DISTRIBUTED MULTIMESSAGE MULTICASTING

Teofilo F. Gonzalez, University of California, Santa Barbara, CA

Abstract

We consider multimessage multicasting with forwarding over the n processor complete static net-
work when each processor only knows the messages it needs to send and their destinations. We
present an efficient distributed algorithm to route the messages with total expected communica-
tion time O(d+logn), where d is the maximum number of messages that each processor may send
(or receive). Our routing algorithm consists of three phases: (1) processors exchange messages to
learn basic global information; (2) each processor forwards its messages to transform the problem
to a multimessage unicasting problem of degree d; and (3) a well known distributed algorithm is
used to transmit all the unicasting messages.

Introduction

There are n processors, P = {P;, P,,...,P,}, interconnected via a fully connected network.
Each processor is executing processes, and these processes are exchanging messages that must
be routed through the network. We assume that processors alternate between computation and
communication in a synchronous way. The Multimessage Multicasting problem, M M, consists
of finding specific times when messages are to be transmitted so that all the communications can
be carried in the least total time. When forwarding is allowed the problem is called the MM F,
problem. Forwarding, means that messages may be sent through indirect paths even though
a single link direct paths exist, allows communication schedules with significantly smaller total
communication time. In this paper we study the distributed version of the M M F, which we refer
to as the DM M F¢ problem. In this the problem each processor initially knows the value of n and
d, plus the messages it will be sending and their destinations. The non-distributed (or off-line)
version is simpler because there is a preprocessing phase where all the information is available
in one processor and it is used to construct communication schedules that are subsequently
distributed to the individual processors. Hereafter we assume that each of the (original) messages
to be transmitted is at least n bits long. This assumption allow us to send messages with length
at most n, other than the original ones, and just count and report the total number of messages.
Let us formally define our problem. Each processor P; holds the set of messages h; and for
each of its messages m; ; it knows the set of processors s; ; that must receive the message. From
this information one can compute for each processor P; the set of messages it needs to receive,
n;. Our algorithm does not compute the n;s, but at the end each processor P, will have all the
messages it needs. We define the degree of a instance as d = max{| A; |, | n; |}, i.e., the maximum
number of messages that any processor sends or receives. Consider the following example.

Cs-43

Example 1. Processors P;, P, and P; send messages, and the remaining six processors receive
messages *. The hold vector is: h; = {a,b},hy = {¢,d}, hs = {e, f},ha = hs = hg = hy = hg =
he = 0, and the need vector is: n; = ng = n3 = 0, ny = {a,¢,e},n5 = {a,d, f},ns = {b,c,e},nr =
{b,d, f},ns = {c,d,e},ng = {c,d, f}. The density d is 3, and n =9.

Problem instances may be visualized via directed multigraphs. Each processor P; is repre-
sented by the vertex labeled 4, and there is a directed edge (or branch) from vertex 7 to vertex j
for each message that processor P; needs to transmit to processor P;. The set of directed edges or
branches associated with each message are bundled together. The problem instance given in Ex-
ample 1 is depicted in Figure 1 as a directed multigraph with additional thick lines that identify
all edges or branches in each bundle. .\ o : Lo

Figure 1: Directed Multigraph Representation for Example 1.

The communications allowed in our complete network for the distributed version of the prob-
lem must satisfy the restrictions given below. For the non-distributed case [1, 2, 3], rule 2 given
below is simpler because those algorithms made sure that each processor received at most one
message at a time. We should also point out that the last part of rule 2 is only needed for the
third phase of our procedure, solving the resulting multimessage unicasting problem, because all
the communications in the first two phases are predicatable, and communication conflicts can be
avoided.

1.- During each time unit each processor P, may transmit one of the messages it holds (i.e.,
a message in its hold set h; at the beginning of the time unit), but such message can be
multicasted to a set of processors. The message will remain in the hold set h;.

2.- During each time unit each processor may receive at most one message. The message that
processor P; receives (if any) is added to its hold set h; at the end of the time unit. If two
or more messages are sent to a processor at a time period, then the messages are garbled
and the processor does not receive any of the messages. The sending processor will know at
the end of time period whether or not the message it sent reached all its destinations. Note
that if the message does not reach all its destinations, then the processor will not know the
processors that received the message.

INote that in general processors may send and receive messages.

CS-44

. The process ends when n; C h; for all 4, i.e., each processor holds all the messages it needs.
Our communication model allows us to transmit any of the messages in one or more stages. The
total communication time is the latest time at which there is a communication.

The multimessage unicasting problem MU¢ is exactly like the multimessage multlcasmng
problem, except that each message must be sent to exactly one destination. An efficient algo-
rithm for the multimessage unicasting problem MUg is given in [1]. Several papers (see [1]) have
reported contributions to related problems. The distributed version of the multimessage unicast-
ing problem with forwarding, DMU F, has been studied in the context of optical-communication
parallel computers [4, 5, 6, 7]. Valiant [7] presented a distributed algorithm with O(d+logn) total
expected communication time. The algorithm is based in part on the algorithm by Anderson and
Miller [4]. The communication time is optimal, within a constant factor, when d = Q(logn), and
Gereb-Graus and Tsantilas [5] raised the question as to whether a faster algorithm for d = o(log n)
exits. This question was answered in part by Goldberg, Jerrum, Leighton and Rao [6] who show
all communication can take place in O(d + loglogn) communication steps with high probabil-
ity, i.e., if d < logn then the failure probability can be made as small as n® for any constant
«. Gereb-Graus and Tsantilas [5] presented distributed algorithms without forwarding with
O(d + lognloglogn) expected communication steps. With the exception of the work reported in
[1, 2, 3], research has been limited to unicasting and single message multicasting.

Gonzalez [1] showed that even when k = 2 the decision version of the M M¢ and the MM F¢
problem are NP-complete, presented an efficient algorithm to construct for any degree d problem
instance a schedule with total communication time at most d?, and presented problem instances
for which this upper bound is best possible. The lower bound holds when the number of processors
and the fan-out is huge. Since this situation is not likely to arise in the near future, results for
the MM problem with restricted fan-out has been reported in [1]. Gonzalez (2, 3| present
efficient algorithms to construct for every degree d instance a schedule with total communication
time at most 2d, where d is the maximum number of messages that each processor may send
(receive). These algorithms consists of two phases. In the first phase a set of communications are
scheduled to be carried out in d time periods, and when these communications are performed the
resulting problem is a degree d multimessage unicasting problem. The second phase generates a
‘communication schedule for this problem by reducing it to the Makespan Openshop Preemptive
Scheduling problem which can be solved in polynomial time.

In this paper we present an algorithm for the DM M F problem, which combines the classic
parallel prefix algorithm, a distributed version of the message forwarding phase of Gonzalez’ algo-
rithm [3] for multimessage multicasting with complete information, and Valiant’s {7] distributed
algorithm for the multimessage unicasting problem. The result is a distributed algorithm that
routes all messages in O(d + logn) expected communication steps.

Approximation Algorithm

Our strategy is to use the classic parallel prefix algorithm to compute and exchange information,
and then use this information to run a distributed version of Gonzalez’ algorithm [3] with partial
global information. By forwarding all the messages, Gonzalez’ algorithm [3] transforms the prob-
lem to a multimessage unicasting problem. All of the resulting communications can be performed
by Valiant’s [7] distributed algorithm.

Before we proceed it is important to understand the message forwarding phase of Gonzalez’

CS-45

algorithm [3] that reduces the problem to a multimessage unicasting problem. Let us explain how
this phase works by applying it to the problem instance given in Figure 2. The problem instance
consists of 12 processors, 11 messages, and has degree d = 2. :

- Figure 2: M M, problem instance (I, G).

In Figure 3 we show all the processors with a list of labels assigned tothe bundles and edges
that are defined as follows. The top set of numbers is the bundle number which is defined by
labeling the bundles emanating out of processor Py, then the one emanating out of P, and so
forth. The next label is the message for the bundle and the third one is the bundle number
modulo (d) plus 1. This third number is the time at which the message associated with the
bundle will be forwarded. From the way these labels are generated, we know that no two bundles
emanating out of a processor will forward a message at the same time. The edges are labeled
beginning with the ones emanating out of the first bundle, then the second one, and so forth.
These labels are shown in the fourth line. The last set of numbers is the ceil of the edge number
divided by d. This last row indicates the processor index where the message will be forwarded.
It is simple to see that each processor will receive at most d messages and all these messages will
be received at different times.

CRAIRTTTTT

123 456 76889 1011 12 13 1415 181718 19 20 21 13
112 233 445 56 6 7 78 8868 10 10 1 n 12

Figure 3: Labeling performed by procedure FORWARD.

The specific communication operations for time 1 and 2 are given in the forests labeled T'1
and 72 in Figure 4. The resulting unicasting problem (I, G) of degree d is given in Figure 4 (all
objects in (c)). Remember that Gonzalez’ algorithm 3] is non-distributed and all the information
is known globally. However, the algorithm in this paper is distributed and the only information
every processor initially knows are the messages it needs to send and their destinations, the values
of n and d. Let us now explain the three steps of our algorithm.

1. Compute and Broadcast Basic Information. Each processor P; needs to know the
total number of messages that processors Py, P, ..., Pi-1 need to send as well as the total
number of destinations for all of these messages. Le., the total number of bundles and the
total number of edges emanating out of all of these processors. This information is needed

CS-46

Figure 4: Communications at time one (a) and time two (b). In (c) the MUc problem instance
(I, G) constructed from (I, G) in Figure 2.

to label the bundles and edges emanating out of P;, and it can be easily computed via the
classic parallel prefix in O(logn) communication steps.

2. Transform to the Multimessage Unicasting Problem.

This operation is performed by making Gonzalez’ algorithm [3] distributed. Each processor
will run the following procedure.

Procedure FORWARD for P,
/* The values of n and d are known in every processor */
/* The following information computed in Step 1 is in processor P;
np: total number of bundles emanating out of P, P,, ..., Pj_;.
ne: total number of edges emanating out of Py, P,,..., Pj_y. ¥/
Label By, the i** bundle visited while traversing the bundles emanating from Pj;
Define t(ny +7) as (ny +1 — 1) mod (d) + 1;
/* The message associated with bundle By, ; will be forwarded at time t(n; + 2). */
Label e, .; the i** edge visited while traversing the bundles emanating out of P;
in the order By, 1i, Bn,+it1, - -} _
Define the function g(n. +1) as [2=F];
/* Edge e, 4 will be forwarded to processor Py(n, iy */
for every bundle B,,; emanating out of P; do Sp,+: ¢+ {g(!)|e; € By, +:i}; endfor
fort=1,2,...,ddo '
if there is a bundle emanating out of P; with t(ny +¢) ==t then
At time t processor P; multicasts message By, to the set of processors Sy, 1; (if
|Sn,+i| = 1, the operation is unicasting). Send a bit vector of size n appended
to this message indicating the indices of the processors that must eventually
receive this message, the first processor that will receive this forwarded
message and the number of edges that such processor must forward.
/* This info is used by the forwarding processors to compute the destinations
of the messages being forwarded. */
endfor
end of Procedure

Cs-47

3. Solving the resulting Multimessage Unicasting Problem Instance.

At this point each processor just runs Valiant’s algorithm [7] and all the messages are
delivered to their destinations in O(d + logn) expected communication steps.

Lemma 1. The pair (I,) is a problem instance of the MUg problem and once all its messages
are transmitted will solve the original multimessage multicasting problem (I, G).

Proof. The proof of the lemma is based on the observations that the ¢() and g() labels computed
by our procedure are identical to the ones that Gonzalez’ algorithm [3] computes. This implies
that the messages will be forwarded exactly as in Gonzalez’ algorithm [3]. Therefore, solving the
resulting multimessage unicasting problem solves the original problem. a

Theorem 1. Our algorithm performs all the multicasting for every_instance of the DMMF¢
problem with O(d + logn) expected communication steps.

Proof. The proof is based in the previous lemma, and the correctness proofs for the subprocedures
used by our algorithm. The total number of communication steps in phase 1 is O(logn), and in
phase 2 is O(d). The expected number communication steps for phase 3 is O(d + log n). o
The most important open problem is to develop distributed algorithms with similar perfor-
mance guarantees for processors connected via a dynamic networks. Algorithms exist for the
non-distributed version of this problem [3]. The main difficulty in extending that work to the
distributed case is the construction of the routing tables with only local information.

References

[1] T. F. Gonzalez, “Complexity and Approximations for Multimessage Multicasting,” Journal
of Parallel and Distributed Computing, 55, 215 — 235, 1998.

[2] T. F. Gonzalez, “Algorithms for Multimessage Multicasting With Forwarding,” Proceedings
of the 10** PDCS, 372 - 377, 1997.

[3] T. F. Gonzalez, “Simple Multimessage Multicasting Approximation Algorithms With For-
warding,” UCSB TRCS-97-24, December 1997.

[4] R. J. Anderson, and G. L. Miller, Optical Communications for Pointer Based Algorithms,
TRCS CRI 88 - 14, USC, Los Angeles, 1988.

[5] M. Gereb-Graus and T. Tsantilas, “Efficient Optical Communication in Parallel Comput-
ers,” Proceedings of 4th SPAA, 1992, pp. 41 - 48.

[6] L. A. Goldberg, M. Jerrum, T. Leighton, and S. Rao., “Doubly Logarithmic Communication
Algorithms for Optical-Communication Parallel Computers,” SIAM J. Comp., 26, No. 4,
(1997), pp- 1100 - 1119.

[7] L. G Valiant, “General Purpose Parallel Architectures,” Handbook of Theoretical Computer
Science, J. van Leeuwen, ed., Elsevier, New York, 1990, Chapter 18 (see p 967).

Cs-48

ANALYSIS AND DESIGN OF PROTOCOLS STACKS AT INTELLIGENT
NETWORK’S NODE

: Adam Grzech, Wroclaw University of Technology, Wroclaw, Poland

Introduction

The paper is devoted to present and discuss a proposed model of so-called intelligent computer
communication network’s node as composed of protocols set [1,2]. In such active networks, one of
the primary functions of the communication subsystem is to provide the transfer of an incoming traffic
from a source node to a destination node using set of protocols adequate to required quality of
services in changing environments. The proposed model of network’s source node may be used also to
model transfer of traffic in any nodes. It is applied to formulate and solve protocols stack analysis,
design and optimisation tasks [2,4]. Processing times and increasing rates associated with every pair of
protocols are utilised to formulate performance criteria describing quality of ordered protocols set [2].

A protocols stack in intelligent network’s node is equivalent to existence of particular routing
path between a source and a destination protocols. The quality of services depends on protocols
traversed by the incoming traffic as well as on environment in which the input traffic is served [2,5].

Network Node Model

A network’s node is modelled as graph with subset of protocols as graph nodes and pair of co-
operatmg protocols as graph links. The protocols set is composed of separate subsets where subsets of
source protocols and destination protocols are distinguished. The subsets contain protocols with
similar scope of functionality and different value of parameters describing quantity of delivered
services. An existence of link between ordered pair of protocols from separate subsets means that the
second protocol is required to complete services assured by the first in assumed protocols stack. In
order to evaluate the quality of protocols stack, two positive values are associated with every two
ordered and linked protocols. The first is a delay generally measures the desirability of using a
particular pair of linked protocols, with a lower delay meaning more desirable. The second value
denotes an average increase of traffic; the protocol operating at the upper level serves some amount of
incoming traffic and produces larger amount of traffic that is served by next protocol operating at the
lower level.

A network node is modelled as graph with protocols set P and links set L. The protocols set

P is composed of N +1 subsets B, where n=0,1,...,N. F contains lPol source protocols while
Py contains |PN| destination protocols [2,5]. The stack of protocols is modelled as a route between
the source and destination protocols. An existence of link between ordered pair of protocols p,; and
Pmj (Pui € Bys Pmj € Py, n<m and n,m=0,1,...,N) means the first protocol (p,;) is supported
by the second protocol (py;) or in other words, the j-th protocol from the m-th subset delivers

services for the I-th protocol from n-th subset. It is assumed that the protocols are applied to compose
stack of protocols co-operating within layered and nested architecture. In order to evaluate the quality
of protocols stack, a cost ¢(p,, pn,) is associated with every two ordered and linked protocols p,;

CS-49

