski ( [PL] ). The first phase
of their algorithm finds a planar layout with some special properties. In the second phase of their
algorithm, the layout is transformed into a three-layer wiring by a powerful transformation ( legal partition
of the diagonal diagram induced by the layout ). Their algorithm guarantees a three-layer optimal solution.
Several other routing algorithms are also based on this approach ( e.g., see [MP], [PS], and [SP] ). As
shown in [BB], any planar wire layout can be transformed into a four-layer wiring. The implication of this
result is that one can reduce the channel routing problem to the wire layout problem and the layer
assignment problem, since for any planar layout generated in the layout phase a four-layer wiring is always

possible in the layer assignment phase. One may consider this two-phase four-layer routing approach as
standard. For example, in [F] the necessary and sufficient conditions of existence of a planar layout of

two-terminal-net CRP ( terminals can be on any side of R) were given. If these conditions are met, a planar
layout can be found by the algorithms in [F} and [MP]. A four-layer wiring can be found for this planar
layout by applying the layer assignment algorithm given in [BB]. It is not known whether the layouts
generated by the algorithms in [F] and [MP] are three-layer wirable. By using the reduction given in
theorem 2.1 (refer to the next section) Lipski ( [L] ) showed that there exist planar layouts that are not
three-layer wirable and the problem of deciding whether a given planar layout is three-layer wirable is
NP-complete.

A planar layout can be stretched vertically ( horizontally ) by introducing between a pair of
adjacent rows ( columns ) an empty row ( column ) without a horizontal ( vertical ) wire. Clearly,
stretching a planar layout increases its area; however, it it is stretched in appropriate places it can be wired
in fewer than four layers. This approach was suggested by Brady, Sarrafzadeh, Gonzalez and Zheng
([BrS][GZ1]). Several layer assignment algorithms have been developed to obtain three-layer wirings with
bounded area, when stretching is applied. Gonzalez and Zheng ([GZ2]) classified planar layouts into
several classes. For each of these classes, they proved the lower bounds for the stretched three-layer wiring
arca bound under different conditions. In this paper, we consider the class of planar layouts with diagonal
diagrams of degree one. We show that for any € > 0 there exists planar layouts in this class such that their

stretched three-layer wirings have area no less than (7/6 - €) time of their original layout area.

IL. Preliminaries

In addition to the definitions given in the previous section, we need to introduce some of the
basics of wiring theory. Under the knock-knee model, two wire segments in a planar layout can share a
grid point of R only by either crossing each other or forming a knock—knee (see figure 2.1). Given a
planar layout W, how to construct a three-layer wiring for it? The approach proposed in [PL] consists the

following steps:
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(i) construct a diagonal diagram D that corrésponds to the layout W;
(ii) find a legal partition P of D that partitions D into two-colorable regions;
(iii) obtain a layer assignment A of W from P.

The diagonal diagram corresponding to the given layout is constructed as follows. At each grid
point of R where W has knock-knee, introduce a +Z-length diagonal centered at the grid point and
internally bisecting the two bends that forms the knock-knee. The resulting geometric structure from this
transformation is called a diagonaldiagram. For the grid R, the partition grid G (R ) is defined as follows.
The grid points of G (R) are the points (x+1/2,y+1/2),0<x<n ,0<y<m. The grid points of G (R) with
x=0,x=n,y=0 or y=m are called boundary points and the other points are called infernal points. The
edges of G(R) are the segments connecting each point with its immediate neighbors, vertically,
horizontally, or at 45-degree angles. It should be noticed that a diagonal in D is an edge of G(R), the end
points of a diagonal are grid points of G(R) and no two full diagonals from D cross. Let D denote the
diagonal diagram of layout W. We say that D has degree i ,0<i <4, at point (s,¢) of G (R) if there are { full
diagonals with end points at (s,f). We say that D is of degree i, 1<i<4, if the maximum degree of D at
any internal point of G(R) isi. A legal partition P of D is any collection of edges in G (R) satisfying the

following conditions:

(a) Every internal point of G (R) is incident with an even number of edges in P;
(b) The diagonals in P are exactly the diagonals in D ;

(c) P does not contain any of the patterns shown in figure 2.2.
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crossing Knock-knees

Figure 2.1: knock-knees
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dashed diagonals must not be present

Figure 2.2: forbidden patterns.

In [LP] it is shown that if there is a legal partition P of the diagonal diagram D induced by the
layout W, then there exists a three-layer assignment for W'; moreover, a three-layer wiring of W can be
easily constructed from P . The existence of a legal partition of a diagonal diagram can be further equated
to three-layer wirability. The crucial notion in this reduction is that of full layout. We say a layout W isa

full layout if every nonboundary edge in R is covered by a wire in W. We say that a planar layout W
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contains a loop if there is a path (v, vo), (V2, Va), ., (Ve—y, V) in W such that k > 4 and v, = v, where
Vi, Vg, «., ¥ are grid points in R . The following theorem allows us to reduce the problem of three-layer
wirability of a planar layout W to the problem of determining the existence of a legal partition P with

respect to W.

Theorem 2.1 ([L]): A loop-free two-terminal-net full layout W in R is three-layer wirable if and only if
there exists a legal partition P of D in G (R) with respect to W; furthermore, a three-layer wiring can be

easily constructed from P .

In figure 2.3 we give a layout W, its corresponding diagonal diagram D , the legal partition P of
D and the three-layer wiring for W constructed from P . Note that this layout is not full and loop-free. For
this example, the existence of a legal partition with respect to W is used as a sufficient condition for the
three-layer wiring of W. Using theorem 2.1, Lipski ([L]) showed that the problem of determining whether
or not a given planar layout is three-layer wirable is NP-complete. It should be mentioned this theorem is a
restricted version of the general theorem on the wirability of planar layouts given in [LP]. For more details

on the wiring theory, refer to [LP].
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Figure 2.3: examples.

Since that the problem of finding a three-layer wiring for a given layout W is very unlikely
polynomial time solvable, it is suggested in [BrS] and [GZ1] that instead of finding a three-layer wiring for
W, one can stretch W to obtain a new layout W’ and then find a three-layer wiring for W’. Stretching a
layout vertically (horizontally) is equivalent to dividing the layout horizontally (vertically) between two

adjacent rows into two sublayouts, then inserting an empty horizontal (vertical) grid line between these two
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sublayouts and merging the vertical (horizontal) wires in these two sublayouts at the newly introduced grid
line. The following layer assignment scheme is a direct generalization of the layer assignment algorithm
given in [MP].

(1) Divide W horizontally (vertically) into sublayouts W?, ..., W*, such that W/, 1 <i <, is
three-layer wirable;
(2) Find a three-layer wiring for each sublayout Wi of W:

(3) Extend the grid R to form grid R’ by inserting a horizontal (vertical) empty grid line between

sublayouts separated by a horizontal (vertical) dividing line introduced by step (1).
(4) Merge two adjacent sublayouts at the newly inserted grid line and introduce vias at the grid

points on the new grid line if it is necessary.

(@) ®

Figure 2.4:stretching and wiring.

Let the height and width of layout W be & and w, respectively. Let the layout obtained from W
by stretching be denoted by W”. We use A (.) to denote the area of a layout. Then,

AW )=(+tthYAW), (ot AW )=(1+t/w)y*A(W))

where ¢ is the number of additional horizontal ( or vertical ) grid lines. As an example, from the layout in

figure 2.4 (a) one can obtain a wiring shown in figure 2.4 (b) by the stretching and wiring method.

II1. The Result

Our approach to deriving lower bound for the wiring area of planar layout under the stretching
scheme discussed in the previous section consists of two parts: first, we need to find a three-layer unwirable
layout W’ with minimum number of rows; then we use this layout as a basic building block to construct a
layout W such that almost every fixed number of rows of W is not three-layer wirable. By theorem 2.1, we
only need to consider loop-free two-terminal-net full layout, and the wirability of such a layout can be

determined by inspecting whether or not the diagonal diagram of the layout admits a legal partition.
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To simplify our proof, we use the following conventions. We use the ordered pair (x,y) to refer
to the grid point of G (R) with coordinate values x and y. A horizontal or vertical line connecting (x1, y1)
and (x,, y,) is referred to by [(x;, ¥1), (x3, y2)1. We use the notion "S; — S5 — ... > §¢" to mean that
"statement §, holds; since §, holds, then S, holds; since Sy, §,, ..., S¢_; hold, then S, holds". Let P’ be a
set of horizontal and vertical line segments in G (}? ). In what follows we say that an internal grid point v of
G (R) is legally connected by the segments in P’ if the sum of the number of diagonals from D and the
number of line segments from P’ incident with v is even, and there are no forbidden patterns that include
v. Clearly, P’ U ({all diagonals in D } is a legal partition of D if and only if all internal grid points are

legally connected by the line segments in P’. The following lemma is useful for simplifying our proofs.

4
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012345678 9101112

Figure 3.1

Lemma3.1: The diagonal diagram give in figure 3.1 does not admit any legal partition which contains 2
horizontal partitioning line with point (11, 4) as its right end point.
Proof : Refer to [GZ3] for the details.
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Figure 3.2 (a): strip tile

We use the diagonal diagram of figure 3.1 as a basic component to construct a diagonal diagram

shown in figure 3.2 (a). The dotted lines in this figure seperate the basic components in the diagram.

Lemma 3.2: The diagonal diagram given in figure 3.2 (a) does not admit any legal partition.
Proof: The proof is by contradiction. Suppose it has a legal partition P. By using arguments similar to the
ones at the beginning of proof of lemma 6.4 one can show that we only need to consider the following two

cases.
case 1: There is a horizontal partitioning line, a, in P with (41,4) as its left end point (figure 3.2 (b)).

This horizontal line and the diagonal diagram satisfies the conditions of lemma 3.1. Therefore, P is not a
legal partition (figure 3.2 (b)). This contradicts the assumption that P is a legal partition.
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Figure 3.2 (b): case 1.

case 2. There-is-a-vertical partitioning line, @ in-P with (41,4) as its bottom end point (figures 3.2 (c), (d)
and (e)).

There are two subcases need to be considered, depending on liow vertex (42,5) is legally connected in P.

subcase 2.1: Vertex (42,5) is the left end point of a horizontal partitioning line, b, in P (figures 3.2 (c)).
The horizontal line and the diagonal diagram satisfies the conditions of lemma 3.1. Therefore there can-
not be a legal partition for the diagonal diagram given in figure 3.2 (a) (figure 3.2 (c)). This contradicts
the assumption that P is a legal partition.
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0 4 g8 12 16 20 24 28 32 136 4Q 4 48 52 56 60 64 68 72 76 80

Figure 3.2 (c): subcase 2.1

subcase 2.2: Vertex (42,5) is the top end point of vertical partitioning line, &, in P (figures 3.2 (d) and
e)-

There are two subcases need to be considered, depending on how vertex (43,2} is legally connected in
P.

subcase 2.2.1: Vertex (43,2) is the bottom end point of a vertical partitioning line, ¢, in P (figure 3.2
@y
When this vertical line is in P, vertex (42,6) cannot be legally connected in P (figure 3.2 (d)). This

contradicts the assumption that P is a legal partition.
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Figure 3.2 (d): subcase 2.2.1.

subcase 2.2.2: Vertex (43,2) is the left end point of a horizontal partitioning line, ¢, in P (figure 3.2
@).

b = [(42,1),(42,5)] and ¢ = [(43,2),(452)] are in P — d = [(44,3)44,))] isin P - ¢ =
[(45,6),(80,6)] is in P — the conditions of lemma 3.1 (figure 3.2 (e)). This contradicts the assumption
that P is a legal partition.
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Figure 3.2 (e): subcase 2.2.2.

Since P does not satisfy any of the cases, it must be that there is no legal partition for the diagonal

diagram D given in figure 3.2 (a).

Theorem 3.1: There exists a seven-row three-layer unwirable layout with diagonal diagram of degree 1.
Progf: The existence of such layout follows from lemma 3.2, the fact that the two-terminal-net full layout
for the diagonal diagram given by figure 3.2 (a), which has degree 1, is loop-free (see figure 3.3), and

theorem 2.1.
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Figure 3.3

Let us look at the two-terminal-net full layout W corresponding to the diagonal diagram given
in figure 3.2 (a) more closely. We call a net in W with two terminals (x, y1) and (x5, y,) a rising net if its
two terminal are not located on the same boundary side of R, x, < x, and y; < yo; a falling net if its two
terminals are not located on the same boundary side of R, x; < x, and y, > y,; a through net if its two
terminals are not located on the same boundary side of R, x; = x, or y; = y,; a local net if its two
terminals are located on the the same boundary side of R. Clearly each net in the two-terminal-net full
layout corresponding to the diagonal diagram in figure 3.2 (a) is of (exactly) one of these four types. We

label each terminal with r.f ¢ or I depending on the type of net the terminal belong to. For two terminals
belong to the same local net and located at a horizontal boundary side, we call the one with the smaller

x-coordinate value the left terminal of the net and the other the right terminal of the net. We use Il and
Irto distinguish left terminals and right terminals of local nets with terminals located on the top and

bottom boundary sides of R. The diagonal diagram given in figure 3.2 (a) consists of 7 rows and 81
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columns, and it is symmeitric with respect to the diagonal located at the 4-th row and 41st column. Figure
3.3 shows the two-terminal-net full layout corresponding to the diagonal diagram formed by the 41
leftmost columns of the diagonal diagram given in figure 3.2 (a) with all terminals labeled. It is easy to

“-see that every wire (for a net) in this layout is vertically monotone , i.e. a vertical line located between

“any two adjacent columns of R does notintersect any wire more than once.

Figure 3.4 tile arrangement A .

Let us call the diagonal diagram given in figure 3.2 (a) as a strip tile and the lower left corner
point of the partition grid G (R) be (0, 0). By placing a 7-row by 81-column strip tile in G (R) such that
(i*81, i*2+j*7), where 0 < i< 6 and j > 0, we obtain a tile arrangement shown in figure 34. We call this
arrangement as strip tile arrangement A;. The two-terminal-net full layout corresponding to A, is
divided into three-layer unwirable sublayouts with diagonal diagram shown in figure 3.2 (a) by division

lines, which are the boundary of tiles, in the tile arrangement A,. Thus, a horizontal (vertical) division
_line can be treated as the top (left) boundary of one sublayout and the bottom (right) boundary of another
sublayout. Consequently, the crossing point of a wire and a division line in A, can be treated as a terminal
of both adjacent sublayouts along the division line. We may call such a crossing point as a pseudo
terminal. Consider any two adjacent strip tiles 7! and T? in A,. Let the two-terminal-net full layouts
corresponding to them be W and W?, respectively. If T2 is on top of T", then any pseudo terminal v of
W1 on the top boundary side of W' is a pseudo terminal of W? on the bottom boundary side of w2,

Obviously, a vertical wire of a through net in a sublayout corresponding to a tile in A | is a wire segment
of a vertical wire going through the two-terminal-net full layout corresponding to A;. We can ignore

these vertical wires since they are never parts of a loop. It is easy to see thatif v is labeled f or Il in w!
then v is labeled f or Ir in W% and if v is labeled r or Ir in W then v is labeled r or il in W2, In the
case that T' is to the left of T2, any pseudo terminal v of W' on the right boundary side of W' is a pseudo
terminal of W2 on the left boundary side of W?. Then, if v has the same label in both W' and W2, From
these observations, one can easily conclude that every wire in the two-terminal-net full layout

corresponding to the arrangement A, is vertically monotone (a more formal proof for this is given in
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[GZ3}). Tt is easy to see that A, is of degree 1, we have

Lemma 3.3: The tile arrangement A is of degree 1 and the two-terminal-net full layout corresponding to

A, is loop-free.
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Figure 3.5: tile arrangement A,

Let us construct a tile arrangement A, by using the arrangement 4, as shown in figure 3.5. The

shadowed area in this tile arrangement contains no diagonals. By lemma 3.3, we have

Lemma 3 .4: The tile arrangement A, is of degree 1 and the two-terminal-net full layout cormresponding to

A, is loop-free.

Theorem 3.2: For any small € > 0 there exists a planar layout W whose diagonal diagram is of degree 1
and any three-layer wiring of layout W’ obtained by vertically or horizontally stretching W has area
AW )>(716—)*A (W).

Proof: Consider the two-terminal-net 'fpll layout W corresponding to the tile arrangement of 4,. By
lemma 3.4 we know that A, is of degrée 1 and W is loop-free. In this layout, except for 7*81 rows and
7*81 columns, every seven adjacent rows or columns is not three-layer wirable since it contains a two-
terminal-net full sublayout with a diagonal diagram shown in figure 3.2 (a), which does not admit any
legal partition, by lemma 3.2. Since A (W’ )=(1+t/h)*A (W), (or A (W )=(1+t/w)*A(W) ), where ¢ is
the number of additional horizontal (or vertical) grid lines introduced when stretching, and the dimension
of this layout can be arbitrarily large, i.e. the value of ¢ can be as large as 4/6 (or w/6), we have our

conclusion.
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IV. Discussions

We considered the three-layer wirability problem for planar layouts under a layout
_transformation called stretching. We showed that for any € > 0, there exists planar layouts W which can
‘ot be stretched under stretching scheme I such that the resulting layout W is three-layer wirable and
AW )>(7/6-e)*A(W). In [GZI1], it is shown any layout W with diagonal diagram of degree 1 can be
stretched to obtain a layout W’ such that it can be wired in three conducting layers in area
A(W)<(5/4)*A (W). We conjecture that there does not exists a 6-row loop-free two-terminal-net full
planar layout with a diagonal diagram of degree 1. This conjecture strongly implies that our 7/6 lower
bound for the three-layer wiring area bound for the class of planar layouts with diagonal diagrams of
degree 1 is tight by using our stretching method. It should be mentioned that other results on the upper
bound and lower bounds of the area of three-layer wirings of other layout classes are given in [GZ1],
{GZ2] and [GZ3]. In [Z], a more general form of layout transformation is proposed and three-layer
wirability of the layouts under this layout ransformation is discussed. It was conjectured in [Z] that under
the proposed layout transformations every planar layout is three-layer wirable without introducing
additional area. However, even this conjecture can be proven to be true, the problem of finding such a
transformation can be very difficult. Thus, combining the stretching and other layout transformations may
provide a feasible approach to the task of designing efficient layer assignment algorithms which may

result in three-layer wirings with small area.
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