Efficient Algorithms for k-Separation Clustering

Teofilo F. Gonzalez
Department of Computer Science
University of California
Santa Barbara, CA, 93106

teo@Q@cs.ucsb.edu

Abstract

The k-separation problem is to partition a set of n objects into k sets or clusters
so that the dissimilarity (distance or weight) between the two most similar objects
belonging to different clusters is as large as possible. Solutions to this clustering prob-
lem have been used to construct dynamic Internet distance maps and for the efficient
dissemination of mobile agents. The current best algorithm for this problem has time
complexity O(n?logn). In this paper we present several algorithms with running times
O(e+n?) and O(elogn) to solve the k-separation problem, where e is the total number
of measured dissimilarities between the objects. In the applications mention above e is
about n?, so the best of our algorithms takes linear time. The fastest of our algorithms
has a small constant associated with its time complexity bound.

Keywords: Clustering, Algorithms, k-Separation, Polynomial Time.

1 Introduction

Theilmann and Rothermel [6, 7] introduced a new clustering criteria, called maz k-separation,
which they use to speed-up communication through the Internet. More specifically, they use
solutions to the clustering problem to construct dynamic Internet distance maps [6] and

for the disseminate efficiently mobile agents [7]. The max k-separation problem consists of

partitioning a set of n objects into & sets so that the dissimilarity (distance or weight) between
the two most similar objects belonging to different clusters is as large as possible. Formally,
we have a graph G = (V, E, W) where V is the set of n vertices, E is the set of e edges, and
the weight function W : {i,j} — R™ assigns a positive weight to each edge in the graph.
The weight or distance associated with each edge represents the dissimilarity between the
two objects the edge joins. When the graph is complete and the weights satisfy the triangle
inequality, i.e., for every three vertices 4, j, and k, W({3,7}) < W({{s, k}) + W({k,j}), the
graph is said to be in metric space. The problem instances that arise in the applications
mentioned above are in metric space.

There are three closely related problems: the k-maxcut problem (maximize the sum
of inter-cluster weights), the k-min cluster problem (minimize the sum of the inner-cluster
weights) and the k-gMM clustering problem (minimize the maximum inner-cluster weight).
Under this notation the max k-separation problem is to maximize the minimum inter-cluster
distance. Therefore, the k-separation problem is to the k-maxcut problem as the k-gMM
clustering problem is to the k-min cluster problem. The k-maxcut problem and the k-min
cluster problem are computationally identical problems in the sense that an optimal solution
for one of these problems is an optimal solution to the other one. However, the k-gMM and
the k-separation problems do not share this type of relationship. The k-separation clustering
problem can be solved in polynomial time, but the other three clustering problems have been
shown to be NP-hard. Theilmann and Rothermel [6, 7] developed an algorithm that takes
O(n?logn) time, where n is he number of objects, for the max k-separation problem.

Sahni and Gonzalez [8] developed a linear time approximation algorithm for the k-maxcut
problem that generates a clustering with objective function value at least equal to (k—1)/k
times the objective function value of an optimal solution. Clearly, for large k the clustering
generated by the algorithm are almost optimal. When the set of points is in metric space
and clusters are required to have the same number of objects, Gonzalez and Murayama
[2], and subsequently Guttmann-Beck and Hassin [4], showed that any (balanced) partition
has objective function value at least equal to (k — 1)/(k + 1) times that of a (balanced)
optimal partition. Sahni and Gonzalez [8] showed that for k > 3 the k-min cluster problem

cannot be approximated in polynomial time for any constant unless P = NP, i.e., if there is a

polynomial time algorithm that generates a clusterings with objective function value within
c times the optimal solution value, then P = NP. Guttmann-Beck and Hassin [3] showed
that in metric space the problem can be approximated in O(n**!) to within a factor of two,
i.e., the objective function value of the solution generated by the algorithm is within twice
the optimal one. The k-gMM for arbitrarily graphs cannot be approximated within any
constant unless P=NP [1], but in metric space the problem is called the k-tMM problem,
and it can be approximated within two times the optimal solution value in O(nk) time, but
approximating it within 2 — ¢ is an NP-hard problem, for every ¢ > 0.

Theilmann and Rothermel [6, 7] evaluated the performance of their clustering algorithm
and Gonzalez’ algorithm [1] for their applications. Both algorithms have advantages and
disadvantages, but the one for the k-separation problem outperforms the other one in their
experimentation. As pointed out in [6, 7] the k-separation problem may lead to clusterings
that are highly unbalanced with respect to the number of points in the clusters, but optimal
clusters for the k-tMM problem may assign to different clusters objects that are close to each

other. Algorithms for other clustering problems are discussed in [1, 2, 3, 4, 6, 7).

1.1 Max k-Separation

Theilmann and Rothermel’s algorithm [6, 7] generates a clustering by a greedy procedure
similar to Kruskal’s algorithm for constructing a minimum cost spanning tree [5]. The
algorithm begins by sorting and then considering the edges in increasing (actually non-
decreasing) order of the their weights. When selecting edge {u,v} vertices u and v are
merged into one vertex. The weight of the edge between the new vertex and each vertex
z is defined as min{W{u,z}, W{v,z}}. The process terminates when there are k vertices,
each of which represents the set of objects in each cluster. For completeﬁess the procedure

is given below using a notation that is slightly different for the one in [6, 7].

Procedure TR(G = (V,E, W), k);
Vertex v; is said to represent vertex ¢;
Sort the edges in G in non-decreasing order with respect to their weight;
while | V |> k do
select edge (v1,v2) € G with minimum weight;
// merge nodes v; and vy into v; and adjust the edge weights. //
for every v € V — {vy,v2} do
w({vy,v}) = min (W ({v, v2}), W ({v, 0:})}
endfor
Hereafter vertex v; will also represent the vertices that vertex v, represents;
Remove edges incident to vy in Ej
V-V —{v}; '
endwhile
// The resulting k vertices represent the & clusters.//
end of TR;

As pointed out in [6, 7], it is not difficult to establish that procedure TR generates an
optimal solution to the Max k-Separation problem. With respect to the running time, the
sorting of the edges requires O(elogn) time and the while-loop is executed n — & times, each
time requiring O(n) time provided the data is represented by an appropriate structure. For
brevity we will not elaborate on the appropriate data structures for this algorithm, but claim
that the overall time complexity is O(elogn + n?). For problems in metric space the time
complexity is O(n?logn) since the graph is complete. These results are summarized in the

following lemma whose proof appears in [6, 7].

Lemma 1.1 ([6, 7]) Procedure TR generates an optimal clustering for the Maz k-Separation

problem and can be easily implemented to take O(elogn + n?) time.

Another way to implement the above strategy is to take all the edges and add them to
a min-heap instead of sorting them first. Then at each iteration one deletes the min-weight

edge in the heap and joins the two vertices such edge joins (say v; and wvp). Then one

needs to update the weights of some of the edges emanating from v; and delete the ones
emanating from v;. The overall time complexity remains the same as with the previous
implementation. The running time reduces to O(elogn) if one delays the deletion and
update operation inside the while-loop. Lets call this new algorithm TR-K. The idea is to
use the classic implementation of Kruskal’s algorithm, for the minimum cost spanning tree
problem, in which at each iteration we test whether the minimum weight edge deleted from
the min-heap joins vertices in the same component (cluster). If so, the edge is tossed away,
otherwise both clusters (components) are merged into a single one. The while-loop can be
implemented to take O(logn) by using an efficient implementation for the disjoint union-
find operations used to test whether two objects belong to the same connected component
(same spanning tree in the spanning forest). We do not discuss more details about the
implementation because they are similar to the ones for Kruskal’s algorithm [5]. This result

is formalized in the following lemma.

Lemma 1.2 Procedure TR-K generates an optimal clustering for the Maz k-Separation prob-

lem and it can be easily implemented to take O(elogn) time.

Proof: By the above discussion.
O
Let us offer a simple characterization of the objective function value of an optimal solution

to the Max k-Separation clustering problem.

Fact 1.1 The objective function value of an optimal solution to the Maz k-Separation prob-
lem is the weight of an edge, call it WT, such that the number of connected components in
the graph G<wr(V, {set of edges with weight < WT in G}) is more than k, but the number
of connected components in the graph G<wr(V, {set of edges with weight < WT in G}) is at

most k.

An approach that is asymptotically faster based on Fact 1.1 can be easily developed.
Let us assume that the weights of all the edges are different. Later on we describe how
the procedure can be easily modified to solve the more general problem. First we find the

median weight of the edges. Let us refer to the median weight by MW. Now consider the

graph with only those edges whose weight is less than or equal to MW (call it Gpry) and
find the connected components of Gpw. Let kg,,,, the the number of such components.
If k¥ = kg, the algorithm terminates at this point and each cluster is simply one of the
connected components. If k& > kg,,, then invoke the procedure with the graph Gpmw.
Otherwise, if k¥ < kg, , then we combine each component into a single vertex and invoke
the procedure using the resulting graph. Each vertex representing a component is used to

represent all the vertices in the component. The specifics of the algorithm are given below.

Algorithm Div-and-Conq (G = (V, E, W), k)
Vertex v; is said to represent vertex i;
MW < median weight of an edge in E;
Guw G — { edges with weight greater than MW };
Let kg,,,, be the number of connected components in G pry;
case |
:k > kg, Div—and-Conq (Guw, k);
:k = kg, : All the vertices represented by the vertices in each connected component
in Gyw form a cluster;
return;
:k < kg, Combine each vertex in the same component into a single vertex in G'.
Hereafter the new vertices represent all the vertices represented by the vertices
in the component;
Call the resulting graph G;
Div-and-Cong (G', k);
endcase

End of Div-and-Cong;

Using Fact 1.1 it is simple to establish that procedure Div-and-Conq genérates an optimal
solution to the Max k-Separation problem. With respect to the running time, finding the
connected components of a graph takes O(n+e) time, where n is the number of vertices in the
graph and e is the number of edges by using depth-first search. Shrinking each connected

component into a single vertex can be easily done in O(n + €) time. If there is another

invocation of procedure Div-and-Conq it will involve a graph with no more than half of the
edges in the current graph. Therefore at the ith recursive there are no more than c;e/2!?
edges, i.e., the first invocation there are c,e edges, the second at most c,e/2 edges, the third
cie/4 and so on. Using these observations and a couple of other facts, one can establish
that the time complexity bound for the proposed procedure is just O(e). These results are

summarized in the following lemma.

Lemma 1.3 Procedure Div-and-Conq generates an optimal clustering for the Maz k-Separation

problem and can be easily implemented to take O(e) time.

Proof: By the above discussion.
.

For the case when some edges have identical weights, the graph G consists of exactly
half of the edges in E and contains all the edges with weight at most MW and some of the
edges with weight equal to MW. A procedure based on this idea can be shown to generate
an optimal solution to the k-Separation problem within the same time complexity bound as
procedure Div-and-Cong.

How efficient is this new algorithm in practice for large values of n? We are not so
sure, but we feel it might not be as fast in practice as the one developed by Theilmann
and Rothermel [6, 7]. There are many reasons for this, one is that we there are too many
invocations to the linear time procedure that finds the median of a set of numbers, which
for huge data sets makes a large number of 1/O operations.

Let us examine an algorithm that is faster in practice when the graph is in metric space.
The idea behind the algorithm is to keep for each vertex i an array adj;[j] of distances to the
other vertices and have the smallest of all these distances stored in minfi]. All the minli]
elements are stored in a min-heap. So initially every vertex is a cluster by itself and at
each iteration two clusters are combined into a single one. The ones combined are the two
“closest” ones, i.e., the weight of the least-weight edge between the clusters combined is least
possible. Each time one needs to update the adj;].] array, an entry for min[i] and the heap.
When cluster j is merged into cluster ¢ we set adj;[j] = co so that it will never be selected
again, since these two clusters have been merged into one. The array Tree[i] indicates for

each object ¢ the connected component (or cluster or tree) where it belongs.

7

Procedure Fast-Separation (G + (V,E,W), k)
for i =1 ton do;
treeli] + i;
for j =1 ton do;
if i = j then adj;[j] «+ W (i, 7);
else adj;[j] + oo;
endfor;
min[i] < smallest value in adj;[.] and
indez[i] is the value of j such that adj;[j] is the smallest value in adj;[.]
endfor;
Create a min-heap of tuples (¢, indexz[s], min[i]) ordered with respect to 3rd component;
for[=1ton—k do;
(¢, j,val) + DeleteMin (H);
(¢, 7',val") + DeleteMin (H);
//Note that tree[i] = tree[j'], tree[j] = tree[i'] and val = val'//
//because all the weights of the edges are distinct.//
for ¢ =1 to n do;
if tree[g] = tree[j] then treeq] < treelil;
endfor;
for ¢ =1 to n do;
if tree[i] = tree[j] then adj;[q] <+ oo;
adifg] « min{adiilg], adi;lg]}
endfor; N
min[i] < smallest value in adj;[.]
index[i] is the value of j such that adj;[j] is the smallest value in adj;|.]
add to the heap the tuple (4, indez[i], adj;[index[i]])
endfor;
//All the vertices with the same tree[] value form a cluster.//’

End of Fast-Separation;

The time complexity for the above procedure is O(n?). The initialization part (first -
loop) clearly takes O(n?) because each line inside it takes O(n) time and each line inside the
two for-loops takes O(c) for some constant ¢. The main loop in the remaining part is executed
O(n) times. One can easily establish that, as in the previous case, each line inside the outter
for-loop takes O(n) time and each line inside the inner for-loop takes O(c) for some constant
c. Therefore the overall time complexity is O(n?) time. When the graph is complete, the
algorithm takes linear time with respect to the number of edges. But if there are O(n)
edges, then the time complexity will be quadratic with respect to the input length. When
the number of edges is Q(n?) procedure Fast-Separation is faster than the Div-and-Conq
algorithm simply because one does not need to invoke the median-finding algorithm and
all the structures used by the algorithm are quite simple. Procedure Fast-Separation
outperforms the TR algorithm because it performs fewer of the same type of operations. Our

result is summarized in the following theorem.

Lemma 1.4 Procedure Fast-Separation generates an optimal clustering for the Maz k-

Separation problem and can be easily implemented to take O(n?) time.

Proof: By the above discussion.
g
The algorithm can be easily modified to handle the case when some edges have identical
weights. The idea is at each iteration to delete edges until an edge which has not yet been
deleted is found (remember that edges are added twice). This new procedure has the same

running time and generates an optimal solution.

1.2 Discussion

We have presented algorithms with running times O(e + n?) and O(elogn) to solve the
k-separation problem. This problem arises in the construction of dynamic Internet distance
maps and in the efficient dissemination of mobile agents in which the objects are in metric
space. For these applications our algorithm has a linear time complexity bound, rather than
O(n?logn) as in the previous best algorithm. Procedure Fast-Separation outperforms the

TR algorithm because it performs fewer of the same type of operations.

References

[1] Gonzalez, T. F., “Clustering to Minimize the Maximum Inter—Cluster Distance,” Jour-

nal of Theoretical Computer Science, No. 38, October 1985, pp. 293 —- 306.

[2] Gonzalez, T. F. and T. Murayama, “Algorithms for a Class of Min—Cut and Max—Cut
Problems,” Proceedings of the Third Annual International Symposium on Algorithms
and Computation, Lecture Notes in Computer Science #650, Springer—Verlang, Decem-

ber 1992, pp. 97 — 105.

[3] Guttmann-Beck, N, and R. Hassin, “Approximation Algorithms for Min-Sum P-
Clustering”™ Discrete Applied Mathematics, Vol. 89, No 1-3, pp125 — 142, 1998.

[4] Guttmann-Beck, N, and R. Hassin, “Approximation Algorithms for Minimum K-Cut”
Algorithmica, Vol. 27, pp 198 — 207, 2000.

[5] Horowitz, E., S. Sahni, and S. Rajasekaran, “Computer Algorithms in C++,” Computer

Science Press, Inc., 1997.

[6] Theilmann, W. and K. Rothermel, “Efficient Dissemination of Mobil Agents,” Proc.
19th IEEE Int. Conf. on Distributed Computing Systems Workshop on Web Based
Applications, IEEE Press, pp. 9 - 14, 1999.

[7] Theilmann, W. and K. Rothermel, “Dynamic Distance Maps of the Internet,” Proceed-
ings of the 2000 IEEE INFOCOM Conference,

[8] Sahni, S. and T. Gonzalez, “P-Complete Approximation Problems,” Journal of the
ACM, 23, 555-565, 1976.

10

