

Performance Data Collection Using a Hybrid Approach

Edu Metz
Nokia Research Center

5 Wayside Road, Burlington,
MA 01803, USA

Edu.Metz@nokia.com

Raimondas Lencevicius

Nokia Research Center
5 Wayside Road,

Burlington, MA 01803, USA
Raimondas.Lencevicius@nokia.com

Teofilo F. Gonzalez

Department of Computer Science
University of California

Santa Barbara, CA 93106, USA
teo@cs.ucsb.edu

ABSTRACT

Performance profiling consists of monitoring a software
system during execution and then analyzing the obtained data.
There are two ways to collect profiling data: event tracing
through code instrumentation and statistical sampling. These
two approaches have different advantages and drawbacks. This
paper proposes a hybrid approach to data collection that
combines the completeness of event tracing with the low cost of
statistical sampling. We propose to maximize the weighted
amount of information obtained during data collection, show
that such maximization can be performed in linear time or is NP-
hard depending on the data collected and the collection
implementation. We propose an approximation algorithm for
NP-hard case. Our paper also presents an application of the
formal approach to an example use case.

Categories and Subject Descriptors
D.2.5 Testing and Debugging

General Terms
Algorithms, Measurement, Performance.

Keywords
Profiling, sampling, tracing.

1. INTRODUCTION

As the complexity of embedded software systems grows,
performance profiling is becoming increasingly more important.
Performance profiling of embedded software systems requires
data collection with low overhead and high information
completeness.

Performance profiling consists of monitoring a software
system during execution and then analyzing the obtained data.
There are two ways to collect profiling data: event tracing
through code instrumentation and statistical sampling. Event
tracing is generally more intrusive to software system execution,
but allows the profiler to record all events of interest. Statistical
sampling may be less intrusive, but cannot provide complete
execution information.

This paper proposes and explores a hybrid approach to data
collection that combines the completeness of event tracing with
the low cost of statistical sampling.

Section 2 describes and compares typical data collection
methods for profiling: event tracing and statistical sampling.
Section 3 presents the new hybrid approach and motivating
examples of its use. Section 4 proposes how to maximize the
information amount by selecting which events to trace and
which to sample. Section 5 discusses a real-world example of
hybrid profiling. The paper concludes with related work, future
work and conclusions.

2. PERFORMANCE DATA
COLLECTION

Performance profiling determines where a software system
spends its execution time [6]. Performance profiling requires
data to be collected during program execution. Such data
collection can be done either by event tracing or by statistical
sampling. The following subsections briefly describe and
compare two methods.

2.1. Event tracing
Event tracing records events that occur during system

execution. Event tracing can track various events, such as task
switches, component entries and exits, function calls, branches,
software execution states, message communication,
input/output, and resource usage.

Tracing using software techniques1 requires changes to the
software system usually called instrumentation. Instrumentation
can be inserted into various program representations: source
code, object code, byte code, and executable code. It can be
inserted before or during program execution. Trace
instrumentation can be added manually, semi-automatically or
automatically. Automatization of the instrumentation may be
complex.

2.2. Statistical sampling
Statistical sampling relies on intermittent access to the

software system to record its current state. Sampling can record
various information: program counter (execution location),
function call stack, scheduled or blocked tasks, active
peripherals and so on. Sampling can be done strictly periodically
or with certain randomness. In periodic real-time systems, the
sampling interval needs to be randomized to avoid sampling the
same periodic software entity at every sampling point.

1 Although tracing and sampling using hardware monitors

are possible, they are not discussed in this paper, since hardware
monitors usually have no overhead to the profiled system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009...$5.00.

126

The simplest forms of sampling do not require any software
modifications. A sampler simply copies the content of certain
processor registers to memory. In more complex sampling, the
software system may need to be interrupted to record the needed
information.

2.3. Comparison of tracing and sampling
In event tracing every occurrence of an event creates a

record. So event tracing is characterized by the completeness of
knowledge: if an event was recorded, it did occur; if it was not
recorded, it did not occur. Performance engineers can also learn
exactly when each event occurred since every record is time
stamped. This allows a complete analysis of event relationships
in time, for example, the measurement of precise time distance
between any two events. A performance engineer with a
sufficiently detailed event trace – ideally, processor instruction
trace, can reconstruct the dynamic behavior of a software
system.

Sampling yields only a statistical measure of the software’s
execution patterns. It does not provide completely precise
numbers: if an event does not occur in a sampling log, there is
no guarantee that it did not occur in execution. Therefore
sampling may not be useful for situations that need to track
exact numbers of events, for example, a singleton message to a
task or an exact relationship between requests and
acknowledgements.

Sampling is not a good approach when event causality is
analyzed. Although it may extract a function call stack at the
sample time, it cannot track all function calls or message
exchanges. A performance engineer who needs a complete
message sequence chart or component interaction graph might
be better off choosing event tracing.

Software tracing requires users to spend time instrumenting
the software system. A performance engineer would usually
spend significantly less time to achieve sampling than to
instrument the software system for tracing.

Both event tracing and sampling may affect the performance
of the software system, thereby distorting its execution [14]. Not
only do they add overhead, they can also change the behavior of
the software system because of additional memory accesses and
input/output [12]. In real-time software systems, the overhead
can cause real-time constraint violations. Therefore, it is
important to limit the intrusion by minimizing the overhead
[2][9].

In tracing one way to achieve this is by reducing the number
of events traced. However, performance engineers have to
choose carefully, since omitting events from tracing also reduces
the amount of information available. For example, if only “on”
and “off” events are traced in a peripheral, it is no longer
possible to detect and map the peripheral’s different “on” modes
to differences in the system’s power consumption. In choosing
the instrumentation granularity it is important to address the
trade-off between the amount of event information required and
the performance impact of the trace instrumentation. This may
be hard even for an experienced performance engineer.

On the other hand, the overhead of sampling may be orders
of magnitude below the overhead of tracing. For example,
branch tracing may require overhead of 10 times the original
execution, function tracing may require overheads up to 2 times,
while sampling at up to one thousand samples a second may
have an overhead of less than 1% [1]. (This estimation assumes
a 100Mhz processor and 1000 cycles of work per sample, which

is enough to read the address of the currently executed
instruction and save this information. Using symbol information
generated at compile time, the profiler can later correlate the
recorded sample with the source code.) Sampling the execution
of software in a mobile device executing real-time tasks may be
the only way to obtain information about long-running functions
without causing the software to miss real-time deadlines due to
tracing overhead.

The data volume associated with event tracing can be very
large [14]: up to a gigabyte per second traced if we consider
executed instruction traces and tens of megabytes per second
even in less frequent traces. This can cause a problem in devices
that do not have large and fast storage or external network
interfaces. Sampling may be done at a lower frequency and
produce much less data than event tracing—a positive in
storage-limited devices.

However, the sampling frequency determines the granularity
of the gathered information. In addition, the duration for which
the software system executes directly relates to the number of
samples collected. A sampling profiler requires software
systems to execute over a reasonable period of time to ensure
accuracy [13]. The goals of a performance engineer may require
high sampling frequency that negates the low overhead and
small data production of sampling.

For small routines, event tracing may not yield an accurate
time comparison with larger routines. A small routine may
suffer much higher relative overhead from tracing than a larger
routine. If this is ignored, a great deal of effort may be wasted
optimizing routines that are not real performance bottlenecks.

Sampling may not be able to detect frequently executed
routines whose execution times are smaller than the sampling
frequency. In addition, manual trace instrumentation usually
tracks application-specific events that could be difficult to
capture by sampling. For example, detecting a transition from a
single-person voice call to a conference call may require event
tracing.

3. HYBRID DATA COLLECTION

Let us summarize the previous section. Event tracing yields
the most detailed and complete system execution data. However,
it takes time to instrument software, tracing has a high overhead
and may change the behavior of the software system [12].
Statistical sampling is simple to use and less intrusive to
software system execution, but does not provide causality
relationships and exact data.

Embedded software systems, such as mobile devices, have
real-time constraints and therefore require performance profiling
methods with low overheads. On the other hand, performance
analysis of such devices often involves causality relationships
and precision requirements. For example, a performance
engineer needs to know exactly when a multiplayer-game task
starts processing a message that changes the game environment,
since this may point to the cause of performance bottleneck
evidenced by numerous file accesses.

Often neither event tracing nor statistical sampling can
satisfy such conflicting requirements. The problem is further
compounded by the fact that test runs are not entirely
deterministic in mobile devices due to interactions with other
systems such as mobile network elements. Therefore,
performance data cannot be collected during multiple test runs,
but instead needs to be collected during a single test run.

127

To collect performance data of embedded software systems
with low overhead and adequate completeness, we propose to
use a middleweight approach which is a hybrid of heavyweight
event tracing and lightweight statistical sampling. Only a subset
of all events is traced, providing limited completeness and
causality information. Additional information is obtained
through sampling.

To apply our method, a performance engineer has to
determine which part of the performance data should be
collected using event tracing and which using statistical
sampling. The following subsections provide couple examples
of hybrid profiling and decisions of what to trace and what to
sample. Section 4 introduces a formal approach to making
tracing and sampling split decisions, so that the information
amount in collected data is maximized.

3.1. Processor time profiling
When the goal of a performance engineer is to determine

which software components and subsystems spend the most time
running on a processor, statistical sampling can provide most of
the needed information. It can reveal the approximate amount of
time spent in a component, such as a task, module or function.
Event tracing can then be used to supplement this information in
a couple of areas. First, it can precisely identify switches of very
high level components, such as tasks. Second, it can demonstrate
the component execution causality by tracking message
exchanges. For example, consider the synchronization between
tasks A and B in Figure 1.

Task A Task A

Task B

t (s)

m1 m2

t4t3t2t1

Figure 1: Task state synchronization

After sending message m1, task A enters a wait state where
it waits for a state synchronization callback m2 from task B
before continuing its execution. Here, event tracing can record
and timestamp the sending of messages m1 and m2, while
sampling can provide more in depth performance data during
time intervals [t1, t2], [t2, t3], [t3, t4]. In this case, sampling on
its own would not be enough to provide the crucial
synchronization information.

3.2. Resource usage and energy profiling
In mobile devices power consumption varies depending on

the peripherals used [7]. During the system execution, software
accesses peripherals. These accesses need to be recorded to
determine when a peripheral is used. In resource usage and
energy profiling, complete information about active and inactive
peripherals is required. Event tracing needs to be used to track
state transitions of Bluetooth, GPS or infrared subsystems. The
intrusion cost of recording “on” and “off” events of peripherals
is low since they occur infrequently.

Statistical sampling can complement event tracing by
providing information that is too expensive to obtain using event
tracing alone. For example, the processor power management
puts the processor in a low power sleep mode when no software
is scheduled to run. Unlike Bluetooth mode changes, the
processor’s transition to the sleep state may be too frequent and
too expensive to track via instrumentation. Statistical sampling
can reveal the processor’s idle state with enough accuracy as
long as the context switch time is an order of magnitude larger
than the sampling frequency.

Another opportunity for sampling is presented by devices
with multiple active modes. The overhead of tracing every state
transition of a peripheral may be too high. While tracing could
provide information about major “on” and “off” states, sampling
could complement this information with infrequent samples of
secondary states allowing more precise system mapping than
achieved with tracing alone.

4. MAXIMIZING INFORMATION IN

DATA COLLECTION
As shown in the examples above, to use the hybrid

approach, performance engineer needs to decide which events to
trace and which to sample. In other words, hybrid data collection
is based on splitting all the data into two parts: the part collected
using tracing and the part collected using sampling. We propose
to perform the split in such a way that the profiling overhead is
limited and the amount of information collected is maximized.
The remainder of this section formalizes this approach.

4.1. Base case
This subsection describes the base case of the problem and

its solution.

Let us define Overhead as the slowdown of the program due
to the data collection. It is defined as a ratio:

timeexecution original
 timesamplingor ation instrument 1

timeexecution original
collection data with timeexecution Overhead

+

==

 Assume a model where a program can tolerate a uniform
overhead that is not larger than MaxAllowedOverhead.

If the overhead of collecting all data using tracing is less or
equal to MaxAllowedOverhead then tracing alone can be used.
No sampling is needed and our problem of splitting data
collection into sampling and tracing is solved.

However, if the overhead of collecting all data using tracing
is greater than MaxAllowedOverhead, some data needs to be
sampled at a lower frequency than tracing to lower the overhead
to MaxAllowedOverhead.

Assume that we have n data classes of events C1…Cn. Events
in each of these classes occur at a frequency of F1…Fn
(frequencies are measured in Hz = 1/sec). Assume that reporting
any event, whether it is traced event or sampled event takes the
same amount of time Treport (measured in seconds).

Using the notation introduced, we can rewrite Overhead
definition as follows:

128

report

n

i

report

n

i

T

T

Overhead

∑

∑

=

=

+

=+

= =+

1
i

1
i

 *)F(1

)(* *)F(

1
timeexecution original

timeexecution original

timeexecution original
 timesamplingor ation instrument 1

As mentioned above, our goal is to reduce the overhead to
MaxAllowedOverhead. The only control we have is over the
frequencies F1…Fn. These frequencies can be reduced by
sampling at lower frequencies, thereby reducing the overhead.
Let us call the reduced frequencies Fred1…Fredn. Using reduced

frequencies, the overhead is report

n

i

T∑
=

+
1

redi *)F(1

We can reduce the overhead by sampling; however,
sampling at a lower rate than tracing loses some information.
How do we decide which event classes to sample and which to
trace? How do we decide how much the sampling frequency
should be reduced for each event class? For this we introduce a
metric that measures the amount of information available in the
collected data.

Assume that each event class C1…Cn has information weight
W1…Wn. Information weight expresses the importance of
gathering larger percentage of events of a class. Larger relative
weight means that the event class carries more information and
consequently is more important to the user. Users assign
information weights for different event classes. For example, if
file-read events were very important, the users would select a
high information weight to the file-read event class.

Information weights allow us to introduce a metric to
measure the amount of information available in the collected
data. We call it information value and define it as follows:

InformationValue = Fred1*W1 +…+ Fredn*Wn

Intuitively, the information value is a weighted sum of the
frequencies of different event classes. Users want to maximize
this value. This value can be increased by increasing the
frequencies Fred1…Fredn. However, the overhead constraint does
not allow unlimited increase of the frequencies. This leads to the
following problem:

Problem 1.

Maximize InformationValue =∑
=

n

i 1
ii red WF so that

OverheadMaxAllowedTOverhead report

n

i

≤+= ∑
=1

redi *)F(1

To maximize the information value, frequencies should be
increased as much as possible, so Overhead increases until it is
equal to MaxAllowedOverhead. By moving all constants of the
constraint to the right hand side, we get the following equation:

niFand

T

i

report

n

i
..1,F

,1 OverheadMaxAllowed F

i red

1
i red

=∀≤

−=∑
=

To simplify the equation, let us define MaxF as the right
hand side constant (MaxAllowedOverhead - 1)/Treport. MaxF is
known before making the sampling/tracing decision. Intuitively
it represents the maximum frequency of information retrieval
that does not exceed the maximum allowed overhead.

Problem 1 is a linear programming problem that can be
solved using any available linear programming solver [3][8].
The solver produces a set of concrete reduced frequencies
Fred1…Fredn that maximize the information value of collected data
while observing the overhead constraints. This is exactly what
was needed.

A more efficient way to solve this problem is by viewing the
problem as a version of the continuous Knapsack problem. To
see this we replace in Problem 1 Fredi by Fi xi, where 0 ≤ xi ≤ 1 for
1≤ i ≤ n. The problem becomes

Maximize InformationValue =∑
=

n

i 1
iii xFW so that

MaxFx
n

i
i ≤∑

=1
iF and 0 ≤ xi ≤ 1.

The continuous Knapsack problem is defined as “maximize

∑
=

n

i 1
ii xP so that ∑

=

≤
n

i 1
ii B, xS and 0 ≤ xi ≤ 1, where all the

profits Pi are positive, the size of the objects Si are positive and
the capacity of the knapsack is at most B”. As pointed in [11] an
optimal solution can be obtained by the greedy strategy that
“considers objects in nonincreasing order of profit density Pi /
Si; if there is enough remaining capacity to accommodate the
object, put it in; if not, put a fraction to fill the knapsack.''

In our problem the objects are considered in nonincreasing

order of .i
i

ii

i

i W
F
WF

S
P

== The above greedy strategy can be

implemented to run in O(n log n) time. By using the O(n) time
median finding algorithm (selection algorithm in [11]) one may
reduce the overall time complexity of the procedure to O(n)
time.

As we mentioned before, the base case is applicable only if
specific assumptions are satisfied. In the next subsection, we
describe its applicability domain and build a different solution
for another common domain.

129

4.2. Hybrid data collection using probing
Section 4.1 proposed a solution to the question which event

classes to trace and which to sample. However, this solution is
based on two assumptions that determine its applicability
domain:
- It assumes that it is possible to sample events at any

reduced frequency
- It assumes that sampling only samples a single data class

time

sampled
event

unsampled
event

sampled
event

probe

unsampled
event1 sec 2 sec

probeprobe

Figure 2: Event sampling
Consider Figure 2. It shows 1 second time interval with

events marked as bold lines. There are four events on the figure
and two of them are sampled. The event class frequency is Fi = 4
Hz and reduced frequency is Fredi = 2 Hz. However, consider the
following question about the implementation of this scheme:
how did the system sample these two events? To select two out
of four events, the system had two options. First option: to detect
all four events and only report two of them. This option satisfies
our two assumptions and falls into the applicability domain of
the section 4.1 solution. The second option: the system just
checked for events at some frequency. If it detected an event, it
reported it. If it did not detect an event, it did not report anything
(see labels “probe” on the figure). This option, however, does
not satisfy either of the two assumptions:
- If second option is used, the real sampling frequency on the

figure is 3 Hz, not 2 Hz. There are 3 samples: two
“positive” probes and one “negative” probe. All of them
contribute to overhead. If we reduced the sampling
frequency to 2 Hz, however, there is no guarantee that both
probes would hit an event. If one of them does not hit an
event, the information value cannot be calculated using 2
Hz frequency value, since only one event is reported.

- The probes that check the system for events of one class
can check it for events of other classes too. In other words,
the same probe can report events of multiple classes.

Since this approach of periodic probing to collect samples of
data is pretty common, we need to extend our approach to cover
this domain. First, let us introduce the following notions.
Assume there is a single probe that probes and samples all
events. The frequency of this probe is Fprobing (3 Hz in our
example). It can be changed to change the overhead. Since there
is no reduced sampling for each event class, we can only make a
binary decision: to trace the event class or to sample it via
probing. If we trace the event class, it contributes to the
overhead with a frequency Fi. If we sample the event class via
probing, it does not contribute to the per-class part of the
overhead, since this part only includes tracing overhead now.
The overhead of probing is independent of event classes and is
common to all of them. The new expression for overhead is:

ni

F

TOverhead

i

report

n

i

..1 ,not traced isC if,0F
, tracedisC if,F

, *)FF(1

ii istraced

ii istraced

1
i istracedprobing

=∀=
=

++= ∑
=

The information value function changes as well:

ni
dEventPerio

EventTimeF

F

WnValueInformatio

i

i
probing

i

i

n

i

..1

,not traced isC if,F

, tracedisC if,F

, * F

ii hits

ii hits

1
i hits

=∀

×=

=

=∑
=

Fhits i gives the frequency of probe hitting class i events. Only the
events hit by the probe or traced provide the information, so
only these events are included into the calculation of the
information value. Unsampled events (Figure 2) are excluded. In
the formula for Fhitsi calculation, EventTimei is the average length
of time for the event of data class i measured in seconds.
EventPeriodi is the period of events in data class i. Their ratio
gives a probability that the probe will hit the event of class i. By
definition EventPeriodi = 1 / Fi.

With these definitions we specify the new optimization
problem.

Problem 2.
Maximize the information value with the constraint

Overhead ≤ MaxAllowedOverhead.
Using MaxF defined earlier, we can rewrite the overhead

constraint as:
Constraint 1.

 F
1

i istraced MaxFF
n

i
probing =+∑

=

(1)

Problem 2 is solvable in O(2n) time by checking all possible
decisions of whether each event class is traced or not. Each such
decision determines corresponding Fistraced i. Fprobing can then be
expressed and determined from constraint 1. Finally, Fhits i and
information value can be calculated. Is it possible to solve this
problem more efficiently?

Theorem 1. Problem 2 is NP-hard.
Proof. Consider the situation where EventTimei/EventPeriodi

= 0 for all i. We remove this restriction later. Let us set all Wi’s
to 1. In this case an optimal solution is one that selects a subset
of the objects whose Fi’s sum is as close to MaxF as possible.
We reduce PARTITION [4] to this problem.

Partition is given objects a1…an with sizes s(a1)… s(an). The
goal is to partition a1…an into two subsets A1 and A2 such that the
sum of the sizes of all the objects in A1 equals exactly the sum of
the sizes of all the objects in A2.

The reduction sets Fi to s(ai) and MaxF is set to

∑
=

n

i 1
i))/2s(a(. If there is a partition, then an optimal solution

130

has value ∑
=

n

i 1
i))/2s(a(. Otherwise the optimal solution has a

smaller value.
Since in our case EventTimei/EventPeriodi cannot be exactly

zero, we have to handle the case where all these ratios are
positive. In this case we make the ratios very small. We can set
all of them to EventTimei/EventPeriodi < 1/MaxF. By doing this
we guarantee that the contribution from all the values of i such
that Fistraced i’s = 0 will be less than one. One can show then that
the above reduction applies to this case too. QED.

This theorem shows that the new problem is hard to solve
when the number of event classes is large. However, we present
a simple O(n log n) approximation algorithm that can find a
solution with the objective function value within 50% of the
objective function value of an optimal solution.

Assume without loss of generality that W1 ≥ W2 ≥ …≥ Wn.
Our approximation algorithm is given below.

Approximation Algorithm
for i = 0 to n do
 Let Si,0 be the solution where Cj is not traced for all j,

 and if i ≠ 0, then Ci is traced.
 Let si,0 be the objective function value of Si,0.
end for
for j = 1 to n do

 let S0,j ← S0,j-1
 let s0,j be the objective function value of S0,j
 if one can trace Cj in solution S0,j without making
 Fprobing negative then
 let Cj be traced in solution S0,j
 let s0,j be the objective function value of S0,j
end for

Output the best of the solutions Si,0 for 1≤ i ≤ n

 and S0,j for 1≤ j ≤ n
end of algorithm

Theorem 2: The approximation algorithm generates a

solution with objective function ,
2
1 *ff >

)
where *f is the

objective function value of an optimal solution.
Proof. The proof is presented in Appendix A.
By saving only the best solution so far generated and

avoiding the copy of the previous solution to the new one, one
can implement the approximation algorithm to take O(n log n)
time.

4.3. Additional considerations
There are a number of details and considerations important

to the application of the hybrid profiling. While sections 4.1 and
4.2 presented the main ideas of our approach, this section
discusses details and special cases important in applying the
approach.

4.3.1 Data non-deductability assumption
The approach proposed assumes that all the data to be

gathered cannot be deduced from other data. For example, if
function A always calls function B, we do not need to gather
function B call data, since we know that it occurs whenever
function A is executed. (There is some complexity here: we still
need to gather function B call data if function B is called by
other functions. Also we may need to gather function B call
time, since this cannot be precisely determined from the function
A call data). So we assume that the data we collect is causally
independent, i.e. it cannot be determined from other collected
data.

4.3.2 Simplification in event frequency model
Our event frequency model is simplified, because the events

could be interrupted by other events. For example, processes in
software system can interrupt other processes. If process activity
is an event in process data class, the interruptions of other
processes increase the number of distinct process data events.
Interruptions by other events should be accounted for when
specifying EventTimei and EventPeriodi values. Also such
interruptions increase the cost of tracing, because the number of
events increases, but they do not increase the cost of sampling.
One way to deal with such interruptions is instead of actual
period and execution times, take the “interrupted” periods and
execution times. These may not have very regular periodicity,
but may better represent event numbers.

4.3.3 Different cost sampling and tracing
There are situations when the cost of taking a single sample

is different from the cost of taking a single trace event. In this
case, instead of a single value Treport we have to consider
sampling time Tsampling and tracing time Ttracing. The information
value function does not change, while the constraint for problem
2 becomes:

(2) 1

 **
1

−

=+∑
=

nMaxSlowdow

TFTF
n

i
tracingistraced isamplingprobing

The complexity of problem 2 with constraint (2) remains the
same as earlier. Problem is still solvable in O(2n) time. Setting
Tsampling and Ttracing to the same value allows for the same
reduction to PARTITION in proof, showing that the problem
remains NP-hard.

4.3.4 Negligible cost for detecting all events
assumption

We mentioned that in the base case the sampling process
somehow samples events at any reduced frequency. One way to
do it is detecting all events of a class and only reporting some
percentage of them. However, this assumes that detecting all
events is negligibly cheap. Otherwise the overhead would not be
proportional to the reduced frequency. It still would be
dependent on original event frequency. For example, if we
detected all four events in Figure 2 and reported only two, the
cost should be proportional to the 2 Hz frequency of the reported
events for the base case to apply. We can make this assumption
in some cases. In a lot of modern implementations, event
detecting may be accomplished by simply inserting one or two
lines of code. There are situations where reporting is much more

131

costly than detecting, because data has to be immediately written
into a file or to an outside system through a network. For
example, when monitoring events on a mobile device, the
memory space can be limited, and the data has to be written into
a flash drive or to an external system through USB, Ethernet,
BlueTooth, WLAN or cellular data connection. For example, in
a mobile device authors considered, the reporting was over 30
times more costly than just detecting the event.

In some other situations, reporting could be accomplished by
writing into an allocated memory area. With such in-memory
reporting, the detecting cost may be comparable to reporting
cost. If detecting cost is close to reporting cost, it becomes
impossible to lower the overhead by detecting all events and
reporting only some of them. Approaches from section 4.2 need
to be used then.

If detecting cost is not negligible, but still significantly
cheaper than reporting cost, the base case algorithm can be
applied with a minor modification of overhead calculation:

report

n

i
ect

n

i

TTOverhead ∑∑
==

++=
1

redidet
1

i *)F(*)F(1

ect

n

i

Tdet
1

i *)F(∑
=

 cannot be changed – it is constant cost of

detecting all events. So linear programming and continuous
Knapsack solutions to the problem are still applicable.

4.3.5 Minimal sampling frequency
requirement

In certain situations users want to capture at least some of
events of an event class. For example, when building a
visualization, users may want to see at least 1 event of the class
in a 100 millisecond period, if this is the quantum of the
visualization time scale. To achieve this the sampling frequency
cannot not be lower than a certain limit. This is easy to achieve.
In the probing solution we introduce an additional constraint that
Fprobing ≥ Fminimal. This constraint does not change complexity of
the problem.

In the base case solution we introduce a set of constraints
Fredi ≥ Fminimal i. Even with these constraints, the base case remains
a linear programming problem.

4.3.6 Selecting information weights
Our solutions require users to choose the weights for each

event class. This could be done in exploratory fashion in the
base case, since the cost of solving the problem should be
negligible when the expected number of data classes, n, is less
than a hundred or so. In case of sampling via probing, this may
not be viable for smaller number of n if O(2n) time algorithm is
used.

If a user needs to collect all events of certain classes, tracing
has to be used. This can be achieved by setting the information
weight of this class to a very high value ensuring a solution that
traces these events. Alternatively, class Ci can be removed from
equations by assigning Fred i = Fi, Fistraced i = Fi, Fhits i = Fi, which are
constants, and revising the remaining equations accordingly.

4.3.7 Optimal approach for events occurring
almost all the time

In certain cases we can use heuristics instead of approximate
algorithm to obtain good solutions. Increasing Fprobing may be a
good strategy when EventTimei/EventPeriodi ratios are close to 1.
If all EventTimei/EventPeriodi ratios are equal to 1, it means that
all events occur all the time. For example, this may occur if we
measure power consumption of independent hardware devices,
which are active all the time, but with varying activity. This
simplifies problem 2 to the following problem 3:

Problem 3.

Maximize the information value with the constraint
Overhead <= MaxAllowedOverhead, where

niF
F

WnValueInformatio

probing

i

i

n

i

..1 ,not traced isC if,F
, tracedisC if,F

, * F

ii hits

ii hits

1
hitsi

=∀=
=

=∑
=

(3)

It is easy to prove that the maximum in problem 3 is
achieved by setting Fprobing = MaxF and all Fistraced i = 0.

Proof. Assume we have an optimal solution in which not all
Fistraced i = 0. Consider any i such that class i is traced and Fistraced i
= Fi > 0. We can increase the value of the objective function (3)
by making this class not traced. We set increased Fprobingnew =
Fprobing + Fi and set Fistraced i = 0. The constraint 1 remains valid,
since the first term increases by the same amount that the second
term decreases. The new value of Fhits i*Wi = (Fprobingnew*Wi) =
((Fprobing + Fi)*Wi) is larger or equal to the old value (Fi*Wi). All
other terms in the sum also increase or stay the same, so the
value of the function (3) increases. This process can be repeated
for every i such that Fistraced i > 0. At the end of the process we
obtain a solution which is either better than the original –
contradiction, or is equal to it, but all Fistraced i = 0. QED.

This shows that in case where events are happening a
significant percentage of time, sampling is preferred solution
and tracing should be done only if we have headroom for the
overhead. On the other hand if the EventTimei/EventPeriodi ratios
are small – events are not happening most of the time - tracing
becomes preferred solution.

5. APPLYING HYBRID PROFILING TO
AN EXAMPLE USE CASE

To evaluate the applicability of the framework proposed
above, we selected a mobile device profiling use case. The use
case is realistic and occurs in real profiling of mobile devices,
yet it is simple enough to describe here as an example. This use
case has five event classes. These data classes represent tracing
activity of file, window, kernel and font servers plus all other
threads in the system (Table 1). Tracing all five data classes is
impossible if the user wants to have 5% overhead, since the total
frequency of traced events would be 1665 Hz (events/sec), while
only 925 events per second can be traced with 5% overhead. I.e.
our MaxF = 925. Tracing of all 5 classes produces about 10%
overhead.

132

Entity Execution time /

Period ratio
Frequency (Hz)

File server .30 359
Window server .23 189
Kernel server .09 153
Font server .11 334
Others .27 630
Total 1665

Table 1. Use case parameters
What can we do to maximize the information value and

maintain 5% tracing overhead? We need to choose which event
classes to trace and which to sample. This decision depends on
the weights we assign to the different event classes. We use the
formulas from Problem 2 to calculate the constraints and the
information value. The optimal solution is found using an
exhaustive search, since this is not prohibitively expensive for
five data classes. If we had a much larger number of data
classes, heuristics or an approximate method would have to be
used.

If we assign every data class the same weight 1, the optimal
solution is to sample everything and not trace any of the events.
To test a variety of scenarios, we assume that file server events
are more important than other events. If file server information
weight is 2, while other weights remain 1, the optimal solution is
to trace the file server, window server and font server events,
while probing to get information about other events. In another
scenario, users are not interested in the “other” events, so we
raise the weights of four servers, while leaving the weight of
“others” as 1. Now the system recommends tracing file server,
window server and font server events, while sampling to get
information about the rest. Finally, if the users want to see all
information about kernel server, they could raise its weight and
the system would propose to trace kernel server, file server and
font server. All of these scenarios make sense and would be
useful in real profiling situations. The example demonstrates that
the system adapts the split between traced and sampled event
classes according to user needs.

The tracing or sampling overhead for a single event also
influences the suggestions for hybridization. If we assume that
the event reporting cost is higher, so that MaxF is reduced to
641, the suggestions change. Now if we have file server
information weight equal to 2 with other weights 1, the optimal
solution is to trace the file server and window server. Font server
events cannot be traced together with file and window server
anymore.

We plan to develop a more user-friendly tool that would
take the information weights and suggest top five different
tracing-sampling combinations with their information values. As
already can be seen from this example, the formal approach to
hybrid data collection allows a fast and simple exploration of
various tracing and sampling alternatives, sometimes yielding
results that are not intuitive from the first glance. For example,
we did not expect that by just raising the weight of file server
information, we would get a suggestion to trace two other
servers.

6. HYBRID APPROACH EVALUATION

The proposed hybrid approach for performance data
acquisition in embedded software systems has the potential to
limit the data collection overhead while providing partial
completeness and causality.

It is important for user to select appropriate weights for
different event classes. Such selection is domain and application
specific.

Preceding sections provided some approaches to select the
split between tracing and sampling using formal algorithms.
Performance engineers who prefer to use simple heuristics could
trace infrequent events and non-deterministic events that provide
causality information, while sampling the rest. Such heuristic
may provide less information though.

The hybrid approach also yields the following benefits:
• It can provide useful profiling results in shorter execution

runs than can be provided by pure statistical sampling.
• It can be used to profile events that occur infrequently.
• It limits the profiling data volume, which makes storing,

transfer and post processing easier. Performance engineers
are more likely to make use of profilers if they are easy to
use.

• It allows reconstructing the dynamic behavior of a
software system.

The proposed hybrid approach also has some limitations:
• Trace and sampling instrumentation is required, which

may alter the behavior of the original software system.
• It yields two separate sets of profiling data. These two

sources of information need to be combined and
synchronized during post-mortem analysis.

Certain information could be reconstructed from statistical
samples gathered during an execution. Events that
deterministically precede events captured in a sample could be
added to the performance data. This direction needs to be
explored in future research.

Event frequencies, periods and execution times of different
event classes may not be very consistent and stable. A lot of
performance engineers do not monitor classical real-time
systems where events occur exactly periodically. Therefore
execution time and period data obtained from one execution may
not be exactly the same as in another execution. However, this
does not negate the algorithms proposed. We believe that the
algorithms will give a better estimate than a guess without any
data. However, further research into dependency of the
algorithms on the frequency precision is required. Also it may be
possible to adjust the sampling and tracing frequencies
dynamically depending on actual frequency of events during the
test case execution.

7. RELATED WORK
We first proposed hybrid profiling in a short speculative

position paper [10]. This research paper represents a substantial
extension of our position, including new algorithmic approach
for splitting the event classes into sampling and tracing subsets
and example use case.

Jain [6] discusses performance data collection. He mentions
“event-driven” (tracing) and sampling monitors. However, his
only mention of hybrid monitoring concerns with a mix of
software and hardware monitors. Hybrid profiling, as we
propose it, is not discussed in Jain’s book.

133

Several tools exist for performance profiling of software
systems. Many of these are sampling based profilers [1]. Some
tools, such as Intel’s Vtune [15], provide event tracing
capabilities in addition to statistical sampling. However, the user
cannot simultaneously use event tracing and statistical sampling
during a single test run.

Hollingsworth et al. [5] developed a hybrid data collection
approach that uses event tracing to record state transitions in
counter and timer data structures. These structures are then
sampled periodically to collect performance data. This is similar
to our base case, however, Hollingsworth et al. do not address
the question of what to trace and what to sample.

8. CONCLUSIONS
This paper describes a hybrid approach to the performance

data collection. The hybrid approach involves striking a balance
between event tracing and statistical sampling, combining the
completeness of event tracing with low cost of statistical
sampling. In addition, the proposed approach limits the profiling
data volume. Useful profiling results can be obtained with
relatively short execution runs.

The hybrid approach is sensitive to the choice of which
performance data to collect using event tracing and which by
statistical sampling. We present a formal approach for splitting
event classes into the traced and sampled subsets.

We have presented the examples of a hybrid data collection
approach for software execution time and resource consumption
analyses. With a simple use case we demonstrated the power of
the formal approach to maximize information amount in
collected data without exceeding the expected overhead.

We believe that hybrid profiling should be incorporated in
future profilers. It is likely that other dynamic analysis domains
would also benefit from incorporating both complete and
sampling based data collection.

9. ACKNOWLEDGMENTS
The authors want to thank Karel Driesen, Bil Lewis, Diana

Lenceviciene, as well as anonymous reviewers for comments on
the earlier versions of this paper.

10. REFERENCES
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M.

Henzinger, S. Leung, R. Sites, M. Vandevoorde, C.
Waldspurger, W. Weihl, Continuous Profiling: Where Have
All the Cycles Gone?, Proceedings of the 16th ACM
Symposium on Operating Systems Principles, 1997

[2] M. Arnold, B. Ryder, A Framework for Reducing the Cost
of Instrumented Code, Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI), 2001, pp. 168-179.

[3] V. Chvatal, Linear Programming, Freeman, 1983.
[4] Garey, M.R., and Johnson D.S., Computers and

Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman and Company, New York, 1979.

[5] J. Hollingsworth, B. Miller, J. Cargille, Dynamic Program
Instrumentation for Scalable Performance Tools,
Proceedings of the Scalable High Performance Computing
Conference, 1994

[6] Jain, R., The Art of Computer Systems Performance
Analysis, Wiley 1991.

[7] R. Lencevicius, E. Metz, A. Ran; Software Validation using
Power Profiles, Proceedings of the 20th IASTED
International Conference on Applied Informatics (AI
2002), Feb 2002.

[8] Linear Programming Frequently Asked Questions, 2004
http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-
programming-faq.html

[9] E. Metz, R. Lencevicius, Efficient Instrumentation for
Performance Profiling, Proceedings of the 1st Workshop on
Dynamic Analysis, 2003, pp. 143–148.

[10] E. Metz, R. Lencevicius, Performance Data Collection: A
Hybrid Approach, Proceedings of the 2nd International
Workshop on Dynamic Analysis, 2004, pp. 48–51.

[11] S. Sahni, Data Structures, Algorithms and Application in
C++, p. 697., Silicon Press, 2005.

[12] D. Stewart, Measuring Execution Time and Real-Time
Performance, Embedded Systems Conference (ESC), 2001.

[13] K. Subramaniam, M. Thazhuthaveetil, Effectiveness of
Sampling Based Software Profilers, 1st International
Conference on Reliability and Quality Assurance, 1994, pp.
1–5.

[14] J. Vetter, D. Reed, Managing Performance Analysis with
Dynamic Statistical Projection Pursuit, Proceedings of the
1999 ACM/IEEE Conference on Supercomputing, 1999.

[15] Vtune Performance Analyzer, March 2004.
http://www.intel.com/software/products/vtune/.

11. APPENDIX A: PROOF OF THEOREM
2

Theorem 2: The approximation algorithm generates a solution

with objective function ,
2
1 *ff >

)
where *f is the objective

function value of an optimal solution.
Proof: Let OPT be an optimal solution, let i1 ≤ i2 ≤ … ≤ ik be

such that the only traced events are
kiii CCC ,...,,

21
in OPT, and

let T = { i1, i2, … , ik }.
Let NT = { i1, i2, … , in } – T be the set of indices of the events

that are sampled (i.e., not traced) in OPT. Let

MaxFFMaxFF
k

j i
k

j hitsi jj
/)(/)(

11 ∑∑ ==
==α , i.e., the

fraction of MaxF taken up by the traced events in an optimal

solution. Clearly, MaxFF
k

j i j∑ =
=

1
α (1)

and MaxFFprobing)1(α−= . (2)

If k = 0, then we know that OPT is S0,0 and from the
algorithm we know that 0,0sf ≥

)
. Therefore, *ff =

)
 and the

theorem follows. On the other hand, when k = n, we know OPT
is S0,n. From the algorithm we know that nsf ,0≥

)
. Therefore,

*ff =
)

and the theorem follows.

So assume without loss of generality that 1 ≤ k < n. By
definition we know that

134

 j
NTj j

j
probingj

Tj
j W

dEventPerio
EventTime

FWFf ∑∑
∈∈

+=* .

Substituting equation (2) we know that

.)1(*
j

NTj j

j
j

Tj
j W

dEventPerio
EventTime

MaxFWFf ∑∑
∈∈

−+= α

Substituting j

n

j j

j W
dEventPerio

EventTime
MaxFsf ∑

=

=≥
1

0.0
)

and j
NTj j

j
j

n

j j

j W
dEventPerio

EventTime
W

dEventPerio
EventTime ∑∑

∈=

>
1

we know that .ˆ)1(* fWFf j
Tj

j α−+<∑
∈

 (3)

 When our approximation algorithm is generating the
solution S0,0 , S0,1 , …, S0,n, if all the events in T are traced in
S0,n, we know that .ˆ

,0 fsWF nj
Tj

j ≤≤∑
∈

 So Equation 3 becomes

fff ˆ)1(ˆ* α−+< and since ,10 ≤≤ α it then follows that

ff ˆ2* < or *5.0 ff >
)

.

 On the other hand when not all the events in T are traced
in S0,n, let

liC be the first event that is traced in OPT but not

traced in solution
liS ,0 . Let R be the indices of the events traced

in
liS ,0 that are different from the events jC for .Tj ∈

 Since
liC is not traced in

liS ,0 it must have been that if

traced then all the previously traced events plus
liC would

exceed MaxF, i.e., MaxFFFF
lj i

Rj
j

l

j
i >++∑∑

∈

−

=

1

1

. (4)

From
1+

≥
jj ii WW for 1 ≤ j < k,

lij WW ≥ for ,Rj ∈ and

equations (1) and (4) we know that the per unit information value
of the traced events in

liS ,0 together with
liC being also traced

is larger than the one for the traced events in OPT. Therefore,

MaxF

WF

FFF

WFWFWF
k

j
ii

l

j Rj
iji

l

j Rj
iijjii jj

lj

lljj

α

∑

∑ ∑

∑ ∑
=

−

= ∈

−

= ∈ >

++

++
1

1

1

1

1 .

Using equation (4) and simplifying the above inequality
becomes

α

∑
∑ ∑ =

−

= ∈

>++

k

j
iil

j Rj
iijjii

jj

lljj

WF

WFWFWF 1
1

1

 (5)

 We now show that
α2

ˆ 1
∑

=>

k

j
ii jj

WF

f . There are two cases

we need to consider.

 Case 1: ∑ ∑
−

= ∈

>+
1

1

l

j Rj
iijjii lljj

WFWFWF .

Substituting the conditions of the case in equation (5) we
know that

α

∑
∑ ∑ =

−

= ∈

>+

k

j
iil

j Rj
jjii

jj

jj

WF

WFWF 1
1

1

)(2 .

Since ,ˆ
1

1
∑ ∑

−

= ∈

+≥
l

j Rj
jjii WFWFf

jj
it then follows that

α2
ˆ 1
∑

=>

k

j
ii jj

WF

f .

 Case 2: ∑ ∑
−

= ∈

≤+
1

1

l

j Rj
iijjii lljj

WFWFWF .

Substituting the conditions of the case in equation (5) we

know that
α

∑
=>

k

j
ii

ii

jj

ll

WF

WF 12 .

Now consider solution 0,liS . Clearly, .ˆ
0, lll iii WFsf ≥≥

Substituting in the above inequality we know that

α2
ˆ 1
∑

=>

k

j
ii jj

WF

f .

Therefore in both of these cases we know that

α2
ˆ 1
∑

=>

k

j
ii jj

WF

f .

Substituting this in equation (3) we know that
fff ˆ)1(ˆ2* αα −+< .

Therefore, ff ˆ)1(* α+< . Since ,1≤α we know that

ff ˆ2* < or *5.0 ff >
)

. This completes the proof of the
theorem. QED.

135

