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ABSTRACT

Sensor networks are distributed systems constrained by
power and memory resources that can span large geo-
graphic regions. We consider the problem of placement of
a fixed number of base stations k, in a N x N grid of sen-
sor nodes in order to aggregate and process the data. Every
node transmits data to the closest base station via Manhat-
tan routing. The communication cost is the length of the
shortest path between the sensor node and the base station.
In such an environment, we try to determine the optimal
placement of base stations in order to optimize the overall
communication overhead in transmitting data from sensor
nodes to the base station. We first present a greedy heuristic
which places the base stations in a specified fashion. Then,
we give the lower bounds (for communication overhead)
for any such placement. We also present an near optimal
algorithm for such a placement. The experimental results
show that our algorithms perform close to the optimal.
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1 Introduction

Governments are now planning to deploy large scale
sensor networks in order to provide solutions to challeng-
ing problems: real-time traffic monitoring, safety monitor-
ing (structural, fire and physical security monitoring), mili-
tary sensing and tracking, seismic measurement, and wild-
fire tracking. Wireless Sensor Networks have merged as a
new information gathering paradigm based on the collec-
tive effort of a large number of sensing nodes. In such net-
works, nodes act in response to environmental events and
relay collected and possibly aggregated information with
the help of a wireless network to the base stations. The goal
of active sensornet research has been to lower communica-
tion in order to reduce power consumption and increase the
lifetime of the network. We deal with the problem of opti-
mal placement of & base stations in a nn X n grid (2D-mesh)
network. Every sensor node forwards data to the “closest”
base station, where the distance is defined by the Ly met-
ric. In other words, we desire to locate k stations on the
grid such that the sum of distances from each of nodes to
the closest station is minimized. So, we are trying to solve

the k-median problem for the grid setting where the dis-
tance measure is L.

We present related work and background in Section 2.
In Section 3, we describe our algorithms and evaluate the
performance of our algorithms in Section 4, and conclude
in Section 5.

2 Related Work

The general problem that the paper addresses—k-
median—has been extensively studied in classification and
data mining. The facility-location problem is somewhat
similar to the k-median problem: we are given a set S =
Z1,...,Zn of n points together with the cost ¢; of open-
ing a facility at z;. We are to find a set F' of facilities to
minimize the sum of distances from each points of S to the
closest facility, with an additional cost of opening the facili-
ties. Hochbaum [5] gives a O(log n) greedy approximation
algorithm; Korupolu et. al {7] give a (5+€)-approximation
for the problem. Shymos et. al [10] give a 3.16 approxi-
mation, improved to 2.41 by Guha and Khuller [4] finally
improved to 1.74 by Chudak [3].

The k-median problem is NP-hard for arbitrary met-
ric spaces. Lin and Vitter [8] use filtering to round frac-
tional solutions of linear programming relaxations of the
problem. They also [9] give a 2(1 + €) approximation
using (1 + 1/€)k median locations. Jain and Vazrani [6]
give a primal-dual 6-approximation for the capacitated ver-
sion of the problem (the medians can be placed only in
specific places). Charikar and Guha [1] refine it to a 4-
approximation algorithm. Finally, they [2] present a first
constant-factor (6.67) approximation to the general prob-
lem.

3 Problem

Given an n x n grid of sensors and a positive integer k,
our problem is to place in k of the sensors a base station.
Our objective function is to minimize the summation of the
Manhattan distance from each sensor to its closest base sta-
tion. The idea is that the the sensors will communicate with
one of its closest base stations where their information will
be processed and summarized. Then the bases stations will
communicated with each other figure out what is the global
state of the system. In this paper we will solve the first



problem. Namely, given a grid (or lattice) where the sen-
sors are located at the intersection of each tow 4 and col-
umn j and given a positive integer k, find a subset of & grid
points B C {(3,7)|1 <i < n,1 < j < n} insuch a way
that 35, 32, mingy,jnepd{(i,5), (i', j') }.

3.1 Lower Bounds

Suppose that we locate a base station at the center of the
n x n grid. Then there is one sensor at a distance zero from
it, 4 sensors at a distance 1 from it, 8 sensors ar a distance 2,
..., and 4i sensors at a distance ¢ fromit as long as i < n/2.
Let us now define the diamond of size s for the base station
(1,7) as the set of all the sensors located at a distance at
most s ~ 1 form (i, 7). Clearly the number of such points,
provided that (4, j) is at the center of the n X n grid and
s<n/2isl+ Z;=2 4(j—1). The objective function value
of the a diamond of size s is therefore z;=2 4(; - 1) =
2((s — 1)s(2s — 1))/3.

Suppose now that n? is divisible by k, and that
n?/k = 1+ 35 _,4(j — 1) for some positive integer s.
Then the objective function value of an optimal solution
must be at least equal to the objective function value of a
diamond of size s multiplied by k.

Theorem: Given n and k an optimal solution to our
problem is at least k - 2((s — 1)s(2s — 1))/3, where s =
k+\/§§f‘7——k7

Proof: The positive roots of 1+377_, 4(j —1)—n?/k
are a solution and the only positive root is given above. []

The above expression is

(n? — k)v2kn? — k2
3k

3.2 Simple Upper Bound for a special case

In this section we find a simple lower bound for the case
when there exists two positive integers a and b such that
k = a? and n = ba?.

In this case our solution is straight forward. We place
the base stations in a subgrid of size k x k& where each pair
of base stations in each row is at a distance b from each
other and at a distance b/2 from the left and right boundary
of the sensor grid. The same relation holds for the columns.

The objective function of the solution that we propose
is 2 — p2
ko : .
Here is how to established the above equation. The
objective function value of our solution is

VAST VAST
o> i+

i=0 j=0

Multiplying by 4k we obtain

Our lower bound from above is
(n® — k)V2kn? — k?
3k
The upper bound divided by the lower bound is

6kn? — 3vkn?)
2(n? — k)v2n2k - k2

Substituting 7 = ba? and k = a? and simplifying we
get

3a*b?(ab — 2)
2(a?b? — 1)a®v/2a%b? - 1
Suppose that n?/k = a?b? > ¢, for some integer
¢ > 1. Then, a?b® — 1 > (1 — 1/c)a?b? and 2a2b® —
1 > (2 — 1/c)a®b?. Replacing the above inequalities and
ab — 2 < ab, the approximation bound becomes
3

2(1-1/c)/2—-1/c

The following table gives the approximation bound
for different values of ¢ = n?/k.

Table 1. Approximation bound for different values of c.

c=n’lk 2 3 4 5 6 7 8 9

approx 245 | 1.74 | 1.51 | 140 | 1.33 | 1.28 | 1.25 | 1.23

c=n’/k ] 10 | 11 12 | 137 14 ] 16 ] 19 [ 26

approx 121 ) 1.19 | 118 | 1.17 | 1.16 | 1.15 | 1.13 | 1.11

It also works for ¢ = 2, but not for ¢ = 1. Need to say
something when c is small.

3.3 Upper Bound for the General Case

The case when k # a? for some positive integer a. In this
case we use the next largest integer and leave some vacant
base stations. In this case the approximation bound is ...
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