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1. Introduction

A shop consists of m > 1 processors ( or machines). Each of these
processors performs a different task. There are n > 1 jobs. Each job 1
has m tasks. The processing time for task j of job i dis t. ,. Task j

J.1
of job i is to be processed on processor j , 1 <3 <m. A schedule for

processor j 1is a sequence of tuples (Ri, s £,),1<1i<r. The g, are

L.F TR,

i i
job indexes, Sy is the start time of job li and fz is its finish time,

i i
Job %i is processed continuously on processor j from Sg to fz « The
i i
tuples in the schedule are ordered such that s, < f2 b s L <ic<r,
i i i+l

There may be more than one tuple per job and it is assumed that Qi # li+l’

1 <i<zr., It is also required that each job i spends exactly tj 1 total
2

time on processor j . A schedule for a m-shop is a set of m processor

schedules. One for each processor in the shop. In addition these m processor
schedules must be such that no job is to be processes simulfaneously on 2 or more

" processors. A shop schedule will be abbreviated to schedule in future references.
The finish time of a schedulé is the latest completion time of the individual
processor schedules and represents the time at which all tasks have been completed.,

An optimal finish time (OFT) schedule is one which has the least finish time

amongst all schedules. A non-preemptive schedule is one in which individual

processor schedules have at most one tuple (4, 8.5 fi) for each job i to be

scheduled, TFor any processor j, this allows for = (0 and also requires

tj,i
that fi -8y = tj,i' A schedule in which no restriction is placed on the

number of tuples per job per processor is preemptive. WNote that all non-preemptive
schedules are also preemptive while the reverse is not true. For any schedule,

S, we define the finish time, fi(S) of job i to be the earliest time at

which all tasks of job 1 have been completed. The mean flow time, mft(S),

is defined to be the quantity Zfi(S). (Note that mft(S) is not actually the
average finish time, given by mft(S)/n. However minimizing mft(S) is equivalent

to minimizing the average finish time.) An optimal mean flow time (OMFT)

schedule is a schedule which has the least mft amongst all possible schedules

for that job set.



In this paper we shall investigate optimal schedules for the following shop
models:

I) Elow Shop .

There are n > 1 jobs to be scheduled on m > 1 processors with the restric~
tion that for every job 1 , the processing of task j + 1 cannot begin until
the processing of task j i1s complete, 1 < j < m.

II) Job Shop

There are n > 1 jobs to be scheduled on m > 1 processors with the
restriction that the tasks for each job are ordered., The processing of a
task cannot begin until the processing of all tasks preceding it have been
completed. Several tasks may be specified for an individual processor,  The
notation ¢,

j.ik
task is to be processed on processor J

will be used to indicate the kth task of job i . This

Several strategies for obtaining OFT and OMFT schedules for flow shops and
job shops have been advanced (see for example [2] and [3]). Branch and bound
strategies for these problems are investigated in [7] and [9]. Despite all
the research effort devoted to these problems there are no known efficient
algorithms, In-[1] and [4] it is shown that these problems are NP-Complete
when one is restricted to nonpreemptive schedules. TFor details regarding
our notation of NP-Complete problems, the reader is referred to [8] and [10].
In section 2 we extend the NP-Completeness results of [1] and [4] for OFT
nonpreemptive schedules to the case of preemptive schedules. A more restricted
version of the OFT nonpreemptive flow shop problem is also shown to be NP-Complete.
In section 3 we obtain bounds comparing optimal and arbitrary active schedules
for flow shops and job shops. In this section we also present heuristics
that result in schedules with a mft and finish time better than the worst
active schedules. Finally, a comparison is made between the finish times of

preemptive and nonpreemptive schedules.

2. Complexity of Preemptive and Nonpreemptive Scheduling

2.1 Flow Shop

OFT nonpreemptive schedules for the two processor {(m=2) flow shop can be
obtained in 0(n logn) time using Johnson's algorithm [3, p. 83]. For the
case m=2 one can easily show that an OFT preemptive schedule has the same
finish time as an OFT nonpreemptive schedule. Hence, Johnson's algorithm

also gives an OFT preemptive schedule, A linear time algorithm is presented



in [11], which guarantees OFT preemptive and nonpreemptive schedules for the
two processor open shop. It is interesting to note that by eliminating the
task ordering, a more efficient algorithm is obtained.

In this section we show that when m > 2 finding OFT preemptive and
nonpreemptive flow shop schedules is NP-~Complete. This is true even when
the jobs are restricted to have at most two non-zero tasks each. This
* then gives us the simplest case of the flow shop problem that is both
NP-Complete and for which no polynomial algorithm is known (note that when
jobs have only 1 task per job, OFT schedules may be trivially obtained).
When the complexity of the algorithm is measured in terms of the sum of the
lengths of the tasks, the flow shop problem remains NP-Complete as shown
in [4]. This result can also be extended for preemptive schedules. However
the job with the maximum number of tasks is increased to 3. In [11] it
is shown that for m > 2 , the OFT preemptive schedules for the open shop
can be obtained in polynomial time. For nonpreemptive schedules, the problem

remains NP-Complete.

2.2 Job Shop

The preceding results trivially imply that a severely restricted form of
the job shop problem for m > 2 is NP~Complete. TFor the job shop with mn=2,
however, no polynomial time algorithm is known. In [3, p. 105] an O(n logn)
algorithm to obtain OFT nonpreemptive schedules when m = 2 and the jobs are
restricted to have at most two nonzero tasks is presented. For this case, OFT
preemptive schedules may be similarly obtained. For the nonpreemptive case,
it is knowmn [1,2] that when m = 2 and the job mix consists of n-1 jobs with
one nonzero task each and an additional job with three nonzero tasks then the
problem is NP-Complete. We extend this result to the case of preemptive
schedules, We show that finding OFT preemptive schedules when m=2 is NP-
Complete even when the job mix contains only two jobs with three nonzeroc tasks.
In [4] it is shown that, if the complexity is measured in terms of the sum of
the length of the tasks, the two processor is alsc NP~Complete., This result
can also be extended to include preemptive schedules, however there is a job

with N/K tasks, for some constant k.

3. Approximate Solutions

Since the problems of finding OFT and OMFT schedules for flow shops and
job shops is NP-Complete (see [4] for NP-Completeness of OMFT) we turn our



attention to cbtaining schedules whose performance approximates that of
optimal schedules. To begin with, we derive a bound for the ratic of

worst and best schedules for the two performance measures being considered,
We then present approximation algorithms that generate schedules with a worst
case bound smaller than this. In examining "worst" schedules, we restrict

ourselves to active schedules. An active schedule is a schedule in which at

all times from start to finish some processcr is busy (i.e, it is processing

a task). For a given set of jobs and a schedule S we denote by £(S) the finish
time of S and by mft(S) the mean flow time of S . We show that for any
active schedule mft(S)/mft(S*) < n ,

Since rather crude approximations are used to obtain this bound, it is
surprising that Johnson's OFT algorithm on 2 processors achieves this bound,
T.e. there are OFT schedules S such that mft(S)/mft(S*) = n. Note that the
bound of n holds for job shop schedules.

A simple heuristic that results in schedules with a mft which in the
worst case is closer to the optimal is obtained by processing jobs in order
of nonincreasing Li (Li = gsum of task times for job i). This heuristic
will be referred to as SPT (see [3], p. 76). It is shown that this heuristic
produces schedules with mft(8) /mft(S*) = m,

Let us now turn our attention to the finish time properties of active
schedules. For this case we show that any active schedule has £(S)/£(S*) < m,

Once again, as in the case of mft, the proof technique would seem to
indicate that any ''reasonable’ heuristic would result in schedules with a
worst case bound less than m. This unfortunately is not the case, We
define by LPT the heuristic: schedule jobs in order of nondecreasing Li'

Note that this heuristic is similar to the one used by Graham [6] to schedule
identical processors and by Gonzalez, Ibarra and Sahni [5] to schedule uniform
processors. In both these earlier applications of the heuristic, LPT schedules
had a worst case finish time at most a "small" constant times the optimal
finish time. This is no longer the case for flow shop and job shop schedules.
For this LPT heuristic, we show that the bound of m is tight.

The worst case bound of m for active schedules in a flow shop can be
reduced to [ﬁ/i} by using the following heuristic H: Divide the m
processors into [m/2! groups each group containing at most two processors.

The processors in group i are the 2i-lst and 2ith ones. Johnson's O(n logn)
algorithm is used to obtain optimal finish time schedules for each of these

Eh/i]groups of machines., These [ﬁ/i\ optimal schedules are then concatenated



to obtain a schedule for the original m processor flow shop.

Since an optimal two processor flow shop schedule can be obtained in
time O(nlogn), the total time needed by algorithm H is O(m nlogn).

We close this section with a comparison of OFT preemptive and nonpreemptive
schedules. If S: and S: are OFT preemptive and nonpreemptive schedules

respectively, then from algorithm H it follows that f(Si)/f(S;).ﬁﬁE/ﬂ».

We then show that this bound is tight for m=3 and m=4.
For the case of a job shop, we conclude from the property of active

schedules that f(S:)/f(S;) < m. We show that this is a tight bound for m=2,
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