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ABSTRACT 

Performance profiling consists of monitoring a software 
system during execution and then analyzing the obtained data. 
There are two ways to collect profiling data: event tracing 
through code instrumentation and statistical sampling. These 
two approaches have different advantages and drawbacks. This 
paper proposes a hybrid approach to data collection that 
combines the completeness of event tracing with the low cost of 
statistical sampling. We propose to maximize the weighted 
amount of information obtained during data collection, show 
that such maximization can be performed in linear time or is NP-
hard depending on the data collected and the collection 
implementation. We propose an approximation algorithm for 
NP-hard case. Our paper also presents an application of the 
formal approach to an example use case. 

Categories and Subject Descriptors 
D.2.5 Testing and Debugging 

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
Profiling, sampling, tracing.  

 
1. INTRODUCTION 

As the complexity of embedded software systems grows, 
performance profiling is becoming increasingly more important. 
Performance profiling of embedded software systems requires 
data collection with low overhead and high information 
completeness.  

Performance profiling consists of monitoring a software 
system during execution and then analyzing the obtained data. 
There are two ways to collect profiling data: event tracing 
through code instrumentation and statistical sampling. Event 
tracing is generally more intrusive to software system execution, 
but allows the profiler to record all events of interest. Statistical 
sampling may be less intrusive, but cannot provide complete 
execution information. 

This paper proposes and explores a hybrid approach to data 
collection that combines the completeness of event tracing with 
the low cost of statistical sampling. 

Section 2 describes and compares typical data collection 
methods for profiling: event tracing and statistical sampling. 
Section 3 presents the new hybrid approach and motivating 
examples of its use. Section 4 proposes how to maximize the 
information amount by selecting which events to trace and 
which to sample. Section 5 discusses a real-world example of 
hybrid profiling. The paper concludes with related work, future 
work and conclusions. 

2. PERFORMANCE DATA 
COLLECTION 

Performance profiling determines where a software system 
spends its execution time [6]. Performance profiling requires 
data to be collected during program execution. Such data 
collection can be done either by event tracing or by statistical 
sampling. The following subsections briefly describe and 
compare two methods.  

2.1. Event tracing 
Event tracing records events that occur during system 

execution. Event tracing can track various events, such as task 
switches, component entries and exits, function calls, branches, 
software execution states, message communication, 
input/output, and resource usage.  

Tracing using software techniques1 requires changes to the 
software system usually called instrumentation. Instrumentation 
can be inserted into various program representations: source 
code, object code, byte code, and executable code. It can be 
inserted before or during program execution. Trace 
instrumentation can be added manually, semi-automatically or 
automatically. Automatization of the instrumentation may be 
complex. 

2.2. Statistical sampling 
Statistical sampling relies on intermittent access to the 

software system to record its current state. Sampling can record 
various information: program counter (execution location), 
function call stack, scheduled or blocked tasks, active 
peripherals and so on. Sampling can be done strictly periodically 
or with certain randomness. In periodic real-time systems, the 
sampling interval needs to be randomized to avoid sampling the 
same periodic software entity at every sampling point. 

                                                                 
1 Although tracing and sampling using hardware monitors 

are possible, they are not discussed in this paper, since hardware 
monitors usually have no overhead to the profiled system. 
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The simplest forms of sampling do not require any software 
modifications. A sampler simply copies the content of certain 
processor registers to memory. In more complex sampling, the 
software system may need to be interrupted to record the needed 
information. 

2.3. Comparison of tracing and sampling 
In event tracing every occurrence of an event creates a 

record. So event tracing is characterized by the completeness of 
knowledge: if an event was recorded, it did occur; if it was not 
recorded, it did not occur. Performance engineers can also learn 
exactly when each event occurred since every record is time 
stamped. This allows a complete analysis of event relationships 
in time, for example, the measurement of precise time distance 
between any two events. A performance engineer with a 
sufficiently detailed event trace – ideally, processor instruction 
trace, can reconstruct the dynamic behavior of a software 
system. 

Sampling yields only a statistical measure of the software’s 
execution patterns. It does not provide completely precise 
numbers: if an event does not occur in a sampling log, there is 
no guarantee that it did not occur in execution. Therefore 
sampling may not be useful for situations that need to track 
exact numbers of events, for example, a singleton message to a 
task or an exact relationship between requests and 
acknowledgements. 

Sampling is not a good approach when event causality is 
analyzed. Although it may extract a function call stack at the 
sample time, it cannot track all function calls or message 
exchanges. A performance engineer who needs a complete 
message sequence chart or component interaction graph might 
be better off choosing event tracing. 

Software tracing requires users to spend time instrumenting 
the software system. A performance engineer would usually 
spend significantly less time to achieve sampling than to 
instrument the software system for tracing. 

Both event tracing and sampling may affect the performance 
of the software system, thereby distorting its execution [14]. Not 
only do they add overhead, they can also change the behavior of 
the software system because of additional memory accesses and 
input/output [12]. In real-time software systems, the overhead 
can cause real-time constraint violations. Therefore, it is 
important to limit the intrusion by minimizing the overhead 
[2][9]. 

In tracing one way to achieve this is by reducing the number 
of events traced. However, performance engineers have to 
choose carefully, since omitting events from tracing also reduces 
the amount of information available. For example, if only “on” 
and “off” events are traced in a peripheral, it is no longer 
possible to detect and map the peripheral’s different “on” modes 
to differences in the system’s power consumption. In choosing 
the instrumentation granularity it is important to address the 
trade-off between the amount of event information required and 
the performance impact of the trace instrumentation. This may 
be hard even for an experienced performance engineer. 

On the other hand, the overhead of sampling may be orders 
of magnitude below the overhead of tracing. For example, 
branch tracing may require overhead of 10 times the original 
execution, function tracing may require overheads up to 2 times, 
while sampling at up to one thousand samples a second may 
have an overhead of less than 1% [1]. (This estimation assumes 
a 100Mhz processor and 1000 cycles of work per sample, which 

is enough to read the address of the currently executed 
instruction and save this information. Using symbol information 
generated at compile time, the profiler can later correlate the 
recorded sample with the source code.) Sampling the execution 
of software in a mobile device executing real-time tasks may be 
the only way to obtain information about long-running functions 
without causing the software to miss real-time deadlines due to 
tracing overhead. 

The data volume associated with event tracing can be very 
large [14]: up to a gigabyte per second traced if we consider 
executed instruction traces and tens of megabytes per second 
even in less frequent traces. This can cause a problem in devices 
that do not have large and fast storage or external network 
interfaces. Sampling may be done at a lower frequency and 
produce much less data than event tracing—a positive in 
storage-limited devices. 

However, the sampling frequency determines the granularity 
of the gathered information. In addition, the duration for which 
the software system executes directly relates to the number of 
samples collected. A sampling profiler requires software 
systems to execute over a reasonable period of time to ensure 
accuracy [13]. The goals of a performance engineer may require 
high sampling frequency that negates the low overhead and 
small data production of sampling. 

For small routines, event tracing may not yield an accurate 
time comparison with larger routines. A small routine may 
suffer much higher relative overhead from tracing than a larger 
routine. If this is ignored, a great deal of effort may be wasted 
optimizing routines that are not real performance bottlenecks. 

Sampling may not be able to detect frequently executed 
routines whose execution times are smaller than the sampling 
frequency. In addition, manual trace instrumentation usually 
tracks application-specific events that could be difficult to 
capture by sampling. For example, detecting a transition from a 
single-person voice call to a conference call may require event 
tracing. 
 
3. HYBRID DATA COLLECTION 

Let us summarize the previous section. Event tracing yields 
the most detailed and complete system execution data. However, 
it takes time to instrument software, tracing has a high overhead 
and may change the behavior of the software system [12]. 
Statistical sampling is simple to use and less intrusive to 
software system execution, but does not provide causality 
relationships and exact data. 

Embedded software systems, such as mobile devices, have 
real-time constraints and therefore require performance profiling 
methods with low overheads. On the other hand, performance 
analysis of such devices often involves causality relationships 
and precision requirements. For example, a performance 
engineer needs to know exactly when a multiplayer-game task 
starts processing a message that changes the game environment, 
since this may point to the cause of performance bottleneck 
evidenced by numerous file accesses.  

Often neither event tracing nor statistical sampling can 
satisfy such conflicting requirements. The problem is further 
compounded by the fact that test runs are not entirely 
deterministic in mobile devices due to interactions with other 
systems such as mobile network elements. Therefore, 
performance data cannot be collected during multiple test runs, 
but instead needs to be collected during a single test run.  
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To collect performance data of embedded software systems 
with low overhead and adequate completeness, we propose to 
use a middleweight approach which is a hybrid of heavyweight 
event tracing and lightweight statistical sampling. Only a subset 
of all events is traced, providing limited completeness and 
causality information. Additional information is obtained 
through sampling. 

To apply our method, a performance engineer has to 
determine which part of the performance data should be 
collected using event tracing and which using statistical 
sampling. The following subsections provide couple examples 
of hybrid profiling and decisions of what to trace and what to 
sample. Section 4 introduces a formal approach to making 
tracing and sampling split decisions, so that the information 
amount in collected data is maximized.  

3.1. Processor time profiling 
When the goal of a performance engineer is to determine 

which software components and subsystems spend the most time 
running on a processor, statistical sampling can provide most of 
the needed information. It can reveal the approximate amount of 
time spent in a component, such as a task, module or function. 
Event tracing can then be used to supplement this information in 
a couple of areas. First, it can precisely identify switches of very 
high level components, such as tasks. Second, it can demonstrate 
the component execution causality by tracking message 
exchanges. For example, consider the synchronization between 
tasks A and B in Figure 1.  

Task A Task A

Task B

t (s)

m1 m2

t4t3t2t1

 
Figure 1: Task state synchronization 

After sending message m1, task A enters a wait state where 
it waits for a state synchronization callback m2 from task B 
before continuing its execution. Here, event tracing can record 
and timestamp the sending of messages m1 and m2, while 
sampling can provide more in depth performance data during 
time intervals [t1, t2], [t2, t3], [t3, t4]. In this case, sampling on 
its own would not be enough to provide the crucial 
synchronization information.  

3.2. Resource usage and energy profiling  
In mobile devices power consumption varies depending on 

the peripherals used [7]. During the system execution, software 
accesses peripherals. These accesses need to be recorded to 
determine when a peripheral is used. In resource usage and 
energy profiling, complete information about active and inactive 
peripherals is required. Event tracing needs to be used to track 
state transitions of Bluetooth, GPS or infrared subsystems. The 
intrusion cost of recording “on” and “off” events of peripherals 
is low since they occur infrequently. 

Statistical sampling can complement event tracing by 
providing information that is too expensive to obtain using event 
tracing alone. For example, the processor power management 
puts the processor in a low power sleep mode when no software 
is scheduled to run. Unlike Bluetooth mode changes, the 
processor’s transition to the sleep state may be too frequent and 
too expensive to track via instrumentation. Statistical sampling 
can reveal the processor’s idle state with enough accuracy as 
long as the context switch time is an order of magnitude larger 
than the sampling frequency. 

Another opportunity for sampling is presented by devices 
with multiple active modes. The overhead of tracing every state 
transition of a peripheral may be too high. While tracing could 
provide information about major “on” and “off” states, sampling 
could complement this information with infrequent samples of 
secondary states allowing more precise system mapping than 
achieved with tracing alone. 
 
4. MAXIMIZING INFORMATION IN 

DATA COLLECTION 
As shown in the examples above, to use the hybrid 

approach, performance engineer needs to decide which events to 
trace and which to sample. In other words, hybrid data collection 
is based on splitting all the data into two parts: the part collected 
using tracing and the part collected using sampling. We propose 
to perform the split in such a way that the profiling overhead is 
limited and the amount of information collected is maximized. 
The remainder of this section formalizes this approach. 

4.1. Base case 
This subsection describes the base case of the problem and 

its solution. 

Let us define Overhead as the slowdown of the program due 
to the data collection. It is defined as a ratio: 

timeexecution  original
 timesamplingor ation instrument  1 

  
timeexecution  original
collection data with timeexecution   Overhead

+

==
 

 Assume a model where a program can tolerate a uniform 
overhead that is not larger than MaxAllowedOverhead.  

If the overhead of collecting all data using tracing is less or 
equal to MaxAllowedOverhead then tracing alone can be used. 
No sampling is needed and our problem of splitting data 
collection into sampling and tracing is solved. 

However, if the overhead of collecting all data using tracing 
is greater than MaxAllowedOverhead, some data needs to be 
sampled at a lower frequency than tracing to lower the overhead 
to MaxAllowedOverhead.  

Assume that we have n data classes of events C1…Cn. Events 
in each of these classes occur at a frequency of F1…Fn 
(frequencies are measured in Hz = 1/sec). Assume that reporting 
any event, whether it is traced event or sampled event takes the 
same amount of time Treport (measured in seconds). 

Using the notation introduced, we can rewrite Overhead 
definition as follows: 
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As mentioned above, our goal is to reduce the overhead to 
MaxAllowedOverhead. The only control we have is over the 
frequencies F1…Fn. These frequencies can be reduced by 
sampling at lower frequencies, thereby reducing the overhead. 
Let us call the reduced frequencies Fred1…Fredn. Using reduced 

frequencies, the overhead is report

n

i

T∑
=

+
1

redi  * )F(1  

We can reduce the overhead by sampling; however, 
sampling at a lower rate than tracing loses some information. 
How do we decide which event classes to sample and which to 
trace? How do we decide how much the sampling frequency 
should be reduced for each event class? For this we introduce a 
metric that measures the amount of information available in the 
collected data. 

Assume that each event class C1…Cn has information weight 
W1…Wn. Information weight expresses the importance of 
gathering larger percentage of events of a class. Larger relative 
weight means that the event class carries more information and 
consequently is more important to the user. Users assign 
information weights for different event classes. For example, if 
file-read events were very important, the users would select a 
high information weight to the file-read event class.  

Information weights allow us to introduce a metric to 
measure the amount of information available in the collected 
data. We call it information value and define it as follows: 

InformationValue = Fred1*W1 +…+ Fredn*Wn 

Intuitively, the information value is a weighted sum of the 
frequencies of different event classes. Users want to maximize 
this value. This value can be increased by increasing the 
frequencies Fred1…Fredn. However, the overhead constraint does 
not allow unlimited increase of the frequencies. This leads to the 
following problem: 

Problem 1. 

Maximize InformationValue =∑
=

n

i 1
ii red   WF so that 

OverheadMaxAllowedTOverhead report

n

i

≤+= ∑
=1

redi  * )F(1  

To maximize the information value, frequencies should be 
increased as much as possible, so Overhead increases until it is 
equal to MaxAllowedOverhead. By moving all constants of the 
constraint to the right hand side, we get the following equation: 

niFand

T

i

report

n

i
..1,F

,1 OverheadMaxAllowed F

i red

1
i red

=∀≤

−=∑
=

 

To simplify the equation, let us define MaxF as the right 
hand side constant (MaxAllowedOverhead - 1)/Treport.  MaxF is 
known before making the sampling/tracing decision. Intuitively 
it represents the maximum frequency of information retrieval 
that does not exceed the maximum allowed overhead. 

Problem 1 is a linear programming problem that can be 
solved using any available linear programming solver [3][8]. 
The solver produces a set of concrete reduced frequencies 
Fred1…Fredn that maximize the information value of collected data 
while observing the overhead constraints. This is exactly what 
was needed. 

A more efficient way to solve this problem is by viewing the 
problem as a version of the continuous Knapsack problem. To 
see this we replace in Problem 1 Fredi by Fi xi, where 0 ≤ xi ≤ 1 for 
1≤ i ≤ n.  The problem becomes 

Maximize InformationValue =∑
=

n

i 1
iii   xFW so that 

MaxFx
n

i
i ≤∑

=1
iF  and 0 ≤ xi ≤ 1.  

The continuous Knapsack problem is defined as “maximize 

∑
=

n

i 1
ii  xP  so that ∑

=

≤
n

i 1
ii B, xS  and 0 ≤ xi ≤ 1, where all the 

profits Pi are positive, the size of the objects Si are positive and 
the capacity of the knapsack is at most B”. As pointed in [11] an 
optimal solution can be obtained by the greedy strategy that 
“considers objects in nonincreasing order of profit density  Pi / 
Si; if there is enough remaining capacity to accommodate the 
object, put it in; if not, put a fraction to fill the knapsack.'' 

In our problem the objects are considered in nonincreasing 

order of .i
i

ii

i

i W
F
WF

S
P

==  The above greedy strategy can be 

implemented to run in O(n log n) time.  By using the O(n) time 
median finding algorithm (selection algorithm in [11]) one may 
reduce the overall time complexity of the procedure to O(n) 
time. 

As we mentioned before, the base case is applicable only if 
specific assumptions are satisfied. In the next subsection, we 
describe its applicability domain and build a different solution 
for another common domain. 
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4.2. Hybrid data collection using probing 
Section 4.1 proposed a solution to the question which event 

classes to trace and which to sample. However, this solution is 
based on two assumptions that determine its applicability 
domain: 
- It assumes that it is possible to sample events at any 

reduced frequency 
- It assumes that sampling only samples a single data class 

time

sampled
event

unsampled
event

sampled
event

probe

unsampled
event1 sec 2 sec

probeprobe

 

Figure 2: Event sampling  
Consider Figure 2. It shows 1 second time interval with 

events marked as bold lines. There are four events on the figure 
and two of them are sampled. The event class frequency is Fi = 4 
Hz and reduced frequency is Fredi = 2 Hz. However, consider the 
following question about the implementation of this scheme: 
how did the system sample these two events? To select two out 
of four events, the system had two options. First option: to detect 
all four events and only report two of them. This option satisfies 
our two assumptions and falls into the applicability domain of 
the section 4.1 solution. The second option: the system just 
checked for events at some frequency. If it detected an event, it 
reported it. If it did not detect an event, it did not report anything 
(see labels “probe” on the figure). This option, however, does 
not satisfy either of the two assumptions: 
- If second option is used, the real sampling frequency on the 

figure is 3 Hz, not 2 Hz. There are 3 samples: two 
“positive” probes and one “negative” probe. All of them 
contribute to overhead. If we reduced the sampling 
frequency to 2 Hz, however, there is no guarantee that both 
probes would hit an event. If one of them does not hit an 
event, the information value cannot be calculated using 2 
Hz frequency value, since only one event is reported. 

- The probes that check the system for events of one class 
can check it for events of other classes too. In other words, 
the same probe can report events of multiple classes. 

Since this approach of periodic probing to collect samples of 
data is pretty common, we need to extend our approach to cover 
this domain. First, let us introduce the following notions. 
Assume there is a single probe that probes and samples all 
events. The frequency of this probe is Fprobing (3 Hz in our 
example). It can be changed to change the overhead. Since there 
is no reduced sampling for each event class, we can only make a 
binary decision: to trace the event class or to sample it via 
probing. If we trace the event class, it contributes to the 
overhead with a frequency Fi. If we sample the event class via 
probing, it does not contribute to the per-class part of the 
overhead, since this part only includes tracing overhead now. 
The overhead of probing is independent of event classes and is 
common to all of them. The new expression for overhead is: 
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The information value function changes as well: 
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Fhits i gives the frequency of probe hitting class i events. Only the 
events hit by the probe or traced provide the information, so 
only these events are included into the calculation of the 
information value. Unsampled events (Figure 2) are excluded. In 
the formula for Fhitsi calculation, EventTimei is the average length 
of time for the event of data class i measured in seconds. 
EventPeriodi is the period of events in data class i. Their ratio 
gives a probability that the probe will hit the event of class i. By 
definition EventPeriodi = 1 / Fi. 

With these definitions we specify the new optimization 
problem.  

Problem 2. 
Maximize the information value with the constraint 

Overhead ≤ MaxAllowedOverhead. 
Using MaxF defined earlier, we can rewrite the overhead 

constraint as: 
Constraint 1. 

       F
1

i istraced MaxFF
n

i
probing =+∑

=

(1) 

Problem 2 is solvable in O(2n) time by checking all possible 
decisions of whether each event class is traced or not. Each such 
decision determines corresponding Fistraced i. Fprobing can then be 
expressed and determined from constraint 1. Finally, Fhits i and 
information value can be calculated. Is it possible to solve this 
problem more efficiently? 

Theorem 1. Problem 2 is NP-hard. 
Proof. Consider the situation where EventTimei/EventPeriodi 

= 0 for all i. We remove this restriction later. Let us set all Wi’s 
to 1.  In this case an optimal solution is one that selects a subset 
of the objects whose Fi’s sum is as close to MaxF as possible.  
We reduce PARTITION [4] to this problem.  

Partition is given objects a1…an with sizes s(a1)… s(an). The 
goal is to partition a1…an into two subsets A1 and A2 such that the 
sum of the sizes of all the objects in A1 equals exactly the sum of 
the sizes of all the objects in A2.  

The reduction sets Fi to s(ai) and MaxF is set to 

∑
=

n

i 1
i  ))/2s(a( .  If there is a partition, then an optimal solution 
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has value ∑
=

n

i 1
i  ))/2s(a( . Otherwise the optimal solution has a 

smaller value.  
Since in our case EventTimei/EventPeriodi cannot be exactly 

zero, we have to handle the case where all these ratios are 
positive. In this case we make the ratios very small.  We can set 
all of them to EventTimei/EventPeriodi < 1/MaxF.  By doing this 
we guarantee that the contribution from all the values of i such 
that Fistraced i’s = 0 will be less than one. One can show then that 
the above reduction applies to this case too. QED.  

This theorem shows that the new problem is hard to solve 
when the number of event classes is large. However, we present 
a simple O(n log n) approximation algorithm that can find a 
solution with the objective function value within 50% of the 
objective function value of an optimal solution. 

Assume without loss of generality that W1 ≥ W2 ≥ …≥ Wn. 
Our approximation algorithm is given below. 

 
Approximation Algorithm 
for i = 0 to n do 
  Let Si,0 be the solution where Cj is not traced for all j, 

     and if i ≠ 0, then Ci is traced. 
  Let si,0 be the objective function value of Si,0. 
end for  
for j = 1 to n do 

   let S0,j ← S0,j-1  
   let s0,j be the objective function value of S0,j  
   if one can trace Cj in solution S0,j without making 
         Fprobing negative then 
         let Cj be traced in solution S0,j  
         let s0,j be the objective function value of S0,j 
end for 

Output the best of the solutions  Si,0 for 1≤ i ≤ n  

 and S0,j for 1≤ j ≤ n 
end of algorithm 

 
Theorem 2: The approximation algorithm generates a 

solution with objective function ,
2
1 *ff >

)
where *f is the 

objective function value of an optimal solution. 
Proof. The proof is presented in Appendix A. 
By saving only the best solution so far generated and 

avoiding the copy of the previous solution to the new one, one 
can implement the approximation algorithm to take O(n log n) 
time. 

4.3. Additional considerations 
There are a number of details and considerations important 

to the application of the hybrid profiling. While sections 4.1 and 
4.2 presented the main ideas of our approach, this section 
discusses details and special cases important in applying the 
approach. 

4.3.1 Data non-deductability assumption 
The approach proposed assumes that all the data to be 

gathered cannot be deduced from other data. For example, if 
function A always calls function B, we do not need to gather 
function B call data, since we know that it occurs whenever 
function A is executed. (There is some complexity here: we still 
need to gather function B call data if function B is called by 
other functions. Also we may need to gather function B call 
time, since this cannot be precisely determined from the function 
A call data). So we assume that the data we collect is causally 
independent, i.e. it cannot be determined from other collected 
data.  

4.3.2 Simplification in event frequency model 
Our event frequency model is simplified, because the events 

could be interrupted by other events. For example, processes in 
software system can interrupt other processes. If process activity 
is an event in process data class, the interruptions of other 
processes increase the number of distinct process data events. 
Interruptions by other events should be accounted for when 
specifying EventTimei and EventPeriodi values. Also such 
interruptions increase the cost of tracing, because the number of 
events increases, but they do not increase the cost of sampling. 
One way to deal with such interruptions is instead of actual 
period and execution times, take the “interrupted” periods and 
execution times. These may not have very regular periodicity, 
but may better represent event numbers.  

4.3.3 Different cost sampling and tracing 
There are situations when the cost of taking a single sample 

is different from the cost of taking a single trace event. In this 
case, instead of a single value Treport we have to consider 
sampling time Tsampling and tracing time Ttracing. The information 
value function does not change, while the constraint for problem 
2 becomes: 

(2)                               1

 **
1

−

=+∑
=

nMaxSlowdow

TFTF
n

i
tracingistraced isamplingprobing  

The complexity of problem 2 with constraint (2) remains the 
same as earlier. Problem is still solvable in O(2n) time. Setting 
Tsampling and Ttracing to the same value allows for the same 
reduction to PARTITION in proof, showing that the problem 
remains NP-hard. 

4.3.4 Negligible cost for detecting all events 
assumption 

We mentioned that in the base case the sampling process 
somehow samples events at any reduced frequency. One way to 
do it is detecting all events of a class and only reporting some 
percentage of them. However, this assumes that detecting all 
events is negligibly cheap. Otherwise the overhead would not be 
proportional to the reduced frequency. It still would be 
dependent on original event frequency. For example, if we 
detected all four events in Figure 2 and reported only two, the 
cost should be proportional to the 2 Hz frequency of the reported 
events for the base case to apply. We can make this assumption 
in some cases. In a lot of modern implementations, event 
detecting may be accomplished by simply inserting one or two 
lines of code. There are situations where reporting is much more 
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costly than detecting, because data has to be immediately written 
into a file or to an outside system through a network. For 
example, when monitoring events on a mobile device, the 
memory space can be limited, and the data has to be written into 
a flash drive or to an external system through USB, Ethernet, 
BlueTooth, WLAN or cellular data connection. For example, in 
a mobile device authors considered, the reporting was over 30 
times more costly than just detecting the event. 

In some other situations, reporting could be accomplished by 
writing into an allocated memory area. With such in-memory 
reporting, the detecting cost may be comparable to reporting 
cost. If detecting cost is close to reporting cost, it becomes 
impossible to lower the overhead by detecting all events and 
reporting only some of them. Approaches from section 4.2 need 
to be used then. 

If detecting cost is not negligible, but still significantly 
cheaper than reporting cost, the base case algorithm can be 
applied with a minor modification of overhead calculation: 

report
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i
ect

n

i

TTOverhead ∑∑
==

++=
1

redidet
1

i  * )F( * )F(1   

ect

n

i

Tdet
1

i  * )F(∑
=

 cannot be changed – it is constant cost of 

detecting all events. So linear programming and continuous 
Knapsack solutions to the problem are still applicable.  

4.3.5 Minimal sampling frequency 
requirement 

In certain situations users want to capture at least some of 
events of an event class. For example, when building a 
visualization, users may want to see at least 1 event of the class 
in a 100 millisecond period, if this is the quantum of the 
visualization time scale. To achieve this the sampling frequency 
cannot not be lower than a certain limit. This is easy to achieve. 
In the probing solution we introduce an additional constraint that 
Fprobing ≥ Fminimal. This constraint does not change complexity of 
the problem.  

In the base case solution we introduce a set of constraints 
Fredi ≥ Fminimal i. Even with these constraints, the base case remains 
a linear programming problem.  

4.3.6 Selecting information weights 
Our solutions require users to choose the weights for each 

event class. This could be done in exploratory fashion in the 
base case, since the cost of solving the problem should be 
negligible when the expected number of data classes, n, is less 
than a hundred or so. In case of sampling via probing, this may 
not be viable for smaller number of n if O(2n) time algorithm is 
used. 

If a user needs to collect all events of certain classes, tracing 
has to be used. This can be achieved by setting the information 
weight of this class to a very high value ensuring a solution that 
traces these events. Alternatively, class Ci can be removed from 
equations by assigning Fred i = Fi, Fistraced i = Fi, Fhits i = Fi, which are 
constants, and revising the remaining equations accordingly. 

4.3.7 Optimal approach for events occurring 
almost all the time 

In certain cases we can use heuristics instead of approximate 
algorithm to obtain good solutions. Increasing Fprobing may be a 
good strategy when EventTimei/EventPeriodi ratios are close to 1. 
If all EventTimei/EventPeriodi ratios are equal to 1, it means that 
all events occur all the time. For example, this may occur if we 
measure power consumption of independent hardware devices, 
which are active all the time, but with varying activity. This 
simplifies problem 2 to the following problem 3: 

Problem 3. 

Maximize the information value with the constraint 
Overhead <= MaxAllowedOverhead, where  

niF
F

WnValueInformatio

probing

i

i

n

i

..1 ,not traced isC if,F
, tracedisC if,F

, * F

ii hits

ii hits

1
hitsi

=∀=
=

=∑
=

(3) 

It is easy to prove that the maximum in problem 3 is 
achieved by setting Fprobing = MaxF and all Fistraced i = 0. 

Proof. Assume we have an optimal solution in which not all 
Fistraced i = 0. Consider any i such that class i is traced and Fistraced i 
= Fi > 0. We can increase the value of the objective function (3) 
by making this class not traced. We set increased Fprobingnew = 
Fprobing + Fi and set Fistraced i = 0. The constraint 1 remains valid, 
since the first term increases by the same amount that the second 
term decreases. The new value of Fhits i*Wi = (Fprobingnew*Wi) = 
((Fprobing + Fi )*Wi) is larger or equal to the old value (Fi*Wi). All 
other terms in the sum also increase or stay the same, so the 
value of the function (3) increases. This process can be repeated 
for every i such that Fistraced i > 0. At the end of the process we 
obtain a solution which is either better than the original – 
contradiction, or is equal to it, but all Fistraced i = 0. QED. 

This shows that in case where events are happening a 
significant percentage of time, sampling is preferred solution 
and tracing should be done only if we have headroom for the 
overhead. On the other hand if the EventTimei/EventPeriodi ratios 
are small – events are not happening most of the time - tracing 
becomes preferred solution. 

5. APPLYING HYBRID PROFILING TO 
AN EXAMPLE USE CASE 

To evaluate the applicability of the framework proposed 
above, we selected a mobile device profiling use case. The use 
case is realistic and occurs in real profiling of mobile devices, 
yet it is simple enough to describe here as an example. This use 
case has five event classes. These data classes represent tracing 
activity of file, window, kernel and font servers plus all other 
threads in the system (Table 1). Tracing all five data classes is 
impossible if the user wants to have 5% overhead, since the total 
frequency of traced events would be 1665 Hz (events/sec), while 
only 925 events per second can be traced with 5% overhead. I.e. 
our MaxF = 925. Tracing of all 5 classes produces about 10% 
overhead. 
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Entity Execution time / 

Period ratio 
Frequency (Hz) 

File server .30 359 
Window server .23 189 
Kernel server .09 153 
Font server .11 334 
Others .27 630 
Total  1665 

Table 1. Use case parameters 
What can we do to maximize the information value and 

maintain 5% tracing overhead? We need to choose which event 
classes to trace and which to sample. This decision depends on 
the weights we assign to the different event classes. We use the 
formulas from Problem 2 to calculate the constraints and the 
information value. The optimal solution is found using an 
exhaustive search, since this is not prohibitively expensive for 
five data classes. If we had a much larger number of data 
classes, heuristics or an approximate method would have to be 
used. 

If we assign every data class the same weight 1, the optimal 
solution is to sample everything and not trace any of the events. 
To test a variety of scenarios, we assume that file server events 
are more important than other events. If file server information 
weight is 2, while other weights remain 1, the optimal solution is 
to trace the file server, window server and font server events, 
while probing to get information about other events. In another 
scenario, users are not interested in the “other” events, so we 
raise the weights of four servers, while leaving the weight of 
“others” as 1. Now the system recommends tracing file server, 
window server and font server events, while sampling to get 
information about the rest. Finally, if the users want to see all 
information about kernel server, they could raise its weight and 
the system would propose to trace kernel server, file server and 
font server. All of these scenarios make sense and would be 
useful in real profiling situations. The example demonstrates that 
the system adapts the split between traced and sampled event 
classes according to user needs.   

The tracing or sampling overhead for a single event also 
influences the suggestions for hybridization. If we assume that 
the event reporting cost is higher, so that MaxF is reduced to 
641, the suggestions change. Now if we have file server 
information weight equal to 2 with other weights 1, the optimal 
solution is to trace the file server and window server. Font server 
events cannot be traced together with file and window server 
anymore.  

We plan to develop a more user-friendly tool that would 
take the information weights and suggest top five different 
tracing-sampling combinations with their information values. As 
already can be seen from this example, the formal approach to 
hybrid data collection allows a fast and simple exploration of 
various tracing and sampling alternatives, sometimes yielding 
results that are not intuitive from the first glance. For example, 
we did not expect that by just raising the weight of file server 
information, we would get a suggestion to trace two other 
servers. 

 
6. HYBRID APPROACH EVALUATION 

The proposed hybrid approach for performance data 
acquisition in embedded software systems has the potential to 
limit the data collection overhead while providing partial 
completeness and causality. 

It is important for user to select appropriate weights for 
different event classes. Such selection is domain and application 
specific.  

Preceding sections provided some approaches to select the 
split between tracing and sampling using formal algorithms. 
Performance engineers who prefer to use simple heuristics could 
trace infrequent events and non-deterministic events that provide 
causality information, while sampling the rest. Such heuristic 
may provide less information though. 

The hybrid approach also yields the following benefits: 
• It can provide useful profiling results in shorter execution 

runs than can be provided by pure statistical sampling. 
• It can be used to profile events that occur infrequently. 
• It limits the profiling data volume, which makes storing, 

transfer and post processing easier. Performance engineers 
are more likely to make use of profilers if they are easy to 
use. 

• It allows reconstructing the dynamic behavior of a 
software system. 

The proposed hybrid approach also has some limitations: 
• Trace and sampling instrumentation is required, which 

may alter the behavior of the original software system. 
• It yields two separate sets of profiling data. These two 

sources of information need to be combined and 
synchronized during post-mortem analysis. 

Certain information could be reconstructed from statistical 
samples gathered during an execution. Events that 
deterministically precede events captured in a sample could be 
added to the performance data. This direction needs to be 
explored in future research. 

Event frequencies, periods and execution times of different 
event classes may not be very consistent and stable. A lot of 
performance engineers do not monitor classical real-time 
systems where events occur exactly periodically. Therefore 
execution time and period data obtained from one execution may 
not be exactly the same as in another execution. However, this 
does not negate the algorithms proposed. We believe that the 
algorithms will give a better estimate than a guess without any 
data. However, further research into dependency of the 
algorithms on the frequency precision is required. Also it may be 
possible to adjust the sampling and tracing frequencies 
dynamically depending on actual frequency of events during the 
test case execution.  

7. RELATED WORK 
We first proposed hybrid profiling in a short speculative 

position paper [10]. This research paper represents a substantial 
extension of our position, including new algorithmic approach 
for splitting the event classes into sampling and tracing subsets 
and example use case.  

Jain [6] discusses performance data collection. He mentions 
“event-driven” (tracing) and sampling monitors. However, his 
only mention of hybrid monitoring concerns with a mix of 
software and hardware monitors. Hybrid profiling, as we 
propose it, is not discussed in Jain’s book.  
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Several tools exist for performance profiling of software 
systems. Many of these are sampling based profilers [1]. Some 
tools, such as Intel’s Vtune [15], provide event tracing 
capabilities in addition to statistical sampling. However, the user 
cannot simultaneously use event tracing and statistical sampling 
during a single test run.  

Hollingsworth et al. [5] developed a hybrid data collection 
approach that uses event tracing to record state transitions in 
counter and timer data structures. These structures are then 
sampled periodically to collect performance data. This is similar 
to our base case, however, Hollingsworth et al. do not address 
the question of what to trace and what to sample. 

8. CONCLUSIONS 
This paper describes a hybrid approach to the performance 

data collection. The hybrid approach involves striking a balance 
between event tracing and statistical sampling, combining the 
completeness of event tracing with low cost of statistical 
sampling. In addition, the proposed approach limits the profiling 
data volume. Useful profiling results can be obtained with 
relatively short execution runs.  

The hybrid approach is sensitive to the choice of which 
performance data to collect using event tracing and which by 
statistical sampling. We present a formal approach for splitting 
event classes into the traced and sampled subsets. 

We have presented the examples of a hybrid data collection 
approach for software execution time and resource consumption 
analyses. With a simple use case we demonstrated the power of 
the formal approach to maximize information amount in 
collected data without exceeding the expected overhead. 

We believe that hybrid profiling should be incorporated in 
future profilers. It is likely that other dynamic analysis domains 
would also benefit from incorporating both complete and 
sampling based data collection. 
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11. APPENDIX A: PROOF OF THEOREM 
2 

Theorem 2: The approximation algorithm generates a solution 

with objective function ,
2
1 *ff >

)
where *f is the objective 

function value of an optimal solution. 
Proof: Let OPT be an optimal solution, let i1 ≤ i2 ≤ … ≤ ik be 

such that the only traced events are 
kiii CCC ,...,,

21
in OPT, and 

let T = { i1, i2, … , ik }. 
Let NT = { i1, i2, … , in } – T be the set of indices of the events 

that are sampled (i.e., not traced) in OPT. Let 

MaxFFMaxFF
k

j i
k

j hitsi jj
/)(/)(

11 ∑∑ ==
==α , i.e., the 

fraction of MaxF taken up by the traced events in an optimal 

solution. Clearly, MaxFF
k

j i j∑ =
=

1
α                            (1) 

and MaxFFprobing )1( α−= .                    (2) 

If k = 0, then we know that OPT is S0,0 and from the 
algorithm we know that 0,0sf ≥

)
.  Therefore, *ff =

)
 and the 

theorem follows. On the other hand, when k = n, we know OPT 
is S0,n. From the algorithm we know that nsf ,0≥

)
. Therefore,   

*ff =
)

and the theorem follows. 

So assume without loss of generality that 1 ≤ k < n. By 
definition we know that 
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      When our approximation algorithm is generating the 
solution S0,0 , S0,1 , …, S0,n, if all the events in T are traced in 
S0,n, we know that .ˆ
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 So Equation 3 becomes 
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       On the other hand when not all the events in T are traced 
in S0,n, let 

liC  be the first event that is traced in OPT but not 

traced in solution 
liS ,0 . Let R be the indices of the events traced 

in 
liS ,0  that are different from the events jC  for .Tj ∈  

      Since 
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equations (1) and (4) we know that the per unit information value 
of the traced events in 

liS ,0 together with 
liC being also traced 

is larger than the one for the traced events in OPT.  Therefore, 
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Using equation (4) and simplifying the above inequality 
becomes 
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know that 

             
α

∑
∑ ∑ =

−

= ∈

>+

k

j
iil

j Rj
jjii

jj

jj

WF

WFWF 1
1

1

)(2 . 

Since ,ˆ
1

1
∑ ∑

−

= ∈

+≥
l

j Rj
jjii WFWFf

jj
it then follows that 

α2
ˆ 1
∑

=>

k

j
ii jj

WF

f . 

     Case 2: ∑ ∑
−

= ∈

≤+
1

1

l

j Rj
iijjii lljj

WFWFWF . 

Substituting the conditions of the case in equation (5) we 
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Now consider solution 0,liS .  Clearly, .ˆ
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Substituting in the above inequality we know that 
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Substituting this in equation (3) we know that 
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Therefore, ff ˆ)1(* α+< . Since ,1≤α  we know that 
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. This completes the proof of the 
theorem.  QED. 
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