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ABSTRACT

In this paper we survey algorithms and complexity results for the multimessage
multicasting problem and its variations under a unified notation. The main results ap-
ply to the multimessage multicasting problem for complete networks and pr-networks
(multistage interconnection networks that can realize all permutations in one communi-
cation phase and replicate data on each switch). We also discuss algorithms that allow
message forwarding and distributed algorithms where each processor only knows local
information. Different applications where this problem naturally arises are explored.

Keywords: Multimessage Multicasting, Forwarding, Randomized Algorithms, Fully Con-
nected Networks, Approximation Algorithms.

1. Introduction

Suppose there are n processors, P = {P;, P,, ..., P,}, interconnected via a fully
connected network. Each processor is executing processes, and these processes are
exchanging messages that must be routed through the network. Each message must
be transmitted to a set of processors. These processors alternate between compu-
tation and communication in a synchronous way. The Multimessage Multicasting
problem, M M¢, consists of finding specific times when messages are to be trans-
mitted so that all the communications can be carried in the least total time. When
forwarding is allowed messages may be sent through indirect paths even though a
single link direct paths exist, and the problems is referred to as the M M F¢ prob-
lem. Forwarding allows communication schedules with significantly smaller total
communication time. In these two versions of the problem all the communication
information is known ahead of time and the scheduling is off-line. Then the com-
munication schedule is given to the processors to follow at each step. Further on
we discuss applications where this type of situation arises. We also discuss the dis-
tributed version of the M M F¢, which we refer to as the DM M F¢ problem. In this
problem each processor initially knows the value of n and d (the maximum number
of messages that every processor may send or receive), plus the messages it will be
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sending and their destinations. The non-distributed version is simpler because there
is a preprocessing phase where all the information is available in one processor and
it is used to construct communication schedules that are subsequently distributed
to the individual processors. Hereafter we assume that each of the messages to be
transmitted is at least n bits long. This assumption allow us to send messages with
length at most n, other than the original ones, and just count and report the total
number of messages.

Let us formally define our problem. Each processor P; holds the set of messages
h; and for each of its messages m; ; it knows the set of processors s; ; that must
receive the message. From this information one can compute for each processor P;
the set of messages it needs to receive, n;. Some of our algorithms do not compute
the n;s, but at the end each processor P; will have all the messages it needs. We
define the degree of an instance as d = max{| h; |,| n; |}, i.e., the maximum number
of messages that any processor sends or receives. Consider the following example.

bf Example 1: There are nine processors (n = 9). Processors Py, P», and Ps
send messages only, and the remaining six processors receive messages only . The
messages each processor holds and needs are given in Table 1. The density d is 3
and n=9.

Table 1. Hold and Need vectors for Example 1.
hy ho hs hy | hs | he | hy | hs | ho
{a,b} [{c,d} |{e;f} | O | O | O | 0|0 |0
Ny | N2 | N3 T4 Ne g Ng

ns nr
01 01| 0 |{ace}|{adf}|{bce}|{bdrf}|{cde}|{cd f}

Problem instances may be visualized by directed multigraphs as follows. Each
processor P; is represented by the vertex labeled ¢, and there is a directed edge
(or branch) from vertex i to vertex j for each message that processor P; needs to
transmit to processor P;. The set of directed edges or branches associated with each
message are bundled together. The problem instance given in Example 1 is depicted
in Figure 1 as a directed multigraph with additional thick lines that identify all
edges or branches in each bundle.

The communications allowed in our complete network must satisfy the restric-
tions given below. We should point out that the last part of rule 2 is only needed
for the distributed algorithms, because the off-line algorithms generate conflict-free
communications.

1.- During each time unit each processor P; may transmit one of the messages it
holds (i.e., a message in its hold set h; at the beginning of the time unit and
for the M M¢ it must be in its original hold set), but such message can be
multicasted to a set of processors. The message will remain in the hold set
h;.

“Note that in general processors may send and receive messages.
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Fig. 1. Directed Multigraph Representation for Example 1.

2.- During each time unit each processor may receive at most one message. The
message that processor P; receives (if any) is added to its hold set h; at the
end of the time unit. If two or more messages are sent to a processor at a
time period, then the messages are garbled and the processor does not receive
any of the messages. The sending processor will know at the end of the time
period whether or not the message it sent reached all its destinations. When
a message does not reach all its destinations the sending processor will not
know which processors received the message.

The communication process ends when n; C h; for all 4, i.e., each processor
holds all the messages it needs. The total communication time is the total number
of communication steps.

The M M¢ problem can also be viewed as a edge coloring problem for the di-
rected multigraph representation, where the edges are colored with the least number
of colors in such a way that no two edges incident to the same vertex are assigned
the same color and no two edges from different bundles emanating out of the same
processor are assigned the same color. The colors correspond to the time periods
and the two restrictions on the colorings guarantee that no two messages are allowed
to reach the same processor at the same time, and no two (different) messages are
transmitted from the same processor at the same time. In what follows we cor-
rupt our notation by using interchangeably colors and time periods; vertices and
processors; bundle, branches or edges, and messages. The above correspondence
is not appropriate for the case when forwarding is allowed. For these situations
multicolorings with additional restrictions can be used to describe some forward-
ing algorithms [15], but this correspondence becomes more obscure for the general
multimessage multicasting problem with forwarding.

Our communication model allows us to transmit any of the messages in one
or more stages. Le., any given message may be transmitted at several different
times. This added routing flexibility reduces the total communication time, and in
many cases it is a considerable reduction. The problem instance given in Example
1 requires six communication steps if one restricts each message to be transmitted
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only at a single time unit. The reason for this is that no two of the six messages
can be transmitted concurrently because every pair of messages either originate at
the same processor, or have a common destination processor. However, by allowing
messages to be transmitted at different times there are communication schedules
for Example 1 with total communication time four. Table 2 shows the message
transmissions for one such schedule which we call S.

Table 2. Message transmissions for schedule S.

[ Step | Concurrent Communications |
1 a: P, — {P5} c: Py — {P4,P6,P3,P9} f: P; — {P7}
2 a: P1 - {P4} d: P2 - {P5,P7,P8,P9} e: P3 — {Pe}
3 b: P — {PG,P’?} e: P3 — {P4,P8} -
4 f: P3 — {P5, Pg} - -

Gonzalez [15] showed that when forwarding is not allowed all the communica-
tion schedules for the problem instance given in Example 1 require at least four
communication steps, but when forwarding is allowed all the communications can
be performed in three steps. Table 3 shows the message transmissions for one such
schedule which we call T'.

Table 3. Message transmissions (with forwarding) for schedule T'.

| Step ” Concurrent Communications J
1 a: P1-—){P4,P5} C: Pz—){PG,Pg,Pg} f: P3-){P7}
2 b: Pl—-){P5,P7} d: Pz—){P5,P8,P9} e: P3—){P4}
3 c: P, — {P4} f: P — {P5,P9} e: Py — {PG,PS}
d: Ps — {P7}

In this paper we survey algorithms and complexity issues for the multimes-
sage multicasting problem and its variations using a unified notation. We discuss
results for multimessage multicasting on complete networks and on pr-networks.
We explore algorithms that allow message forwarding and distributed algorithms
where each processor only knows local information. Different applications where
this problem arises naturally are examined.

1.1. Applications

The multimessage multicasting problem arises naturally when solving large sparse
systems of linear equations via iterative procedures, and when executing most dy-
namic programming procedures in a parallel and/or distributed computing environ-
ment. Multimessage multicasting also arises when multicasting information over a
k channel wireless communication network.

Let us now discuss in more detail how to solve sparse systems of linear equations
via iterative methods in a parallel computing environment. Initially we are given
the vector X (0) and we need to evaluate X (¢) for ¢t = 1,2,..., using the iteration
z;(t+ 1) = f;(X(¢)). But since the system is sparse every f; depends on very few
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terms. A placement procedure assigns each z; to a processor where it will be
computed at each iteration by evaluating f;(). Good placement procedures assign a
large number of f;()s to the processor where the vector components it requires are
being computed, and therefore can be computed locally. However, the remaining
fi()s need vector components computed by other processors. So at each iteration
these components have to be multicasted (transmitted) to the set of processors
that need them. The strategy is to multicast the elements in X (0), then compute
X (1) and perform the required multimessage multicasting, then compute X (2) and
perform the multicasting, and so on. The same communication schedule is used at
each iteration, and such schedule can be computed off-line once the placement of the
z;s has been decided. Speedups of n for n processor systems may be achieved when
the processing and communication load is balanced, by overlapping the computation
and communication time. This may be achieved by executing two concurrent tasks
in each processor. One computes the z;s, beginning with the ones that need to be
multicasted, and the other deals with the multicasting of the z; values. If all the
transmissions can be carried out by the time the computation of all the z;s finishes,
then we have achieved maximum performance. But if the communication takes too
long compared to the computation, then one must try another placement or try
alternate methods.

The above applications justify the off-line Multimessage Multicasting problem.
Another interesting variation that arises naturally is the “nearly on-line” or “dis-
tributed” Multimessage Multicasting problem. In this case the multicasting desti-
nations are not know until we have executed part of the task and such information is
only known locally, i.e., each processor only knows about the information it will be
multicasting and has no knowledge about the multicasting operations the other pro-
cessors are planning. However, all processors know that at a given synchronization
point, all processors will be ready to start performing their multicasting operations.
For this case we need to compute the communication schedule on-line, and this time
must also be taken into account when evaluating performance. In what follows when
we refer to the multimessage multicasting problem we mean the the off-line version
of the problem, unless we mention on-line or distributed explicitly.

1.2. Multistage Interconnection Networks

Routing in the complete static network (there are bidirectional links between
every pair of processors) is the simplest and most flexible when compared to other
static networks (or simply networks) with restricted structure like rings, mesh, star,
binary trees, hypercube, cube connected cycles, shuffle exchange, etc., and dynamic
networks (or multistage interconnection networks), like Omega Networks, Benes
Networks, Fat Trees, etc. The minimum total communication time for the M M¢
problem is an obvious lower bound for the total communication time of the cor-
responding problem on any restricted communication network. Dynamic networks
that can realize all Permutations (each in one communication phase) and Replicate
data (e.g., n by n Benes network based on 2 by 2 switches that can also act as data
replicators) will be referred to as pr-dynamic networks. Multimessage Multicasting
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for pr-dynamic and complete networks is not too different, in the sense that any
communication schedule for a complete network can be translated automatically
into an equivalent communication schedule for any pr-dynamic network. This is ac-
complished by translating each communication phase for the complete network into
no more than two communication phases for the pr-dynamic networks. The first
phase replicates data and transmits it to other processors, and the second phase
distributes data to the appropriate processors ([21], [22], [25]). Figure 2 gives an
example of this process.

BASIC PROBLEM REPLICATION DISTRIBUTION

Fig. 2. Replication and Distribution.

The IBM GF11 machine [1], and the Meiko CS-2 machine use Benes networks
for processor interconnection. The two stage translation process can also be used
in the Meiko CS-2 computer system, and any multimessage multicasting schedule
can be realized by using basic synchronization primitives. This two step translation
process can be reduced to one step by increasing the number of network switches by
about 50% ([21], [22], [25]). In what follows we concentrate on the M M¢ problem
because it has a simple structure and, as we mentioned before, results for the
fully connected network can be easily translated to any pr-dynamic network. The
translation process may double the total communication time, but we can show
that for some of our algorithms the translation process does not introduce additional
communication steps. This latter situation arises when every multicasting operation
has as destinations adjacent processors, or when the set of destinations of any two
messages that will be transmitted at the same time are not interleaving, i.e., if one
of the messages is to be transmitted to processors P; and P; for ¢ < j then the
other message cannot be transmitted to any processor Py such that ¢ < k < j. One
can easily see that the latter situation can be easily transformed to the former one.
The schedules generated by the forwarding algorithms in Section 5 satisfy the above
property. The multimessage multicasting in completely connected networks is also
worth while studying because it models a fixed number of processors connected by
an optical communication ring.
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1.53. Related Work

The case when each message has fixed fan-out k (maximum number of processors
that may receive any given message) has been studied [11]. For k£ = 1 (multimes-
sage unicasting problem MU¢), Gonzalez showed that the problem corresponds
to the Makespan Openshop Preemptive Scheduling problem which can be solved in
polynomial time, and each degree d problem instance has a communication schedule
with total communication time equal to d [17]. The makespan openshop preemptive
scheduling problem is a generalization of the edge coloring of bipartite multigraphs
for which the algorithm in [2] generates an optimal coloration. However, Gonzalez
and Sahni’s [17] algorithm is faster and solves a more general problem.

It is not surprising that several authors have studied the M U¢ problem as well
as several interesting variations for which NP-completeness has been established,
subproblems have been shown to be polynomially solvable, and approximation algo-
rithms and heuristics have been developed. Coffman, Garey, Johnson and LaPaugh
[4] studied a version of the multimessage unicasting problem when messages have
different lengths, each processor has (P;) ports each of which can be used to
send or receive messages, and messages are transmitted without interruption (non-
preemptive mode). Whitehead [27] considered the case when messages can be sent
indirectly. The preemptive version of these problems as well as other generalizations
were studied by Choi and Hakimi ([6, 5]), Hajek and Sasaki [19], Gopal, Bongio-
vanni, Bonuccelli, Tang, and Wong [18]. Rivera-Vega, Varadarajan and Navathe
[23] studied, the file transferring problem, a version of the multimessage unicasting
problem for the complete network when every vertex can send (receive) as many
messages as the number of outgoing (incoming) links.

The distributed version of the multimessage unicasting problem with forwarding,
DMUF¢, has been studied in the context of optical-communication parallel com-
puters [2, 7, 8, 26]. Valiant [26] presented a distributed algorithm with O(d +logn)
total expected communication time. The algorithm is based in part on the algo-
rithm by Anderson and Miller [2]. The communication time is optimal, within a
constant factor, when d = Q(logn), and Gereb-Graus and Tsantilas [7] raised the
question as to whether a faster algorithm for d = o(logn) exits. This question
was answered in part by Goldberg, Jerrum, Leighton and Rao [8] who show all
communication can take place in O(d + loglogn) communication steps with high
probability, i.e., if d < logn then the failure probability can be made as small as n®
for any constant o. Gereb-Graus and Tsantilas [7] presented distributed algorithms
without forwarding that guarantees solutions with ©(d + lognloglogn) expected
total communication time.

With the exception of the work reported in [9, 10, 11, 12, 13, 15, 24], research
has been limited to unicasting and all known results about multicasting are limited
to single messages. Shen [24] has studied multimessage multicasting for hypercube
connected processors. His procedures are heuristic and try to minimize the maxi-
mum number of hops, amount of traffic, and degree of message multiplexing. The
M M¢ problem involves multicasting of any number of messages, and its communi-
cation model allows the concurrent transmission of a large set of messages.
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In this paper we survey recent results for the M M¢, MM F¢ and the DM M F¢
problems using a unified notation. We discuss results for multimessage multicasting
on complete networks and on pr-networks.

2. NP-completeness of the M Mo and M M F¢c problems

The decision version of the M M¢ problem is NP-complete even when k = 2.
This can be established by reducing the edge coloring (EC) problem to it. The
edge coloring problem was shown to be NP-complete in [20]. The input to the
Edge Coloring problem is an undirected graph G = (V, E) of degree d, i.e., each
vertex has at most d edges incident to it. The problem is to determine if there is
an assignment of one of d colors to each edge in G so that no two edges incident to
the same vertex are colored identically.

Rather than giving a formal proof that the decision version of the M M¢ problem
is NP-complete, we just outline a polynomial time reduction from the edge coloring
problem to the M M¢ problem with & = 2. Given any instance Igc of the graph
edge coloring problem, i.e., an undirected graph G = (V, E) of degree d (in the
graph theory sense), we construct an instance of the M Mc¢ as follows. For each
vertex i in V we create the receive processor (r-processor) v;. For each edge j in E
there is a send processor (s-processor) e;, and an r-processor f;. The s-processor
ej, that represents edge j in G incident to vertices p and q in G, has d bundles. The
first bundle has two directed edges emanating from it and ending at r-processors v,
and v,. This means that an identical message has to be sent to processor v, and v,.
The remaining d — 1 bundles each represent one distinct message to be transmitted
to r-processor f;. In Figure 3 we give an instance Igc of the graph edge coloring,
and the instance Ipsps of the M Mc problem generated from it by our reduction.

Clearly the reduction takes polynomial time with respect to the number of ver-
tices and edges in the graph G. For brevity we do not include the correctness proof,
but the main idea is to establish that in any d coloring of the instance M M¢ cor-
responds to a d coloring of the Igc problem, and vice-versa. A formal proof of the
following theorem appears in [9].

LB

Fig. 3. Graph edge coloring instance and corresponding M M¢ instance.

Theorem 1 The decision version of the M Mo problem is NP-complete even when
k=2.
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The above reduction cannot be used to show that the M M F¢ problem is NP-
complete. The reason for this is that the processors f; and v; may be used for
forwarding in schedules with total communication time equal to d. To show that
the MM Fy problem is NP-complete even when & = 2 we modify the previous
reduction by introducing additional vertices and edges in such a way that none of
the vertices may be used for forwarding in a communication schedule with total
communication time d. The specific details of the reduction are given in [11].

3. Upper and Lower Bounds for the M Mg

For every degree d instance of the M M problem one can construct in linear
time, with respect to input length, a schedule with total communication time d?.
There exist degree d problem instances such that all their communication schedules
have total communication time at least d?.

Let P be any n processor instance of the M M problem of degree d. Our

algorithm colors each edge with a color defined by a first and a last name. We
claim that all edges can be colored with d first names and d last names. Therefore,
one needs no more than d? colors ({(,7)|1 <i < d and 1 < j < d}) to color every
degree d problem instance. Our algorithm (arbitrarily) orders all the incoming edges
to each vertex, and (arbitrafily) orders all the bundles emanating from each vertex.
Edge e = {p,q} is assigned the first name (color) i if e belongs to the i** bundle
emanating form vertex p, and it is assigned the last name (color) j if e is the jt*
incoming edge to vertex q. Clearly, no two incoming edges to a node have the same
last name, and no two edges emanating from the same processor belonging to a
different bundle have the same first name. Therefore our coloring is a valid one and
can be generated in linear time with respect to the input length. A formal proof of
the following theorem appears in [11].
Theorem 2 The informal algorithm described above generates a communication
schedule with total communication time at most d? for every degree d instance of
the M Mc problem. Furthermore, the algorithm takes linear time with respect to the
number of nodes and edges in the multigraph.

There are several ways to speed-up communication. One such techniques [3]
consists of adding ! buffers at the receiving end of each processor and developing
controlling hardware so the buffering behaves as follows: (1) if at the beginning of a
phase at least one buffer has a message, then one such message (perhaps in a FIFO
fashion) is passed to the processor and at the end of the step the buffer will be labeled
empty; and (2) if at the end of a communication step there are j empty buffers, then
the processor may receive j messages which are stored in the free buffers. For the
M M¢ problem when each processor has [ buffers available for incoming messages we
have developed an efficient approximation algorithm that generates communication
schedules with total communication time at most d?/l — d/l + d. For brevity we do
not elaborate on this results.

The above algorithms are for the completely connected network, but as men-
tioned in Section 1, the algorithm can also generate schedules for pr-networks. In
this case the total communication time will at most double.
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Figure 4 gives a problem instance with d = 2 that does not have a schedule with
total communication time less than 4. Any schedule with total communication
time at most three for this problem instance must have for each processor a bundle
that transmits all its messages in exactly one time period. But then there are two
bundles emanating out of different processors transmitting at the same time to a
common processor. A contradiction to our scheduling rules. Therefore, for at least
one processor its two bundles must transmit at two different times which establishes
that one needs at least four time units to transmit all messages.

Fig. 4. Problem instance of degree‘2 that requires 4 colors. The triangles and
and solid circles represent processors.

A generalization of the above problem instance for all d > 2 has the property
that all its communications schedules have communication time of at least d? appear
in [11] together with a formal proof of the following theorem.

Theorem 8 The are problem instances of the M M¢ of degree d such that all their
commaunication schedules have total communication time at least d*.

For d = 2 our problem instances require more than 24 processors; and for d = 3,
there are more than 1,179,360 processors; and so on. Therefore to achieve the bound
of d? the problem instances have huge fan-out and as a result of this a huge number
of processors. Since this environment is not likely to arise in commercial systems in
the near future, we turn our attention in the next section to important subproblems
likely to arise in practice.

4. Approximation Algorithms for the M My Problem

In this section we begin by describing an approximation algorithm for the case
when each message has exactly two destination. Then we present algorithms for
the more general case, i.e., messages may be sent to at most k destinations. In the
third subsection we discuss improved approximations algorithms for the case when
each bundle has to be colored with at most two colors. All these algorithms are for
the completely connected network, and as mentioned in Section 1, the algorithms
can also generate schedules for pr-networks. In this case the total communication
time will at most double.
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4.1. Messages with at most Two Destinations

Let us now discuss a simple approximation algorithm for the M M¢ problem for
k = 2 but arbitrary degree d. Given any instance P of this problem we break each
message with two destinations into two different messages with one destination each.
Since k = 2 the resulting problem instance is a multimessage unicasting problem of
degree 2d. Since the multimessage unicasting problem can be solved optimally in
polynomial time [11], we know a communication schedule with total communication
time equal to 2d can be constructed for this problem in O(r(min{r,n?} + nlogn))
time, where r < dn. This communication schedule is also a communication schedule
for P.

A faster algorithm that generates slightly better coloring using only 2d — 1 colors

is given in [11]. The algorithm colors the bundles emanating from each processor
at a time. When considering a processor it colors a maximal set of bundles with
one color per bundle. The remaining bundles are colored with two colors. This
is accomplished by constructing a bipartite graph and then finding a complete
matching in it. The existence of the matching is established by proving that Hall’s
conditions hold for the graph. The matching can be constructed by a well-known
algorithm, and an edge coloring can be easily obtained from the matching. A formal
proof of the following theorem appears in [11].
Theorem 4 Given a degree d problem instance of the M M¢c with fan-out k = 2
and n processors (or vertices), procedure GM in [11] constructs a communication
schedule with total communication time at most 2d — 1. The time complexity of the
procedure is O(nd?"%).

4.2. Multiple Destinations per Message

The algorithms in this subsection color every bundle with at most g colors, where
q is an input parameter. In the next subsection we consider improved algorithms
for the case when q = 2.

The algorithm colors all edges emanating from Py, Ps,...,P;_1. With respect
to this partial recoloring we define the following terms: Each branch emanating
from P; leads to a processor with at most d — 1 other (incoming) edges incident to
it, some of which have already been colored. These colors are called t;_1 -forbidden
with respect to a given branch emanating from P, i.e., a color is t;_;-forbidden
(target forbidden) if it has been used in a branch that ends at the same processor
as the branch in question.

A coloring in which every message is colored with exactly one color may require
as many as d + k(d — 1) colors. The reason is that each branch has d — 1 ¢;_1-
forbidden colors, and none of the t;_;-forbidden colors in a branch can be used to
color the corresponding bundle. Therefore, there can be k(d — 1) t;_;-forbidden
colors, none of which can be used to color the bundle. Since there are at most d
bundles emanating from a processor P;, and every bundle is assigned one color, then
d + k(d — 1) colors are sufficient to color all the bundles emanating from processor
P;, and hence the multigraph.
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The above upper bound can be decreased substantially by assigning up to two
colors per message (bundle). Again, each branch has d — 1 t;_;-forbidden colors.
But, two colors that are not t;_,-forbidden in the same branch of a bundle can
be used to color that bundle. So the question is: What is the largest number of
tj—1-forbidden colors in a bundle such that no two of them can be used to color
the bundle? For k = 3 and d = 7 it is nine. The t;_;-forbidden colors in the three
branches are: {1,2,4,5,7,8},{1,3,4,6,7,9}, and {2,3,5,6,8,9}. Note that no two
of the nine colors can color competely the bundle. We have established that the
largest number of ¢;_;-forbidden colors in a bundle such that no two of them can
color completely the bundle is d — 1 for k = 2, about 1.5(d — 1) for k = 3, etc. We
have also derived asymptotic bounds for this case (¢ = 2), but for brevity we do
not include this result.

Our simple and very fast approximation algorithm for the M M¢ problem colors
all edges emanating from Py, P,,...,P;j_; and then colors the bundles emanating
out of P; one bundle at a time. It colors all the edges emanating out of a bundle
with ¢ > 2 different colors, where ¢ is an input value. The coloring of bundles
is greedy, i.e., it first colors the largest number of edges with one color, then the
largest number of uncolored edges with another color, and so on. By setting the
total number of colors to an appropriate value, we can show that our procedure
always generates a feasible solution.

Gonzalez [11] has shown that the algorlithm always colors each of the bundles
with at most g colors using a total of gd+ k4 (d— 1) colors. The time complexity for
the procedure is O(q-d-e), where e < nd is the number of edges in the multigraph.
A formal proof of the following theorem appears in [11].

Theorem 5 For every instance of the M M¢ problem with fan-out k > 3, the above
informal algorithm generates in O(q - d - €) time, where e is the number of edges in
the multigraph and q > 2, a schedule with total communication time qd+ ks (d-1).

4.8. Improved Approzimation Algorithms

Let us now discuss fast approximation algorithms with an improved approxima-
tion bound for problems instances with any arbitrary degree d, but small fan-out.
All of our approximation algorithms generate a coloring that uses at most a; -d+as
colors. The value of a; for the different methods we have developed and for different
values for k is given in Table 4. The number inside the parenthesis that follows the
method’s names indicates the maximum number of different colors one may use to
color the branches in each bundle. The lines labeled “Simple” and “Asymptotic”
are for the methods described in the previous subsection. The method labeled “In-
volved (2)” is the fastest and it is discussed in [12]. The method labeled “With
Matching” is similar to the one [12], but uses matching [13], and the one labeled
“Best Bound” is the best one so far for small values of k [12]. The proofs for these
bounds are tedious because the equations and algorithms are more complex, but
the proof technique is in general similar to the one for the method given in [12].
By selecting three colors per bundle instead of two colors, one can also improve the
asymptotic bound reported in [13] (see Table 4 the line labeled “Improved (3)”).
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The algorithm is slower, its correctness proof is quite involved, but the proof for the
approximation bound is similar in nature to the one in [13]. The benefit when £ is
15 is about 10% improvement and about 40% when k is 100. In what follows we
discuss the algorithms whose performance is given by the entry labeled “Involved

(2)” .

Table 4: Value of a; For Different Methods.
|Meth0d\k(fan—out) ” 3 | 4 [ 5 | 7 | 10 | 20 | 50 | 100 |

Asymptotic (2) 373 | 4.00 | 423 | 4.65 | 5.16 | 6.47 | 9.07 | 12.00
Tnvolved (2) 3.33 | 3.50 | 3.60 | 4.43 | 4.60 | 6.00 | 8.56 | 11.54
With Matching (2) 2.67 | 3.00 | 3.50 | 4.29 | 4.50 | 6.00 | 8.54 | 11.53
Better Bound (2) 2.50 | 3.00 | 3.50 | 4.14 | 4.40 | 5.75 | 8.52 | 11.52
Simple (3) — | = [4.00| 455 | 481 | 5.60 | 6.67 | 7.62
Tnvolved (3) — 356 | 4.00 | 4.26 | 4.67 | 5.20 | 6.23 | 7.24
Simple (4) — | — [550563|578]6.11]| 666 | 7.16
Simple (5) — | = | = 648658682719 7.51

The algorithm behind entry “Involved(2)” is similar in nature to the one in
the previous subsection except that when coloring the bundles emanating out of
a processor one selects a color with a special property from each bundle and then
such color is used to color as many of the branches of the bundle. The remaining
uncolored branches are colored with a second color whose existence is guaranteed
by setting the total number of colors available to an appropriate value. The results
in [12] establish though very elaborate proofs the entry labeled “Involved (2)”. The
proof involves the manipulation of very long expressions, however several portions
of the proofs can be established using symbolic manipulation programs such as
Mathematica [14].

5. Message Forwarding Algorithms

Before we discuss our algorithm we define additional terms. One of the disad-
vantages of the notation given in Section 1 for the M M F problem is that after the
transmission of the messages in a communication mode several processors may be
holding the same message and it becomes difficult to decide which of these proces-
sors should be the one to transmit the message at subsequent steps. To minimize
the time required to make this decision the algorithm will at all times keep a list of
the messages that each processor will be responsible to transmit to other processors
at a subsequent time. This information is represented by a directed multigraph (see
Figure 1) G that changes after each communication mode.

The idea behind the algorithm is to forward all the messages in d communication
steps and transforms the problem to a multimessage unicasting problem of degree
d, which can be solved in polynomial time [11]. The forwarding is such that at
each time unit each processor sends at most one message and receives at most one
message. Our algorithm generates the specific operations to accomplish this based
on two labelings and two functions (one indicates the time when the message will
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be forwarded, and the other the processor where it will be forwarded). Rather than
giving the specific details of the algorithm, we explain how it works by applying
it to the problem instance given in Figure 5. The problem instance consists of 12
processors, 11 messages, and has degree d = 2.

Fig. 5. M M problem instance (I, G).

In Figure 6 we show all the processors with a list of labels assigned to the bundles
and edges that are defined as follows. The top set of numbers is the bundle number
which is defined by labeling the bundles emanating out of processor P;, then the
one emanating out of P, and so forth. The next label is the message for the bundle
and the third one is the bundle number modulo (d) plus 1. This third number is the
time at which the message associated with the bundle will be forwarded. From the
way these labels are generated, we know that no two bundles emanating out of a
processor will forward a message at the same time. The edges are labeled beginning
with the ones emanating out of the first bundle, then the second one, and so forth.
These labels are shown in the fourth line. The last set of numbers is the ceil of the
edge number divided by d. This last row indicates the processor index where the
message will be forwarded. It is simple to see that each processor will receive at
most d messages and all these messages will be received at different times.

ARt

123 456 789 1011 12 13 1415 161718 19 21 22 23
112 233 445 56 6 7 78 899 10 10 11 11 12

[=]

N =
—

Fig. 6. Labeling performed by procedure FORWARD.

The specific communication operations for time 1 and 2 are given in the forests
labeled T'1 and T2 in Figure 7. The resulting unicasting problem (I, G) of degree
d is given in Figure 7 (all objects in (c)).
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Fig. 7. Communications at time one (a) and time two (b). In (c) the resulting
MU¢ problem instance.

In [15] we prove the following theorem which is based in some of the above
observations.

Theorem 6 The procedure in [15] constructs for any instance of the MM F¢o prob-
lem a schedule with total communication time 2d. The process takes polynomial time
and the same schedule can be used by any pr-dynamic network without increasing
the total communication time.

The procedure [10] accomplishes the same result in exactly the same time. The
main advantage of the procedure in [10] is that it performs in general fewer com-
munication, but it is a more complex procedure. We should point out that the
approximation algorithms in the previous section are faster than the one discussed
in this section. However, this algorithm generates communication schedules with
significantly smaller total communication time.

For 2 <1 < d, we define the | — M M F¢ as the M M F¢ in which each processor
has at most Id edges emanating from it. Gonzalez [15] also presents an algorithm to
generate a communication schedule with total communication time at most |[(2 —
%)dj + 1 for the | — MM F¢ problem. The procedure is similar to the one in this
paper. The Multisource M M F¢ problem, which is exactly like the M M F¢ except
that the multicasting data may appear in several processors has also been studied
[15]. Gonzalez [15] reduces the Multisource M M F¢ problem to the M M F¢ problem
by solving a set of matching problems in bipartite graphs.

6. Distributed Approximation Algorithm

In this section we discuss the distributed version of the M M F problem which
we call the DM M F¢ problem. In this version of the problem each processor ini-
tially knows the value of n and d, plus the messages it will be sending and their
destinations.

The strategy to solve this problem is to use the classic parallel prefix algorithm
to compute and exchange information, and then use this information to run a dis-
tributed version of the forwarding algorithm in the previous section. By forwarding
all the messages, the resulting problem becomes a multimessage unicasting problem.
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All of the resulting communications can be performed by Valiant’s [26] distributed
algorithm. Let us discuss this process in more detail and state the main result in
[16].

1. Compute and Broadcast Basic Information. Each processor P; needs
to know the total number of messages that processors P, P,...,FP;_; need
to send as well as the total number of destinations for all of these messages.
ILe., the total number of bundles and the total number of edges emanating
out of all of these processors. This information is needed to label the bundles
and edges emanating out of P;, and it can be easily computed via the classic
parallel prefix in O(logn) communication steps.

2. Transform to the Multimessage Unicasting Problem.

This operation is performed by making the algorithm given in the previous
section distributed. Each processor will run its own version of the procedure.

3. Solving the resulting Multimessage Unicasting Problem Instance.

At this point each processor just runs Valiant’s algorithm [26] and all the
messages are delivered to their destinations in O(d + logn) expected commu-
nication steps.

Theorem 7 [16] Our algorithm performs all the multicasting for every instance of
the DM M F¢ problem with O(d + logn) expected communication steps.

7. Discussion

It is simple to see that the DM M F¢ problem is more general than the M M F¢
and the M Mo problems, but the best communication schedule for the DM M F¢
problem has total communication time Q(d+logn) where as for the M M F¢ problem
is just 2d, and the M M¢ problem is d>. Therefore, knowning all the communication
information ahead of time allows one to construct significantly better communica-
tion schedules. Also, forwarding plays a very important role in reducing the total
communication time for our scheduling problems.

The most important open problem is to develop distributed algorithms with
similar performance guarantees for processors connected via pr-dynamic networks.
Algorithms exist for the non-distributed version of this problem [15]. The main
difficulty in extending that work to the distributed case is the construction of the
routing tables with only local information.

Another very challenging open problem is to develop efficient approximation
algorithms for the M M F¢ problem that generate schedules with communication
time significantly smaller than 2d. There are several variations of the M M¢ problem
that are worth studying. For example the case when there are precedence constraints
between the messages seems to be one that arises in several applications.
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