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Abstract 
The generalized channel definition problem has been 
modeled as the following partition problem. Let R P  
be a boundary defined b y  a rectilinear polygon in E2 
and let H be a set of holes defined b y  disjoint recti- 
linear polygons inside RP .  For I P  = ( R P , H ) ,  we 
use p ( IP)  to denote the length of the line segments 
that define R P  plus the sum of the length of the line 
segments that define the holes in H .  W e  consider the 
R P  - R P  problem in  which R P  is partitioned into 
rectangles b y  introducing a set of orthogonal line seg- 
ments with least total length. W e  use m ( I P )  to denote 
the total length of the partitioning segments in an op- 
timal solution to I P .  The problem of finding m ( I P )  
given I P  is NP-hard. In this paper we present an 
O(n log n )  approximation algorithm for the R P -  R P  
problem that generates solutions with length at most 
2.5p(IP) + 6m(IP) ,  where n is the total number of 
segments in R P  and H .  

1 imjipj 0 ( ~ 4 j  

8m(IP)  O(nZ)  
cte m ( I P )  

12m(IP) + 6 d I P )  
0 n log n 
O(n  loa n\ 

1 Introduction 
The input to the generalized channel definition prob- 
lem is a rectilinear polygon R P  in 2-dimensional Eu- 
clidean space &E2), and a set of disjoint rectilinear 
polygons H de ned inside RP.  The set of rectilinear 
polygons H represents modules with terminal points 
defined on their perimeter that need to be intercon- 
nected. The area of the rectilinear polygon R P  that is 
not occupied by the set H represents the routing area. 
To solve the routing problem we partition the routing 
area into rectangles (channel definition), specify the 
channels or rectangles that each net crosses (global 
routing) and then route in each of these channels or 
rectangles (detail routing). In this paper we study 
the generalized channel definition problem (RP-  RP) ,  
defined as partitioning the routing area ( R P  - H )  
into rectangles such that the total length of the par- 
titioning line segments is least possible. This measure 
minimizes the total perimeter of the rectangle routing 
problems to be solved, and as a result of this, it tends 
to reduce their complexity [12]. 
For problem instance I P  = (RP,  H ) ,  we use p( IP)  to 
denote the total length of the line segments that de- 
fine RP plus the sum of the length of the line segments 
that define the holes in H .  We use m ( I P )  to denote 
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the total length of the partitioning segments in an op- 
timal solution to I P .  The problem of finding m ( I P )  
given I P  is NP-hard. In this paper we present an 
O(n log n )  approximation algorithm for the R P -  R P  
problem that generates solutions whose line segments 
have total length bounded by 2.5p(IP) + 6m(IP) ,  
where n is the total number of line segments in R P  
and H .  
Several approximation algorithms for the R P  - R P  
have been developed. In table I we list all known ap- 
proximation algorithms for this problem. The best 
of these algorithms are the ones reported in [lo] and 
[ll]. Levcopoulos conjectured that the bound of 
8m(IP)  in [lo can be reduced to 4.7m(IP), the bound 
cte m ( I P )  i n i l l ]  can be reduced to 5m(IP)  and the 
bound 12m(IP) + 6p( lP)  in [ll] can be reduced to 
7 m ( I P )  + 3.5p(IP). 

on Algorithms I 

Levcopoulos’ algorithm [ll] consist of two parts. In 
the first part a rectangle R (whose sides are orthog- 
onal to the 2 and y axes) is placed around R P ,  and 
each of the concave corners of R P  and the convex 
corners of H is replaced by a point. The set of all 
such points is referred to by P. That is, from an in- 
stance of the R P  - R P  problem I P  we construct an 
instance I = ( R ,  P )  of the RG - P problem. The ob- 
jective of the RG - P problem is t o  introduce a set 
of line segments of least total length that partitions 
R into rectangles that do not contain points from P 
inside them. This problem is solved by an approxi- 
mation algorithm similar to that in [5] ( other a1 o- 
rithms for the RG- P problem are given in [3], [5] ,  f6] ,  
and [4] ). The approximation bound generated for I P  
in this case is 12m(IP) + 6p(IP) ,  but as mentioned 
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above, Levcopoulos conjectures that it is bounded by 
7m(IP)  + 3.5p(lP). Obviously, this approach is ad- 
vantageous when p( IP)  < m I P ) .  The second part 
deals with the case when p(IP\ 2 m ( I P ) .  In this case 
a thickest first heuristic similar to the one developed 
in [lo] is used to generate a near-optimal solution. 
In this paper we develop for the RP - R P  prob- 
lem an approximation algorithm that generates solu- 
tions whose segments have total length bounded by 
6m(IP)  + 2.5p(IP). Since the algorithm in [ll] de- 
pends on this case, our new approximation bound 
may be used to reduce the worst case approxima- 
tion bound for the algorithm in [ll Our algorithm 

solve a more general version of the problem, i.e., when 
it is defined over Ed for d > 2. For this case the 
time complexity bound is O(dn log n) and the SG 
lutions generate have total d - 1 volume at  most 
( 2 d  - 1.5)p(IP) + (4d - 2)m(lP) .  

2 Approximation Algorithm 
Let us now discuss our approximation algorithm for 
the R P  - R P  problem. First a rectangle R (whose 
sides are orthogonal to the axes is placed to  include 

ners of RP and convex corners of H is replaced by a 
point. The set of points is referred to as set P.  In other 
words, from an instance I P  = (RP,  H )  of the RP-RP 
problem we construct an instance I = ( R , P )  of the 
RG- P problem. This problem is solved by the divide- 
and-conquer procedure given in [3] .  All the parts of 
the line segments introduced by that algorithm inside 
R P  but not inside the set of holes H are said to form 
the solution to the original problem, if it is the case 
that the segment includes a point in P or there is an- 
other segment introduced by the divide-and-conquer 
algorithm incident to it. We should point out that 
if we do not place these two restrictions, then there 
could be about n’ segments in our solution. By plac- 
ing these two restrictions we limit the number of seg- 
ments to O(n) .  The resulting segments are referred 
to as E a p z ( l P )  and the segments introduced by the 
divide-and-conquer procedure that are inside R P  but 
outside H are referred to as SET(IP) .  Given a set of 
line segments S ,  we use V ( S )  to denote the sum of the 
length of the lines segments in S.  It is simple to see 
that V ( S E T ( I P ) )  2 V ( E a p E ( I P ) ) .  
Before we analyze the performance of our algorithm 
in more detail, we formally define the RG - P prob- 
lem. An instance of the RG - P problem is given by 
1 = ( R  = ( O , X ) ,  P ) ,  where 0 and X define a rect- 
angle or boundary R (0 = (01,02) is the “lower-left” 
corner of the rectangle (ongin of I ) ,  and X = ( 2 1 , ~ )  
are the dimensions of the boundary) in 2-dimensional 
Euclidean space (E’), and P .= {pl, p z ,  ..., p , }  is a set 
of points (degenerate holes) inside rectangle R. The 
objective is to introduce a set of line segments of least 
total length such that each point in P is in at  least 
one of the partioning line segments. We shall refer to 
the two dimensions (or axes) of E’ by the integers 1 
and 2 ( the first dimension (x-dimension, x-axis, or 1- 
axis) and the second dimension (y-dimension, y-axis, 

is robust in the sense that it can 6 e generalized to 

the rectilinear polygon, and eac b of the concave cor- 

(3) (4) 

Figure 1: Subproblem generated by PARTITION. 

or 2-axis) ). 
Let us now explain procedure PARTITION, the 
divide-and-conquer approximation algorithm for the 
RG - P problem given in [3].  Procedure PARTITION 
begins by rotating the rectangle so that 21 2 2 2 .  Then 
it checks if P ( I )  is empty and if so, it returns. Other- 
wise, it introduces a mid-cut or an end-cut. A mid-cut 
is a line segment orthogonal to the 1-axis that inter- 
sects the center of the rectangle ( i.e., it includes point 
(01 + 21/2,02 + x2/2) ) and an end-cut is a line seg- 
ment orthogonal to the 1-axis that contains either the 
“leftmost” or the “rightmost” point in P ( I ) .  A mid- 
cut is introduced when the two resulting subproblems 
have at  least one point each. Otherwise, an end-cut is 
introduced. The end-cut intersects the leftmost point 
if such a point is not located to the left of the center 
of the rectangle, otherwise the end-cut intersects the 
rightmost point. 
It is easy to verify that figure 1 represents all the pos- 
sible outcomes of one step in the recursive process of 
our algorithm. A shaded region in figure 1 represents 
a subinstance without interior points. 

3 Analysis 
Now let us analyze the performance of our algorithm. 
To establish the time complexity bound is simple since 
it follows from the fact that the number of points is 
n;  the time complexity bound in [3]; and the fact that 
O(n) segments are introduced. Now let us concentrate 
on the approximation bound. Let Eopt( IP)  be any 
optimal rectangular partition for I P .  Let R’ be any 
rectangle in it. Note that all the area of RI must also 
be inside RP.  When running the algorithm we may 
think of the problem instance as being formed by I = 
(R, RI, P ) ,  even though the algorithm does not know 
R‘. Let B ( R ’ ( I ) )  be the length of the sides in R’(I )  
located inside R ( I ) ,  and let OV(R’(1))  be length of 
the sides of R’(I )  inside R ( I )  that overlap with the 
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line segments introduced by PARTITION. In section 
4 we establish that the set of segments introduced by 
the algprithm inside or on RI, which we denote by 
SET(R ( I ) )  is such that 

V(SET(R’ (1 ) ) )  5 2 .5B(R’( I ) )  + OV(R’(1) ) .  

Summing over all R’ , 

c V(SET(R‘ (1 ) ) )  _< c 2 . 5 B ( R ’ ( I ) )  + OV(R‘(1) ) .  

Since 
CB(R‘ (1 ) )  = 2m(IP) + p ( I P ) ,  and C O V ( R ’ ( 1 ) )  is 
m( I P )  ( note that the only new segments that overlap 
with the boundary are those in E o f t ( I P )  ), we know 
that 

V ( E a p z ( I P ) )  I 6 m ( I P )  + 2.5p(IP) .  

These facts are summarized by the following theorem. 
Theorem 1: V ( E a p z ( I P ) )  5 6 m ( I P )  + 2.5p(IP). 
Proof: By the above discussion. 

4 Bound for V(SET(R‘(1) ) )  
Let us now show that for every problem instance I de- 
fined above, algorithm PARTITION introduces a set 
of line segments inside R’( I )  whose total length is at 
most 2.5B(R‘( I ) )  + 3.50V(R‘( I ) ) .  In lemma 1 we 
prove a stronger result simpler to prove) that uses 
the CARRY function de ri ned below. One may visual- 
ize our proof as follows. Every time a line segment is 
introduced inside R’ by the algorithm it is colored red. 
The segments in R’ that overlap with a cut ( O V )  or 
segments in B belong to an instance without points, 
are colored blue. Our approach is to bound the length 
of the red segments by that of the blue segments. The 
segments in SET represent the segments introduced 
in R and CARRY represents some previously intrG 
duced red segments that  have not yet been accounted 
for by blue segments. The proof consists of showing 
that at  all times the length of the red segments can 
be accounted by that of the blue segments. Let us de- 
velop some precise technical notation required for the 
definition of the CARRY function. 
A problem instance I consists of an exterior rectan- 
gle defined by R = ( 0 , X  = ( x 1 , x 2 ) ) ,  where 0 is 
a vector defining the origin point and X is a vec- 
tor of dimensions; an interior rectangle defined by 
R’ = ( O ’ , X ’  = ( X ; , X ~ ) ) ,  where 0’ is a vector defin- 
ing the origin point and X ’  is a vector of dimensions; 
and a set of interior points P ( I ) .  When procedure 
PARTITION introduces a cut c (mid-cut or an end- 
cut) it partitions the problem I into two subproblems 
denoted by I ,  and 16. Each of these subproblems 
consists of an exterior rectangle, an interior rectan- 
gle and a set of interior points. When referring to 
problem instance IC, where IC E { I , I a , & , } ,  we use 

R(IC) = ( O ( I C ) , X ( K )  = ( x 1 ( K ) , x 2 ( K ) ) )  to refer 
to the exterior rectangle; R’(I i )  = (O’(Ii),X’(IC) = 
(x’ ( K ) ,  x;(IC)))  to refer to the interior rectangle; and 
P ( K )  to refer to the set of interior points in IC. We 
define SET(R‘(1)) as the total length of the line seg- 
ments introduced inside R’(IC). In what follows we re- 
fer to the two dimensions of E’ by the integers 1, and 
2. For IC E { I , I a l I b }  and 1 5 j 5 2 ,  let F j ( R ( I 0 )  
( Fj(R’(1C)) ) be the set of sides in R ( K )  (R’(Ii)) 
orthogonal to the j-axis. For I< E { I ,  I o l  h,} and 
1 5 j 5 2,  let 

fl(R‘(IC)) = x ; ( K )  and f2(R’(Ii‘))  = x ; ( K ) ,  

be the length of the sides in Fj(R’(1C)); and let 

f i ( R ( I C ) )  = Z Z ( I C )  and f ~ ( R ( 1 i ) )  = x l ( I i )  

be the length of each of the sides in Fj(R(1C)). The 
sum of the length of the sides of R’( I i )  located inside 
R ( K )  (not on the boundary of R ( K ) )  is denoted by 
B(R’(1C)); the sum of the length of the sides of R‘(K 
that are inside R ( K )  (not on the boundary of R ( K )  
and overlap with all c,uts introduced by the ,algorithm 
is denoted by OV R (Ii)); the sides of R (Ii) that 

R ’ ( K ) ,  otherwise they are called non-exposed sides. 
Suppose that PARTITION introduces a mid-cut or 
end-cut c in I that partitions the problem into sub- 
problems I ,  and Ib, then the length of the segments 
introduced inside R’(I)  is denoted by USE(I ,c )  and 
the length of the cut that overlaps with a boundary of 
R’(I)  is denoted by OVC(1,  c) .  Clearly, 

1 
overlap with the si 6 es of R are called exposed sides of 

Problem instance IC E { I ,  I,, I b }  is said to be of type 
E if R’(1l.) = 0, and it is said to be of type L ( K )  = 
i l l ( I i / ,  12y)) if Ij(Iir) sides in Fj(R‘(IC)) are exposed, 
or a1 1 < J I 2. We say that a problem instance is 

of type L + 1 if it is of type ( I 1  + 1, 1 2 )  or ( 1 1 , 1 2  + 
1). Note that for some Ls, L + 1 does not have any 
interpretation. 

We say that an exposed side 
side if either of the following 

there is a non - exposed side in set Fj(R‘(1C)); or 

f j (R ’ (1 i ) )  5 2ff(R’(IC)) for all 1 5 p 5 2 such 
that there is a non - exposed side in Ff(R’(IC)),  
and there is at  least one non - exposed side in 
R’(Ic). 
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Otherwise, we say that it is an irregular side. Note 
that sides are exposed or non - exposed. An exposed 
side can be a regular or an irregular side. A regular 
or irregular side must be exposed. Note that if all 
sides are exposed then all sides are irregular. If is not 
important to identify the type of sides when R (Ii) is 
0. 
If R’(K) is not 0 and there is a t  least one non-exposed 
side in I?’({<), we define mn(K) as w such that 
FW(R’(I<))  contains a non - exposed side of least 
length amongst all non - exposed sides in R‘(K); oth- 
erwise mn(Ii.) is undefined. Note that if there is an 
exposed side in F’(R’(1i)) then all the exposed sides 
in it are either regular or irregular. If R’(K) is 
not 0 and there is at least one non - exposed side in 
R‘(Ii.), we define CARRY(II‘,j) as 2fmn(K)(R‘(K)) 
if the sides in Fj(R’(1i)) are irregular; as O.Slj(I<) 
fj(R’(1i.)) if there is a regular side in Fj(R‘(Ii .)) .  
Otherwise it is defined as zero. We define CARRY(K) 
= E;=, CARRY(K,j) .  
Let 1 be a problem instance that has been partitioned 
by a mid-cut or an end-cut c orthogonal to the 1-axis 
into subproblems I ,  and Ib. If,the cut c overlaps yi th  
a side of R’(I), then either R ( I , )  = R’(I) or R ( I b )  
is 0, or vice-versa. Before proving our main result, a 
couple of technical lemmas need to  be established. For 
brevity we do not include them. The main result of 
the section is given in lemma 1. 
Lemma 1: For any problem instance I ,  

SET( R’( I))+CARRY ( I )  5 2.5B(R’ ( I ) )+OV(  R’(1)). 

Proof: The proof is by induction on the number of 
points inside I ,  i.e., I P ( I )  I. For brevity the proof is 
omitted. An interested reader can find the proof in [2] 

5 Suniniary and Conclusions 
We have developed an O ( n  log n )  approximation al- 
gorithm for the RP - R P  problem that generates so- 
lutions whose line segments have total length at  most 
2.5p(IP)+6m(IP).  Obviously, when p ( I P )  5 m ( I P ) ,  
it generates reasonably good solutions. Our approsi- 
niation bound degrades when p( I P )  is very large corn- 
pared to m ( I P ) .  
\%‘e have also considered a more general version of the 
problem, i.e., when it is defined over Ed for d > 2. Our 
algorithm can be easily generalized for this more gen- 
eral case [2 . The time complexity for the algorithm 
becomes 0 2 dn log n )  and it generates solutions whose 
d-1 volume is at  most (2d-1.5)p(IP)+(4d-2)7n(1P). 
The proof has a couple of additional cases more than 
the one for the case when d = 2. Obviously, when 
p ( I P )  5 m ( I P ) ,  our algorithm generates reasonably 
good solutions. Our approximation bound degrades 
when p ( 1 P )  is very large compared to m(1P . De- 

other case seems difficult. The approach used for the 
veloping an efficient approximation algorithm 1 or this 

case when d = 2, cannot be generalized to  arbitrary 
d.  
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