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Abstract 

We investigate the pin redistribution problem 
(PRP) for  multi-chip modules. A novel transforma- 
tion to the max-flow problem is introduced. This ap-  
proach provides an eficient algorithm forfinding a 2- 
layer solution, whenever one exists. A greedy heuristic 
t o  find a k-layer solution is described. Our approach 
can find a minimum layer solution for two variants 
of the PRP; when each net can be routed on more 
than one layer, and when source and target terminals 
are drilled through all layers. Except for the heuris- 
tic procedure which takes O(km4 log’ m) time, our al- 
gorithms take O( lS lkm2)  time, where S is the set of 
source terminals, m is the number of rows and columns 
in the grid, and k is the number of layers required. 
One can show that generalizations of the k-layer PRP 
are NP-complete problems. 

distribution layer. For simplicity, we omit this spe- 
cial layer, but our algorithms can be easily adapted 
to handle this situation. The pin redistribution layers 
are used to redistribute the chips’ 1/0 pins to a set 
of pins with a minimum spacing, as required by the 
signal distribution layers. This redistribution can also 
be used to spread the pins uniformly over the MCM, 
which leads to fewer signal distribution layers, fewer 
vias, and minimal crosstalk [CLS92]. Lastly, the signal 
distribution layers are used to connect the appropriate 
(redistributed) chip 1/0 pins. 

chip layer 
pin redistribution layers 
signal distribution layers 

1 Introduction 
Figure 1: Multi-Chip Module. 

The packaging between computer chips has become 
a greater factor in system performance as chip speeds 
have increased. Fifty percent of the delay in high- 
performance systems can be attributed to packaging, 
and this will likely increase in the future [BakSO]. 
Multi-Chip Modules (MCMs) have been introduced to 
reduce inter-chip delay by removing one layer of pack- 
aging. This improves system performance and relia- 
bility. In the MCM technology [She93], bare chips are 
placed on a common substrate called the chip layer. 
Directly below the chip layer there are a number of 
pin redistribution layers, and below tfiem there are the 
signal distribution layers (see Figure 1 ) .  Some MCMs 
use the bottom signal distribution layer as a power 

*Research partially supported by NSF Grant CCR-8918409. 

An early example of MCM technology is IBM’s ce- 
ramic multichip technology, used in the IBM 3081 pro- 
cessor in the late ’70s [BB82]. More recent examples 
are IBM’s glass-ceramic/copper module for the Sys- 
tem 390/9000 and DEC’s multilevel thin film for the 
VAX 9000 [Tumgl]. A detailed discussion of various 
MCM technologies is given in [Tum89], 

In this paper, we investigate the k-layer pin redis- 
tribution problem (PRP). This problem is to connect 
(redistribute) the (source) 1/0 pins on the chip layer 
to target locations on the bottom redistribution layer, 
using k redistribution layers. A wiring with the min- 
imum number of redistribution layers (i.e., the opti- 
mization version of the PRP) can be obtained by solv- 
ing a set of k-layer problems. Since an algorithm for 

1066-1395194 $3.00 0 1994 IEEE 
114 



....... ..... 

...... ...... ....... ...... ....... ....... ........ 

*= 5 ....... ....... ........ 

6.. .... .c- [ wire 

........ : ........ ........ : ........ ......... 
(a) First layer (b) Second Layer (k=2) 

source grid points marked by 0 
target grid points marked by x 

Figure 2: PRP Instance 

one of these problems can be easily adapted from the 
other, we will refer to both of these problems as the 
PRP. 

1.1 The Pin Redistribution Problem 

The basic model used is the k-layer routing model 
as described in [LenSO]. In this model, the routing 
graph consists of k stacked grid graphs (each repre- 
senting one layer). The grid graphs (or layers) are 
numbered in increasing order from top (1) to bottom 
(k). Each edge in the graph can accommodate one 
wire segment. Vertical vias are available at each grid 
intersection. 

Given a set of source terminals on grid 1 (the top 
grid) and a set of target terminals on grid k (the bot- 
tom grid), the PRP is to connect each source terminal 
to a different target terminal by a wire in only one 
layer (grid) such that no two wires on the same layer 
(grid) intersect. Note that a source terminal does not 
have to be connected to a specific target terminal; it 
just has to be connected to some target terminal. This 
is the main difference between the PRP and a conven- 

for the source (target) terminal (T, c )  is routed in layer 
i then the grid point ( r , c )  in any layer j > i (j  < i) 
can be used to route another net in layer j. However, 
the grid point ( r , c )  in any layer j 5 i (j 2 i) cannot 
be used by another net. An instance and solution of 
a PRP is shown in Figure 2. 

Two variations of the PRP are also discussed. In 
one variation nets are allowed to be routed on more 
than one layer, and vias are allowed at any subset 
of grid points. Under this model, stack vias are al- 
lowed. The second variation of the PRP is when sourc,e 
and/or target terminals are drilled through all the re- 
distribution layers. These variations can be solved ef- 
ficiently by our technique. 

1.2 Previous Work 

Cho and Sarrafzadeh [CS] introduce and formalize 
the PRP. In their formulation, the PRP is a 6-tuple, 
(k, m, S,  T ,  A,  U )  (see Figure 2), where 

1. k is the number of layers available for pin redis- 
tribution, including the chip layer. 

tional two pin routing problem. 
2. m is the number of rows and columns in the grid. A source (target) grid point is defined as an ( r , c )  - . -  

grid point where there is a source (target) terminal on 
grid l(k). Note that the only vias that can be used 
are at the source and target grid points, and these vias  
can only be used by the corresponding source or target 
terminal. This is because each net has to be routed on 
only one layer. Another observation is that if the net 

3. S is the set of grid points on the chip layer where 
the source terminals are located. 

4. T is the set of grid points on the bottom redis- 
tribution layer where the target terminals are lo- 
cated. 
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5.  

6 .  

X is the minimum legal distance between two par- 
allel wires on the same layer. 

is the distance between adjacent target termi- 
nals (i.e., target terminals are spread uniformly 
over grid k). 

A solution to the PRP is a wiring connecting all the 
source terminals to the target terminals in the k-layer 
grid, such that each net is wired on one layer, no two 
wires intersect, and the minimum distance A between 
two parallel wires on the same layer is maintained. 
Our PRP formulation differs in two ways: (1) there 
is no restriction on the placement of target terminals, 
and (2) the value of X is equal to 1.  

Cho and Sarrafzadeh present three heuristics to 
solve the PRP. Their first heuristic is based on concur- 
rent maze routing. The other two heuristics are based 
on finding a global routing, and then performing the 
detailed routing. They also show that given a special 
global routing with density two (at most two wires 
can be assigned to each grid point), a 2-layer solution 
can be found in polynomial time. However this special 
global routing does not always exist, so in the worse 
case, they need to  double the routing area to generate 
a 2-layer solution. 

We have taken a different approach to  solving the 
PRP. Our approach is based on reducing the PRP to 
the maximum flow (max-flow) problem, which can be 
solved efficiently [Eve79]. We show that given the re- 
striction of A = 1, a 2-layer solution can be found 
quickly, whenever one exists. The time complexity 
of our algorithm is O(m2JSI), which is less than the 
algorithms in [CS]. We then present a heuristic proce- 
dure, based on the 2-layer algorithm to  find a subop- 
timal solution to the optimization version of the PRP. 
Note that in most practical cases a solution using at 
most three layers exists [CS]. We also present an algo- 
rithm for the k-layer PRP when nets are allowed to be 
routed on more than one layer. Lastly, we show that if 
we restrict each source (target) grid point to be used 
only by the wire connecting that source (target) termi- 
nal, a k-layer solution can be found efficiently, when- 
ever one exists. All of our algorithms take O( ISltm’) 
time, except for the heuristic procedure which takes 
0(h4 log2 m) time. 

graph has a positive real capacity associated with it. 
A feasible flow F is any assignment of flow values to 
each of the arcs in the flow graph such that the flow 
along each arc is between 0 and the flow capacity of 
the arc, and the flow at each node is conserved (i.e., 
the flow into a node must equal the flow out of it). 
The max-flow problem consists of finding a maximum 
feasible flow from the source s to the sink t .  There are 
a number of efficient algorithms to solve the max-flow 
problem [AM093]. It is well known that when all the 
capacities are integers, a maximum flow in which all 
the arcs have integer flows exists, and algorithms such 
as Ford and Fulkerson’s or Dinic’s generate such a flow 
[Eve79]. 

Let us now consider the following reduction from 
the k-layer PRP to the max-flow problem. We map the 
routing grid to a flow graph as follows. Each grid point 
is represented by a flow cell (see Figure 3). Each flow 
cell has asubset of the in arcs (IN, IE, IS, IW), out arcs 
(ON, OE, OS, OW), layerarcs (IA, OB), and the inner 
layer arc F. Each arc has capacity 1. A flow cell with 
all the possible arcs is shown in Figure 3a. Flow cells 
corresponding to adjacent grid points are connected 
as follows. Flow cell X immediately to the west of 
flow cell Y has a correspondence between arcs X.OE 
and Y.IW. There is also a correspondence between arcs 
X.IE and Y.0W. A similar arrangement holds for flow 
cells immediately to the east, north, and south, as 
shown in Figure 3b. The inner layer arc is present 
in every flow cell. The only flow cells with layer arcs 
are those representing source and target grid points 
(called source and target flow cells). If flow cells X 
and Y correspond to the same source or target grid 
point in layers i and i + 1, respectively, then X.OB 
corresponds to Y.IA. 

There are two additional nodes, the source s and 
the sink t .  The IA arcs of all the source flow cells 
on grid 1 emanate from s, and all the OB arcs of the 
target flow cells on grid k enter t (see Figure 4). 

source s 
Q 

to the IA arcs of the 

from the OB arcs of the 
target flow cells on grid k 

source flow cells on grid 1 sink t 

(a) global source (b) global sink 
2 Flow Solution 

An input to the max-flow problem is a directed 
graph G, called the flow graph, with two special nodes 
labeled s (source) and t (sink). Each arc in the flow 

Figure 4: Global source and sink (all arcs have capac- 
ity 1). 

Suppose that a problem instance I of the PRP has 
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(a) flow cell with all arcs (b) flow cell connected I f  

Figure 3: Flow Cell (all arcs have capacity 1). 

a k-layer routing. We claim that the max-flow prob- 
lem instance, M ( Z ) ,  generated by our reduction for 
problem instance Z has a maximum flow from source 
to sink equal to  1.91. Let R be any valid routing for 
I .  Now consider net j routed on layer i in Z. For this 
net we construct a flow of one unit from source to sink 
(i.e., its flow path) as follows. Starting a t  the source 
s send a flow of one unit through the source flow cells 
for the net until you reach the part of the flow graph 
representing layer i .  Then send a flow of one unit from 
that flow cell in layer i to the flow cell that represents 
the target grid point for net j along the path corre- 
sponding to the route followed by the wire connecting 
net j in the layout R.  Then from that target flow cell 
to the sink, a flow of one is sent that goes through 
only the corresponding target flow cells for the net. 
The flows for all the nets can be easily combined into 
a valid flow from s to t with value ISI. 

To prove the converse, i.e., show that if there is a 
flow with value IS1 from source to sink in M ( Z )  then 
the PRP has a routing, is not possible. This is because 
the flow might imply a routing for a net in the PRP in 
more than one layer rather than just one. An example 
of this is shown in Figure 5. For this simple example 
there obviously is a 2-layer solution. For more complex 
examples there are no 3-layer solutions, but an illegal 
3-layer solution is found by the algorithm (i.e., some 

nets are routed in two or more layers). However, for 
the case when k = 2, the converse claim always holds. 
For this case, when the flow value is ISl, a flow pat,h 
cannot be on two layers (i.e., each flow path uses the in 
arcs and out arcs in only one layer). This is because 
if a flow path is on both layers it must be blocking 
another flow path, thus the flow value would be less 
than JSJ. 

..... ..... 

.... ....... ...... ...... ...... 
. . . e . . .  . . . . . . .  

....... ............... ..... ....... . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  
I , .  a . .  I e . .  I .  
L. .......................... I ........ l........L......... ...................... ...., 

(a) Fist layer (b) Second layer (c) Thud layer 

Figure 5: Illegal wiring (thick line) that could occur 
with 3-layer PRP. 

Because the capacities are integer, from max-flow 
theory we know there is always a flow with integer 
values on all the edges, and such a flow is obtained by 
most maximum flow algorithms. This flow can be seen 
as consisting of a set of edge disjoint flow paths, and 
these flow paths can be easily translated to a routing 
of each one of the nets in exactly one of the two layers. 
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Therefore, we claim that for the 2-layer case, there 
is a solution to the PRP if and only if the maxi- 
mum flow is equal to  the number of source termi- 
nals (1st). Furthermore, the layout can easily be con- 
structed from the maximum flow. 

For this special type of flow graph, one can show 
that both Ford and Fulkerson, and Dinic’s algorithms 
take time O( ISlm2). This is also faster than Even and 
Tarjan’s algorithm for flow graphs with all arc capac- 
ities equal to one which has time complexity 0 ( m 3 )  
for our special type of graph [ET75]. Let us now es- 
tablish our time complexity bound. Ford and Fulk- 
erson’s algorithm begins with a flow of zero. Then 
in O(m2)  time a flow augmenting path can be con- 
structed, whenever one exists, that when added to the 
previous flow increases the flow value by one. Clearly, 
no more than IS1 of such flow augmentations need 
to  be performed, thus the time complexity becomes 
O( ISlm2). Dinic’s algorithm is more sophisticated, be- 
cause at each iteration a set of augmenting paths may 
be found, and that set normally has cardinality greater 
than one. Each of the phases takes U(m2)  time. For 
a large number of problem instance Dinic’s algorithm 
will be faster than Ford and Fulkerson’s algorithm; 
however, we were able to construct flow graphs for 
which Dinic’s algorithms requires IS1 phases to find a 
maximum flow. 

We propose the following strategy for the k > 2 
PRP. Connect the maximum number of nets in the 
first two layers, while allowing the unconnected source 
terminals to reach layer three. Then repeat the same 
operation for layers three and four, and so on. This 
can be done by modifying the previous flow graph to 
have the OB arcs of both the source and target flow 
cells on the second grid enter 1. Then a cost of 1 is 
placed on each arc in the flow graph, except for the 
arcs from source flow cells to 1, which get a cost of 
2. Now the PRP has been transformed to the mini- 
mum cost flow problem which can be solved efficiently 
[AM093]. This gives the maximum number of con- 
nections on two layers, and source terminals not con- 
nected on the first two layers are available for connect- 
ing on lower layers. When we reapply the algorithm 
on lower layers the grid points of the target terminals 
that have been connected above are no longer avail- 
able for wires, so their inner layer arc is removed. The 
time complexity of this algorithm is O(km4 log2 m). 

2.1 Variations of the PRP 

Two interesting variations of the PRP can be solved 
using the flow strategy. One variation is allowing nets 
to be wired on more than one layer. A k-layer solution 

begin 
create appropriate flow graph for 1-layer PRP; 
apply max-flow to the flow graph; 
while (flow value < [SI) 

begin 
add one layer to the bottom of the flow graph; 
extend flows that have already been found; 

apply max-flow to the new flow graph; 
through the added layer; 

end 
output the flow paths found; 

end 

Figure 6: Algorithm for PRP variations 

for this variation is found by the max-flow algorithm 
on our original flow graph construction. Note that the 
PRP solution in Figure 5 would be a legal wiring under 
this variation. The flow graph can easily be modified 
to allow vias at locations other than the source and 
target grid points. If vias are allowed at grid point 
( r , c )  then the corresponding ( r , c )  flow cell will have 
the layer arcs. Note that the solution may include 
stacked vias. The algorithm given in Figure 6 finds a 
minimum layer solution for this variation of the PRP. 

Note that the flows found in iteration i are not dis- 
carded in iteration i + 1. Thus the total number of 
augmenting paths that need to be found is ISI. The 
size of the final flow graph is O(km2). This leads to a 
time complexity bound of 0 ( ( S ( k m 2 ) .  

A second variation is restricting each source and 
target grid point to be used only by the wire connect- 
ing the corresponding source or target terminal. In 
other words, the source and target terminals are drill 
through all the layers. This is similar to many printed 
circuited board (PCB) technologies. In this variation, 
we can also obtain a k-layer solution efficiently, when- 
ever one exists. The modification of the original flow 
graph needed is removing the in arcs for each source 
flow cell, and removing the out arcs for each terminal 
flow cell. This means that no wire can go through the 
source and target grid points. Then the max-flow al- 
gorithm is applied. A flow of IS1 can be achieved in the 
graph if and only if there is a k-layer layout. A min- 
imum layer solution can be found in time O( ISlkm2) 
by using the algorithm given in Figure 6. The only 
difference from the first variation is in the flow graph 
construction. 
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3 Generalized PRP 

Our algorithms can easily be adapted to  handle the 
case when the grid has holes in i t ,  where routing is 
not possible. This could occur, for example, if areas 
are reserved for routing power and ground. Our algo- 
rithms can also handle a more general PRP in which 
the grid graph is replaced by an arbitrary graph. We 
can show (proof omitted) that this generalized PRP 
is NP-complete for k > 2 layers. As before, we can 
obtain a k-layer solution (whenever one exists) for the 
generalized PRP, under the two variations discussed 
above. However if we weaken the second variation by 
restricting only the source grid points or only the tar- 
get grid points instead of both, the problem becomes 
NP-complete again. 

4 Conclusion 

We introduced a novel way of solving the P R P  
based on maximum flow and minimum cost flow al- 
gorithms. This led to an efficient algorithm for the 2- 
layer PRP. We also proposed a greedy heuristic for the 
k-layer PRP. Two variations on the k-layer PRP were 
solved by the flow technique. This technique also can 
be used for the generalized k-layer PRP. We can show 
this problem is NP-complete for k > 2. Currently 
we are studying the case when X > 1, and trying to 
extend the NP-Completeness result to the grid PRP. 
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