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ABSTRACT

In this paper we study the computational aspects of the gate array global routing problem. We
develop an algorithm that generates a routing with congestion which is bounded by 2*OPT, where OPT is
the congestion of an optimal solution. Our algorithm reduces the global routing problem to the solution of
a set of linear programming problems which can be solved efficiently. Our algorithm is the only known
algorithm for which one can show that the solution value is within a fixed percentage of the optimal solu-
tion value. '
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INTRODUCTION

Gate arrays have been successfully used as a design tool to generate, with a fast turnaround time,
computer chips. In this paper we study the computational aspects of the gate array global routing problem.
A typical gate array is given in figure 1. A gate array consists of 1-1 rows of active areas, i.e., where com-
ponents (transistors or high level function blocks) have been placed. In each of the active areas there is
only one layer for routing. All the routing wires that one may introduce in these areas wires that run along
the vertical tracks. Between every pair of adjacent active areas, there is a nonactive area or (horizontal)
channel in which two layers are available for routing. The wires in one layer must run along the vertical
tracks and the wires in the other layer must run along the horizontal tracks.
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Figure 1: Typical gate array.

In the gate array design methodology, we initially place the components (transistors, high level func-
tion blocks, etc.) on the active areas and then we try to interconnect all points that need to be made electri-
cally common by using the tracks available for wiring. This procedure is repeated until a successful wiring
is obtained, or until we have enough confidence that such wiring does not exist. In the latter case we parti-
tion our circuit into two or more computer chips.

In this paper we present an algorithm to solve the gate array global routing problem. The typical

approach for solving this routing problem begins by dividing the gate array into r by ¢ cells as illustrated in
~figure 2. The cells are referred toas C; ; for 1<i<rand1<j<c. CellC; ; , contains the set of points §; ;

that need to be made electrically common. The number of elements in each of these sets is at most p. The
set of points § = U S; ; in all cells has been partitioned into N = { Ny, Ny, ..., N, }. Each set N; is called a
net. All the points in each net need to be made electrically common by interconnecting them by wires.
Each wire must follow a path in the routing regions specified above, and since there are two layers the path
consists of alternating vertical and horizontal line segments. Note that in this design methodology the
number of tracks available for wiring is an upper bound on the maximum number of wires that cross from
one cell to any of its adjacent cells. The typical approach for solving the gate array routing problem con-
sists of the following two steps:

(1)  Global Routing: Find the global routing R, which specifies for each net the set of cell boundaries that
the wire connecting all the points in this net cross. In a global wiring R the number of wires that
cross the boundary between adjacent cells must not exceed the capacity of the cell, i.e., the number
of tracks that cross the edge.

(2)  Detail Routing: For each net specify the exact position for the wires,
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Of course not all global routings R have a detailed routing. However, the complexity of our problem is
greatly reduced by dividing our routing problem into two subproblems.
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Figure 2: Partition of thé géte array.

In this paper we assume that all nets are of size two. An approach similar to ours can be used to
solve the more general problem. Figure 3 shows different global wires that connect a net. A wire is called
a t-turn wire if it makes t turns, i.e., it bends t times (see figure 3). A global wiring R is called a t-turn glo-
bal wiring if every wire that connects a pair of points contains at most t turns or bends. The capacity of the
edges adjacent to C; ; is given by v; J-1> Vi j» By j and b ; (see figure 2). Of course v; ¢ = v =0forl1<i
Sr;and hy; = h, ; =0 for 1 <j<c. For a global routing R, let x; ; 0,;) be the number of wires that cross
the boundary between C; ; and C; j,; (C;; and Cyyy ;). The objective of the global routing problem is to
find a global routing R such that the congestion (defined by B = max {x; Jj»Yi.j}) is least possible. Karp et.
all. [KL] showed that the global routing problem is NP-complete even when p = 1 and all the nets are of
size two. Shing and Hu [SH] developed a polynomial time algorithm to generate suboptimal solutions to
the gate array global routing problem. Raghavan and Thompson [RT] developed algorithms that guarantee
provable good solution with high probability. These two algorithms generate a solution by reducing the
global routing problem to a linear programming problem. Other algorithms for our problem appear in
[GAM], [NH], [TT] and [VK]. The techniques behind these algorithms ranges from simple heuristics to
simulated annealing. The underlying characteristic of all the previous algorithms for global routing is that
none of them have been shown to generate solutions within a fixed percentage of the optimal solution
value. That is the main difference between our algorithms and the previous algorithms for global wiring.

Let OPT, be the congestion of an optimal k-turn routing R and let OPT be the congestion of an
-optimal routing R (there is no limit on the number of bends in any wire). Clearly OPT},; < OPT, and
OPT, < OPT. Karp et. all. [KL] also showed that for some problem instances OPT; > ((r+¢)/2)OPT. The
algorithm developed by Thomson and Raghavan generates a routing with congestion at most 2*OPT .
However, this does not imply that such routing has a congestion bounded by 2*OPT. A wire is said to be a
t-turn falling wire if it is a t-turn wire and every horizontal line intersects at most once the vertical sections
of the wire. All the wires in in figure 3, except for the 6-turn wire, are falling wires. A global routing R is
said to be a t-turn falling routing if all the wires are t-turn falling wires. Let OPT,, be the congestion of an
optimal k-turn falling routing R and let OPT be the congestion of an optimal falling routing R (there is no
limit on the number of bends in each wire). Clearly, OPT, < OPT,C' and OPT < OPT’. However, OPT and
OPT” are in general very close to each other. In this paper we develop an algorithm that generates a rout-
ing with congestion which is bounded by 2*OPT". It is interesting to note that the wirings generated by our
algorithm have the same provable good behavior as the ones generated by the algorithm in [RT). Our algo-
rithm reduces the global routing problem to the solution of a set of linear programming problems which can
be solved by the classical algorithms [GA] or the newer algorithms [Ka], [K], and [Va].
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Figure 3: t-turn global wires.

IT. TRANSFORMATION TO THE VIA PLACEMENT PROBLEM

Let us now outline our approach. First we transform the problem to an equivalent problem whose
solution can be used to solve the original problem. In the new problem we also have r*c cells denoted by
C; ;- Associated with cell C; ; there is a region for placing via columns referred to as via slot V;;- Letus
assume for the moment that net N; consist of points located in cells C 1,1 and C44. In this case we introduce
three via columns. Each via column has to be placed in one of the via column slots formed by the via slots
located in the same column. The ith via column has a pin in row i and a pin in row i+1. In figure 5 (1-turn)
all the via columns are placed in via column slot 4; in figure 5 (2-turn) all the via columns are placed in via
column slot 2; in figure 5 (3-turn) the first two via columns are placed in via column slot 2 and the last one
in via column slot 4; in figure 5 (4-turn) the first via column is placed in via column slot 2 and the other two
in via column slot 3; and in figure 5 (5-turn) the ith via column is placed in the i+1st via column slot. In the
new problem we only care to count the wires that cross the thick lines (see figure 5). Note that any t-turn
falling wire can be obtained by placing the via columns in the appropriate via column slots. The global
routing for the original problem is obtained by ignoring the via points and considering only the "thick"
boundaries crossed by the wire.
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Figure 4: Component cells and via slots.
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Figure 5: t-turn global wires after placement of the via columns.
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At this point the original problem has been transformed into the via placement problem. A similar version
of this problem, the via placement problem for MPCBs, has been studied in [GK]. Gonzalez and Kurki-
Gowdara {GK] present a polynomial time algorithm that generates solutions that are within twice the
optimal solution value. The main difference between these problems is that in the via placement problem
for MPCBs we only care to minimize the tow congestion. The column congestion is not important. The
main problem now is how to achieve also a small column congestion.

A solution to this more complex problem can be obtained by modifying the previous transformation.
The new problem has a solution in which every vertical or horizontal wire crosses no more than one of the
thick boundaries. For problems of this type we have developed an algorithm similar to the one in [GK] that
generates a solution with objective function value within twice the value of an optimal solution. The tech-
nique is similar to the one in [GK], but the analysis is much more complex. The idea of "short wires" is
abstracted in the following two figures where the via slots have been granulated into a set of smaller slots.
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Figure 6: Component cells and via slots that allow "short" wires.
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Figure 7: Global wirings using via column slots that allow short wires.

We proposed an algorithm to solve the global routing problem in gate arrays. Our algorithm consists
of transforming the problem into a set of linear programming problems, which can be solved efficiently.
The main advantage of our algorithm over previously known algorithms is that our algorithm generates
solutions that are provably good. The difference with respect to the time complexity of our algorithm and
the ones in [RT] and [SH] is minimal since in both cases we transform the problem into a linear program-
ming problem. From the practical point of view, our algorithms are important because they provide us with
an estimate of the optimal solution value. In practical situations our algorithm should be run concurrently
with the other algorithms and then select the best of the solutions. With our bound we can estimate the
quality of our solutions.
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WORKING PAPER:
The Weighted Variable Power Problem

J. Barr and T. Gonzalez
UC Santa Barbara

May 15, 1996

1 Variable Power (Hu and Engel)

A traffic matriz D is an n by n matrix with non-negative entries. Entry d;; represents the
traffic from site ¢ to site j. To simplify our notation we assume that 0 <7< n,and 0 < j < n.
The total amount of power available is given by a positive number p The number of links
that can be active simultaneously is a positive integer ¢ (channels). A (c,p) switching matriz
(cpSM) is an n by n matrix of nonnegative numbers with at most one nonzero entry in each
row or column and at most ¢ nonzero entries altogether. The sum of the entries of a cpSM
must not exceed p, i.e., 3 d;; < p. A cpSM switching matrix represents the traffic that can
be carried during one time slot. The number of time slots is a positive integer ¢.

The Variable Power (VP) problem is defined as follows, given p, ¢, ¢, and D, to determine
whether or not there exist cpSM switching matrices 51,5, ...S; such that D = 3% _, Sy.
Hu and Engel showed that the VP problem is NP-Complete, by*reducing 3-partition to it.

3-partition

INSTANCE: A finite set A of 3m elements, a bound B € Z%, and a size s(a) € Z1 for each
a € A, such that, B/4 < s(a) < B/2, and ¥ s(a) = mB

QUESTION: Can A be partitioned into m disjoint sets A;, Ay, ..., Ay, such that Yo, 4. s(a) =
B > 2 for 1 < i < m? Note that each of the sets in a 3-partition must have exactly there
elements.

Theorem 1.1 The VP problem is NP-complete.

Proof: It is simple to show that VP is in NP. We now give Hu and Engel’s polynomial
reduction from 3-partition to VP. Given an instance of 3-partition I3P we construct the
instance IVP of VP as follows.
Let D be a 3m by 3m diagonal matrix with diagonal entries s(a1),s(az),...,s(asn), let
p = B be the power constraint, let £ = m be the time constant, and let ¢ = 3 be the channel
constraint. The correspondence of these two problems is obvious.
]

Definition 1.1 A star network is a network configuration in which a single site (the hub)
communicates with all other sites, and each site communicates with the hub.




A star variable power (SVP) problem is the VP problem restricted to all entries in the D
matrix being zero except of the ones in row 0 and in column 0.

Theorem 1.2 The star variable power problem is NP-complete.

Proof: It is simple to show that SVP is in NP. We now give Hu and Engel’s polynomial
reduction from 3-partition to SVP.
Given an instance of 3-partition I3P we construct the instance ISVP of SVP as follows.
Let D be a 3m + 1 by 3m + 1 matrix whose entries d; ; are all zero except:

doj=Bforl <j<m
dio = B —s(a;)for 1 <7< 3m

So, row 0 of D has exactly m nonzero entries, all equal to B. Column 0 of D has exactly
3m nonzero entries. All other entries are zeroes, so D is the traffic matrix of a star network.
Let p = B be the power constraint. Let ¢ = 3m be the time constant. Let ¢ = 2 be the
channel constraint.

We now show that ISVP can be scheduled in ¢ time slots iff I3P has a 3-partition. The
proof is in two parts.

(a) If I3P has a 3-partition then ISVP has a schedule.

Let A;, As, ..., A, be a 3-partition for I3P, ie., Ay, Ag, ..., A, is a partition of A into
three elements subsets such that the sum of the sizes of the element in each set sums up to
exactly B. For each set A; we construct three switching matrices. For A; = {a,b, c} the first
switching matrix has nonzero entries d,o = B — s(a) and do; = s(a), the second switching
matrix has nonzero entries dy o = B — s(b) and do; = s(b), and the third switching matrix has
nonzero entries d.o = B — s(c) and dp; = s(c), Clearly each of the three switching matrices
satisfies the power constraint, and the channel constraint. Therefore the concatenation of the
m switching matrices constructed from the A;s also satisfies the time constraint and forms a
schedule for ISVP.

(b) If ISVP has a schedule, then the I3P has a 3-partition.

Clearly, the sum of all the entries in D is 3mB. Since t = 3m and p = B it must be that
each switching matrix must sum up to B. Since there are 3m positive entries in column zero
and one can use at most one such entry in each switching matrix, it follows that each entry in
column zero must be in exactly one switching matrix. Reorder the switching matrices so that
the one for that uses entry d; o is the :** one. We say that the i** switching matrix represents
element a;. Since p = B, each switching matrix matrix must sum to B and one can only use
one entry in row zero in each switching matrix, it then follows that exactly one entry in row
0 in the 74 switching matrix must be nonzero and has the value s(a;). Since D = 3k _, S, it
must be that the switching matrices that contribute to do ; must contribute exactly B units,
and and the elements a; these switching matrices represent sum to B. Therefore, A has a
3-partition.

O

2 Weighted Variable Power (New Result)

The Weighted Variable Power (WVP) Problem is a generalization of the VP problem. A

traffic matriz D is an n by n matrix with non-negative entries. Entry d; ; represents the traffic
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from site ¢ to site j. To simplify our notation we assume that 0 <i <n,and 0 <j <n. A
weight matriz W is an n by n matrix with positive entries. Entry w; ; represents the amount
of power needed to transfer one unit of traffic the from site 7 to site j. To simplify our
notation we assume that 0 < : < n, and 0 < j < n. The total amount of power is given by a.
positive number p The number of links that can be active simultaneously is a positive integer ¢
(channels). A (¢, p) switching matriz (cpSM) is an n by n matrix of nonnegative numbers with
at most FOUR nonzero entry in each row or column and at most ¢ nonzero entries altogether.
The total (weighted) amount of power used must not exceed p, i.e., Ywi;-dij <p. AcpSM
switching matrix represents the traffic that can be carried during one time slot. The number
of time slots is a positive integer t.

The Weighted Variable Power (WVP) problem is, given p, ¢, t, W, and D, to determine
whether or not there exist integer valued cpSM switching matrices Sy, Sa,...S; such that
D=3%%_,5;.

The differences between the VP and the WVP problem are: the power constraint is
weighted (3 wi; - di; < p rather than just d;; < p), the switching matrices are integer
valued (rather than real values), and there can be four nonzero entries in each row or col-
umn in each switching matrix rather than just one. We show that the WVP problem is
NP-Complete. We reduce 3-partition to WVP.

Theorem 2.1 The WVP problem is NP-complete.

Proof: It is simple to show that WVP is in NP. We now give polynomial reduction (identical
to the one by Hu and Engel) from 3-partition to WVP.

Given an instance of 3-partition I3P we construct the instance IWVP of WVP as follows.
Let D be a 3m by 3m diagonal matrix with diagonal entries s(ay), s(az), ..., s(asn), and all
the entries in the W matrix have value 1. Let p = B be the power constraint, let t = m be
the time constant, and let ¢ = 3 be the channel constraint. The correspondence of these two
problems is obvious.

0
We now show that the problem remains NP-complete even when the network configuration is
a star network.

Theorem 2.2 The star weighted variable power problem is NP-complete.

Proof: It is simple to show that SWVP is in NP. We now give a polynomial reduction from
3-partition to SWVP similar to the one by Hu and Engel for the SVP.

Given an instance of 3-partition I3P we construct the instance ISWVP of SWVP as follows.
Let D be a 12m + 1 by 12m + 1 matrix whose entries d; ; are all zero except:

doj =B for1 <3 <10m
dip =B —s(a;) for 1 <7< 3m
dio=Bfor3m+1<i<12m

Column zero and row zero for the weight matrix W have the following entry values and
the rest are not important.



doj=1for1<j<m

(loysz2 form+1<357<10m
dip=1for1 <:<3m
d,»,(,:BGforSm-l—lSz'SlQm

So, row 0 of D has exactly 10m nonzero entries, all equal to B. The first m entries have
weight 1, and the remaining ones have weight B2. Column 0 of D has exactly 12m nonzero
entries. The first 3m entries have weight 1, and the remaining ones have weight B®. All other
entries are zeroes, so D is the traffic matrix of a star network. Let p = 3B” 4+ 3B + B be the
power constraint. Let ¢ = 3m be the time constant. Let ¢ = 8 be the channel constraint (this
will always be satisfied because there is only one row and column in D with nonzero values).
We now show that ISWVP can be scheduled in ¢ time slots iff the I3P has a 3-partition. The
proof is in two parts.

(a) If I3P has a 3-partition than ISWVP has a schedule.

Let Ay, Ay, ..., Ay be a 3-partition for I3P, i.e., Ay, As,..., A, is a partition of A into
three elements subsets such that the sum of the sizes of the element in each set sums up to
exactly B. For each set A; we construct three switching matrices. For A; = {a,b,c} the first
switching matrix has the following nonzero entries, and the corresponding weights are given
below.

deo = B — S(a) dm+9(i—1)+1,0 =B dm+9(z'—1)+2,0 =B dm+9(z',—1)+3,0 =B

— — RS — _. 6
Wgo =1 Wm4+9(i—-1)+41,0 = B Wim+9(i—-1)4+2,0 = B W 49(i—1)+3,0 = B
do,i = S(G) d0,3m+9(i—1)+1 =B d0,3m+9(i—1)+2 =B d0,3m+9(i—1)+3 =B
=1 —1y41 = B? 1)z = B? —1)43 = B?
Wo,; = Wo,3m49(i—1)+1 = Wo,3m49(i—1)+2 = Wo,3m+9(:-1)+3 =

the second switching matrix has nonzero entries

db,O =B - S(b) dm+9(i-—1)+4,0 =B dm+9(i—1)+5,0 =B dm+9(i-1)+6,0 =B

6

wpo = 1 Win+9(i—1)+4,0 = B Wm+49(:—1)+5,0 = B¢ Wm+9(i-1)+6,0 = B¢
do,i = S(b) d0,3m+9(i—-1)+4 =B d0,3m+9(i—-1)+5 =B d0,3m+9(i—1)+6 =B
— _ B2 — 2 — R2

wo; =1 Wo,3m4-9(i—1)+4 = B Wo,3m4+9(i—1)+5 = B Wo,3m49(:i-1)+6 = B

the third switching matrix has nonzero entries

dc,O =B — S(C) dm+9(i—1)+7,0 =B dm+9(i—-1)+8,0 =B dm+9(i—1)+9,0 =B

- —_ 6 _ 6 _ 6
Weo = 1 Wm+49(i—1)47,0 = B Wm49(i—1)48,0 = B Wimn49(i—1)+49,0 = B
dO,i = S(C) d0,3m+9(i—1)+7 =B d0,3m+9(i—1)+8 =B d0,3m+9(i—1)+9 =B
R . = B2 , = B2 ; = B?
Wo,; = Wo,3m49(i—1)+7 = Wo,3m+9(i—1)+8 = Wo,3m+9(i—1)+9 =

Multiplying the weights by the transmission we know that the power used is B+3B7+3B3
which is equal to p. So, each of the three switching matrices satisfies the power constraint,
and the channel constraint. Therefore the concatenation of the 3m switching matrices also
satisfies the time constraint and is a schedule for ISWVP.

(b) If ISWVP has a schedule, then the I3P has a 3-partition.
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We now claim that a feasible schedule must have each of its switching matrices with at
most 3B transmissions with weight B®. Suppose not, suppose that one such switching matrix
has more than 3B of such transmissions. Then the power consumed by those entries is at
least 3B” + B® but that is greater than p = B + 3B7 + 3B because B is at least 2. Therefore
every switching matrix in a feasible schedule must have at most 3B entries with weight BS.
Since the sum of all the entries in D with weight B® is 9mB, and ¢ = 3m, it must be that all
the switching matrices in a feasible schedule have exactly 3B transmissions with weights BS.

At this point one can use similar arguments to show that all the switching matrices in a
feasible schedule have exactly 3B transmissions with weights B2. Similarly, one can show that
all the switching matrices in a feasible schedule have exactly B transmissions with weights 1.

Since there can be at most four different transmissions in each row and in each column, it
must then be that each switching matrix in a feasible schedule has exactly three transmissions
of B units each with weight B®, exactly three transmissions of B units each with weight B2,
and two transmissions (one in column zero and one in row zero) of a total of B units with
weight 1. Reorder the switching matrices so that the one for that uses entry d; o is the i** one.
We say that the i** switching matrix represents element a;. Since D = S 1 Sk, it must be
that the switching matrices that contribute to dy ; must contribute exactly B units, and the
elements a; that these switching matrices represent sum to B. Therefore, A has a 3-partition.
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