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Extended Abstract 

Let M be a 2-dimensional colored map which has been digitized into a large 2- 
dimensional array (M). We define a class of languages (called rectilinear) to describe 
our digitized maps and classify them based on their level of succinct representation. 
The map compression problem is defined as the problem of finding for any given map 
a shortest description within a given language. For one dimensional maps, we show 
that a shortest description can be generated quickly for some languages, but for other 
languages the problem is NP-hard. We also show .that a large number of linear time 
algorithms for our languages generate map descriptions whose length is at most twice 
the length of the minimum length description. For all our languages we show that 
the two dimensional map compression problem is NP-hard. Furthermore, for one of 
the most succinct of our languages we present evidence that suggests that finding a 
near-optimal map compression is as difficult as finding an optimal compression. 

Let M be a 2-dimensional colored map, e.g., a landscape, to be stored in a digital 
computer system and/or to be drawn on a terminal screen. Assume that the map 
has been digitized into a large 2-dimensional array (M). I.e., a large uniform square 
grid partitions the map into n by m small grid squares denoted by I,,,,. Grid square 
Ii , j  is associated with the matrix entry i, j in M. Each matrix entry ( M ( i , j ) )  is 
assigned an integer 1 E [O,p) to denote the representative color for grid square Ii,j. 

In many practical applications a map contains large singly colored regions, and 
also regions in which the colors change rapidly. So, finding a good probabilistic 
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Figure 1: L2pDRp is not as succinct as L 2 m  

model that represents the distribution of the different colors is at least difficult, if 
not impossible. Therefore, we shall not make any assumptions about the model that 
generates our 2-dimensional maps. 

In this paper we define a ‘language’ to describe our digitized maps. The objective 
is to find a shortest description within the given language. For example, instead of 
describing a 2-dimensional digitized map by its corresponding matrix we describe it 
by an rp-compression, i.e., sequence of tuples of the form (RP, , c , ) ,  where RPi is a 
subset of grid squares bordered by a simple rectilinear polygon without holes and q 
is a color (i.e., an integer value in the range [O,p) ). An rp-compression represents 
map A4 if map M is generated by coloring all the grid squares in RP, with color cl;  
then all the ones in RP2 with color c2, and so forth. Note that if a grid square is in 
two or more rectilinear polygons its final color is the last one assigned to it. We shall 
refer to these rectilinear polygons as c-rectilinear polygons and denote the language 
L z ~ p .  An rp-compression is said to be an pdrp-compression if all the c-rectilinear 
polygons in it are pairwise disjoint. A restricted version of LZRp, which we denote by 
LZpDRp, is defined by replacing rp-compression by pdrp-compression in the definition 
of L z m .  We say that the amount of information required to represent a map under 
L2Rp (L~PDRP) is the total number of corners in the c-rectilinear polygons in the 
rp-compression (pdrp-compression). 

Maps usually have a more succinct representation under language LzRp than 
under language L ~ P D R P .  The following example shows the case when there is a 
dramatic difference between the minimum length representation of a map in these two 
languages. The ‘map’ is given in figure 1. The map consists of (2n + 1) x (2n + 1) grid 
squares, each colored black (represented by a shaded square) or white (represented 
by a blank). All grid squares are white except for grid squares (i,j) for all i and j 
even. The smallest description in L z p ~ ~ p  for the map given in figure 1 contains at 
least n2 black grid squares (which are islands in the white area). But, under L 2 ~ p  

the map can be described by one large black square followed by a number of white 
strips. The amount of data needed to describe our map in language L Z p  is only 
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O(n). Note that a c-rectilinear polygon in an rp-compression does not have to border 
exactly an area of a given color. 

Let M be a map and L be any language. We use T(L,  M) to denote the number 
of ‘values’ in a minimum length representation M in L. Two languages L and L’ 
are said to be equivalent if T(L,  M )  is O(T(L’, M)) and T(L’, M) is O(T(L, M)) for 
every map M. A language L is said to be more succinct than language L’ if T(L,  M )  
is O(T(L’, M)), but T(L’, M) is not O(T(L, M)), for every map M. One can argue 
that our classification scheme is not fair because we do not take into account the 
maximum number of bits in each of the values. So extreme care must be taken when 
classifying languages because our classification holds only in certain domains. From 
the above discussion it is simple to show that L Z m  is more succinct than L z p ~ ~ p .  
Also, Lzp- is more succinct than L, where L is the language that represents a 
map by its n by m matrix of colors. Note that this last comparison is not a fair one 
because each value in the matrix is an integer value in the range [O,p), where as in the 
other language the values are integers in the range [O,n). Hereafter we concentrate 
on languages in which the c-rectilinear polygons may overlap. 

An rp-compression is said to be an rp-nr-compression if all the c-rectilinear poly- 
gons in it assigned the same color are adjacent in the description. A restricted 
version of L z p  is the language L2w-m obtained by replacing rp-compressions by 
rp-nr-compressions. The NR stands for no recolomtion because our procedure that 
generates M from the rp-nr-compression has the property that once a grid square 
has been colored with its correct color, it will never be colored with another color 
different from its correct color. This is not tfue for rp-compressions. By defini- 
tion T ( L Z p ,  M) is O(T(Lzp-m,  M)). However, it is not possible to show that 
T(LZm-m,  M) is O ( T ( L z p ,  M)) for every map M. Figure 2 shows a class of maps 
for which this does not hold. 

In this paper we study the 2CRm (2CNRm) problem defined as the problem 
of finding a minimum length representation for a 2-dimensional map in the L Z p  
( L 2 ~ p - m )  language. When the c-rectilinear polygons have exactly four sides (called 
c-rectangles) the above problems are referred to as the 2 c R ~  and the ~ C N R R  problem. 
In this case the objective function reduces to minimizing the number of rectangles in 
the description and we use the term r-compression (r-nr-compression) instead of rp- 
compression (rp-nr-compression). The languages are referred to as LZR and L z R - ~ ,  
respectively. In each of these two cases the rectangular languages are equivalent 
(with respect to succinctness) to the rectilinear polygon languages. The reasoning 
for this is that any rectilinear polygon with k corners may be covered by at most 2k 
rectangles [7] and a rectangle is a rectilinear polygon. 

When the two dimensional map has a single row, the map is said to be one 
dimensional. Voice data files are examples of one dimensional maps. The names for 
these problems and languages are prefixed by a one instead of a two. Note that in this 
case the lCRm (1cNR~p)  is identical to the ~ C R R  (~CNRR) problem because all c- 
rectilinear polygons are simply c-rectangles. All of these one-dimensional languages 
are equivalent with respect to succinctness. The reason for this is that every r-nr- 
compression is also an r-compression and thus T ( M ,  L ~ R )  is O ( T ( M ,  L ~ R - M ) ) .  The 
proof of the converse follows from the proof of theorem 3. 
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Figure 2: LZR~-NR is not as succinct as LZm. 

A restricted version of these problems, referred to by aR& where (Y E {1,2}, 
p E {CR, CNR} and 7 E { R, RP}, is the as, problem in which each color appears 
in at most two entries in M .  Later on it will be evident why we introduced these 
versions of our problems. 

In many practical situations the number of different colors in M is small. Because 
of this we shall also investigate the complexity of the a & ( k )  problem, where a E 
{1,2}, p E {CR, CNR, RCR, RCNR) and 7 E {R, RP}, is the a/?-, problem in which 
the number of different colors in M is bounded by the constant k (which is not part 
of the input). 

The One Dimensional Problem 

We consider the one dimensional map compression problem with and without 
recoloration. We present an O(n3) dynamic programming algorithm for the lCRR, 
where n is the number of entries in M .  However, for the no recoloration variant 
(~CNRR)  we show it is an NP-hard problem. For both of these problems we show 
that any algorithm that avoids a set of “bad decisions’’ generates a solution within 
two times the optimal number of c-rectangles in an optimal solution. We also show 
that for both of these two problems a solution within two times optimal can be 
generated in linear time. For the ~ R C R R  and IRCNRR problems, we present a fast 
algorithm for its solution by reducing these problems to a well known graph problem 
which ca.n be solved efficiently. 

An instance of our one dimensional problems is represented by INS = (M, , ,p ) ,  
where each Mi E [ O , p ) .  When we refer to a compression we mean either an r- 
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compression or an r-nr-compression. Let RI be a c-rectangle in compression R = 
( R I ,  R2,. . . ,a). We shall refer to the n entries in array M,, as array elements or 
map grid squares. Element i included in RI is said to be tight if element i is not 
included in R I + ~ , .  . . , &. Since R is a compression, we know that if element i is tight 
in R,, then C I  = M;. A c-rectangle is said to be tight if the rightmost and leftmost 
elements in it are tight, and a compression is said to be tight if all its c-rectangles 
are tight. 

Algorithm for t h e  ~ C R R  problem 

Let INS = (M,, ,p)  be any instance of the ~ C R R  problem. For 1 5 i 5 j 5 n, 
we use INS;$ to represent the subinstance of the ~ C R R  problem INS defined over 
array elements ( i , i  + 1,. . . , j - 1 ,  j ) .  Let g ( i , j )  denote the minimum number of 
c-rectangles in an optimal solution for the instance INS;,j of the ~ C R R  problem. 
Obviously, g ( i ,  i) = 1 for 1 5 i 5 n. Let R = ( R I ,  Rz, . . . , &) be an optimal r- 
compression for INS;,,. In lemma 1 we establish an important property of an optimal 
r-compression for any instance INS;$ of the ~ C R R  problem. This will aid us in the 
development of a fast algorithm to find optimal r-compressions . 
Lemma 1 Every instance INS;,, of the ~ C R R  problem has an optimal r-compression 
that is tight. Furthermore, element i is tight in c-rectangle R1. 

Proof: 
For brevity the proof is omitted. 

0 
< i ,  be all the elements in (i,i + 1,.  . . , j - 1 , j )  colored 

Mi. Let R be an optimal r-compression for INS;,j that satisfies the conditions of 
lemma 1. Let j ,  < j 2  < . . . < j, be the tight elements in RI. From the conditions 
of lemma 1 we know that q 2 1 and jl = i. By the principle of optimality it is 
simple to show that if q = 1 ,  then g ( i , j )  = g(j1 + 1 , j )  + 1; and if q > 1 ,  then 
g ( i , j )  = g(j1 + l , j2 - 1 )  + g ( j 2 , j ) ,  where g ( k , l )  = 0 when IC > 1. Therefore, g ( i , j )  
can be computed via dynamic programming techniques as follows. For 1 5 i 5 n, 
let g ( i ,  i) = 1 ;  for i > j ,  let g ( i , j )  = 0; and for i < j define 

Let il < i z  < . . , 

g ( i , i )  = min{g(il+ L j )  + l ; m h < k l s { g ( i l  + l ,h - 1) + g ( i k , j ) } } .  

We define procedure DP to compute the g ( i , j ) s  for all j - i = 0, then 1,2, .  . . , until 
n - 1 ,  by using the above recursive formulation. It is simple to show that procedure 
DP takes O(n3) time to find an optimal r-compression for any instance of the ~ C R R  
problem. These results are summarized in the following theorem. 

Theorem 1 Procedure DP generates an optimal r-compression in O(n3) time for 
any instance, INS = (M,,,p), ofthe ~ C R R .  

Proof: 
By the above discussion. 

0 
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Our dynamic programming algorithm cannot be generalized to solve in the same 
time complexity bound an instance of the ~CNRR problem. The main reason is that 
now we cannot just introduce a c-rectangle and solve optimally the two remaining 
subproblems, because for both of these subproblems it is required that the colors of 
the c-rectangles be in the same order. The following theorem establishes that the 
~CNRR problem is NP-hard. 

Theorem 2 The ~CNRR problem is NP-hard. 

Proof: 
We prove this theorem by reducing the feedback arc set (FAS) problem ([4]) to the 
lCiVRR problem. For brevity the proof is omitted. 

0 

Approximation algorithms for t h e  ~CRR and ~CNRR problems 

Let us now consider approximation algorithms for the ~ C R R  and the ICNRR 
problems. We say that an r-compression or an r-nr-compression is irreducible if no 
two adjacent elements colored with the same color are tight in different c-rectangles. 
Given a reducible r-compression or r-nr-compression there is a straight forward pro- 
cedure to transform it into an irreducible one. The following theorem established 
the fact that irreducible compressions are good approximations. 

Theorem 3 Any algorithm that generates irred!cible r-nr-compressions for an in- 
stance INS of the ~CNRR (1CRR) problem with f(INS) c-rectangles has the property 
that f^(INS)/f’(lNS) 5 2 ,  where f’(INS) is the number of c-rectangles in an optimal 
solution for the instance INS of the ~CNRR (~CRR) problem. 

Proof: 
The proof is obtained by establishing a lower bound on the number of c-rectangles 
in an optimal solution. For brevity the details of the proof are omitted. 

0 

. 

An improved algorithm for t h e  ~RCRR and ~RCNRR problem 

It is simple to show that the ~RCRR and the ~RCNRR are identical problems. 
The dynamic programming algorithm for the ~CRR reduces to an O ( n 2 )  algorithm 
for 1 RCRR. We show that in general there exists a somewhat faster algorithm for this 
case, by reducing our problems to the problem of finding a maximum independent 
set in an overlap graph [5]. This problem can be solved in O(dn)  time (11, where d 
is the density, i.e. the maximum number of intervals including any point. 

Theorem 4 Our algorithm generates an optimal r-compression for the 1 RCRR and 
IRCNRR problems in O(dn)  time, where d is a lower bound on the number of c- 
rectangles in an optimal solution. 
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For brevity the proof is not included. 
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The Two Dimensional Problem 

We begin by proving that the ~ R C R R ,  ~RCNRR, ~ C R R ,  ~CNRR,  ~ C R R P  and 
2 c N R ~ p  problems are NP-hard. In many practical cases the number of colors is small 
compared to the size of the matrix. So the question remains whether a restriction 
on the number of colors makes the problem computationally simpler. We partially 
answer this question in the negative. We also show that the problems remain NP- 
hard even when the number of different colors in M is bounded by a small constant 
( 2 c R ~ ( 4 )  and 2cNR~(2)).  In addition, we provide evidence that the 2cNR~(2)  
problem is hard to approximate. 

T h e  ~ R C R R  and  related problems 

First we show that the ~ R C R R  problem is NP-hard by reducing a restricted 
version of the exact cover by three sets (RXC3) problem to it. The RXC3 problem 
was shown to be NP-hard in [6]. Then we modify the reduction to establish that the 
related problems are also NP-hard. 

Theorem 5 The ~RCRR,  2RCN&, ~ C R R ,  2CNRR, 2 c R ~ p  and 2CNRw problem 
are NP-hard. 

Proof: 
For brevity the proofs are omitted. 

0 
We show that the 2 c R ~ ( 4 )  problem is NP-hard. We prove this by showing that 

the FAS problem polynomially reduces to it. 

Theorem 6 The problem 2 c R ~ ( 4 )  is NP-hard. 

Proof: 
For brevity the proof is omitted. 

Let us now establish that the 2cNR~(2)  problem is NP-hard by reducing the 
problem of covering a rectilinear polygon with at most k rectangles (CRP) to it. 
Given a rectilinear polygon R P  and integer k, the CRP problem consists of deter- 
mining whether there is a set of k rectangles that cover R P  without covering any 
point outside RP. The CRP problem was shown to be NP-hard in [2]. 

Theorem 7 The 2CN&(2) problem is NP-hard. 

Proof: 
For brevity we do not present details of the proof. However, figure 3 shows the main 
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1 2 k 
Figure 3: Reduction in theorem 7. 

idea behind our reduction. 
0 

From this reduction and the approximation algorithm for the optimization version 
of the CRP problem given in [7], one may conjecture that there is also an efficient 
approximation algorithm for the 2cNR~(2)  problem. Let us now present evidence to 
the contrary. The CRP-WH problem is the same as the CRP problem, except that 
the new problem has holes (each hole is a rectilinear polygon) inside the rectilinear 
polygon. The problem consists of covering with k rectangles the rectilinear polygon 
excluding the exterior and the area covered by the holes. It is simple to show that 
the CRP- WH problem is also an NP-complete problem. In what follows when we 
refer ro the CRP- WH problem we mean its corresponding approximation problem. 
So far, research on developing an efficient approximation algorithm with a constant 
approximation bound for the CRP- WH problem has been fruitless [3]. What we 
claim is that if there is an efficient approximation algorithm for the 2cNR~(2)  prob- 
lem with approximation bound c, where c is any constant, then there is an efficient 
approximation algorithm for the CRP- WH problem with an approximation bound 
equal to c’, where d is a constant. 

Theorem 8 The 2cNR~(2)  approzimation problem is as dificult as the CRP- 
WH problem, i.e., if there is an eficient approzimation algorithm for the CRP- 
WH problem with approximation bound c ,  where c is any constant, then there is an 
eficient approximation algorithm for the zcNR~(2)  with an approximation bound 
equal to c’, where d is a constant. 

Proof: 
For brevity we do not present details of the proof. However, figure 3 (after replacing 
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the rectilinear polygon by one with holes) shows the main idea behind our reduction. 

0 

Discussion 

We defined a class of languages (called rectilinear) to describe digitized maps and 
classify them based on their level of succinct representation. For one dimensional 
maps, we showed that a shortest description can be generated quickly for some 
languages, but for other languages the problem is NP-hard. We also showed that a 
large number of linear time algorithms for our languages generate map descriptions 
whose length is at most twice the length of the minimum length description. For 
all our languages we showed that the two dimensional map compression problem is 
NP-hard. Furthermore, for one of the most succinct of our language we presented 
evidence that suggests that finding a near-optimal map compression is as difficult as 
finding an optimal compression. 

There are several interesting problems that remain open. The most obvious, is 
to develop an efficient approximation algorithm for the ~ C R R ,  since this involves 
the most succinct of our languages. Another intersting problem, is to define a new 
language that is more succinct than the previous ones and for which we can develop 
efficient exact or approximation algorithms. Perhaps, languages based on primitive 
objects other than rectangles and rectilinear polygons should be investigated. For 
example, if the primitive objects are triangles, .the resulting languages are more 
succinct than the rectangular ones. However, if the primitive objects are squares, the 
resulting languages are not as succinct as the rectangular ones. The two dimesional 
compression problem with and without recoloration when the primitive objects are 
triangles can be shown NP-hard by using a reduction similar to the one for theorem 
5. For brevity we do not explain this in more detail. There are many ways to 
view approximations to these problems. A way different to the one explored in 
this paper, is to relax the restriction that the compression should generate the map 
exactly. Certainly, such languages would be more succinct than the ones defined in 
this paper; however it is not clear if shortest descriptions in these languages would 
be any easier to construct. 

In this paper we concentrated in one and two dimensional maps. Another inter- 
esting problem, which is as hard as the ones discussed in this paper, are three dimen- 
sional maps. This would have applications in terrain data as well as in "movies", 
which we defined as a sequence of two dimensional maps or frames. Compressions in 
this case would be important when there is not too much difference between adjacent 
frames. Perhaps, for certain "movies" even simple heuristics could compress by a 
significant factor the amount of data needed to store or transmit this information. 
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