
MultiMessage Multicasting: Complexity and Approximations

Teofilo F. Gonzalez
University of California at Santa Barbara

teo @cs. ucsb. edu

Abstract
We consider the Multimessage Multicasting problem
for complete static networks. We present problem in-
stances that require 8 time to transmit all their mes-
sages, where d is the maximum number of messages
that each processor may send (receive). We show that
when messages have fan-out k = 1, the problem is
polylomially solvable, and becomes NP-complete when
k 2 2. We present an algorithm to generate schedules
with total communication time 2d- 1 when k = 2. We
present an efficient algorithm with an approximation
bound of qd + k t (d - l), for any integer k > q 2 2 .
Our algorithms are centralized and require all the com-
munication information ahead of time. We discuss
several applications when all of this information is
available. By doubling the number of communication
phases, our results apply to the Meiko CS-2 machine
and in general to dynamic networks.

1. Introduction

1.1. The Problem

The MultiMessage Multicasting (M M c) problem
over an n processor Network consists of Snding a
communication schedule with least total communi-
cation time for multicasting (transmitting) a set
of messages. Specifically, there are n processors,
P = {PI, P2,. -. , Pnj, interconnected via a network
N . Each processor is executing processes, and these
processes are exchanging messages that are routed
through the links of N . Our objective is to deter-
mine when each of these messages is to be transmit-
ted so that all of the communications can be carried
in the least total amount of time. We also show that
by doubling the number of communication phases, our
results apply to the Meiko CS2 machine and in gen-
eral to dynamic networks. Since the M M c problem is
not well known, the introduction is lengthy. A similar
introduction also appears in [7] and [8].

Routing in the complete static network (there are
bidirectional links between every pair of processors),

1060-3425/97 $10.00 0 1997 IEEE

is the simplest and most flexible, when compared to
other static networks with restricted structure like
rings, mesh, star, binary trees, hypercube, cube con-
nected cycles, s h d e exchange, etc., and dynamic net-
works, like Omega Networks, Benes Networks, Fat
Trees, etc. The minimum total communication time
for the M M c problem is an obvious lower bound for
the total communication time of the corresponding
problem on any restricted communication network.
But, most interesting, the M M c for dynamic net-
works that can realize all permutations and replicate
data (e.g., n by n Benes network based on 2 by 2
switches that can also act as replicators) is not too
different, in the sense that the number of communi-
cation phases in these dynamic networks is twice of
that in the complete network. This is because each
communication phase in the complete network can be
translated into two communication phases of these dy-
namic networks. In the first phase data is replicated
and transmitted to other processors, and in the second
phase data is distributed to the appropriate proces-
sors. This well-known approach ([15], [16], and [18])
is discussed in more detail following the definition of
some important terms. The IBM GFll machine [l],
and the Meiko CS2 machine use a Benes networks for
processor interconnection. The two stage translation
process can also be used in the Meiko CS-2 computer
system, and any multimessage multicasting schedule
can be realized by using basic synchronization primi-
tives. One may reduce the translation process to a sin-
gle step, by increasing the number of network switches
about 50% ([15], [16], and [IS]). In what follows we
concentrate on the M M c problem because it has a
simple structure, and, as we mentioned before, results
for this network can be easily translated to other dy-
namic networks.

Formally, processor Pi needs to multicast si mes-
sages, each requiring one time unit to reach any of
its destinations. The j t h message of processor P, has
to be sent to the set of processors Ti,j P - {Pi}.
Let ri be the number of distinct messages that pro-
cessor Pi may receive. We define the degree of a prob-
lem instance as d = max{si,ri}, i.e., the maximum

'

211

number of messages that any processor sends or re-
ceives. We define the fan-out of a problem instance as
k = m a (I Tj,j I }, i.e.
ferent processors that
Consider the following example.

Example 1.1 There are
Processors PI, P2, and P3 must transmit 3, 4 and
2 messages, respectively &e., s1 = 3,s2 = 4, and
s3 = 2). The destinations of these messages in given
in Table I. For this example TI = 4, 7-2 = 4, and
T3 = 4.

Table 1. Message destinations for Example 1 .l.

I Tj,j 11 j = 1 I 2 I 3 1 4 1

It is convenient to represent problem inst
. directed multigraphs. Each processor Pi is re
by the vertex labeled i, and there is a directed edge (or

to vertex j for each message that

r branches asso
ssage are bundled together. The

in Example 1.1 is shown in Fi

Figure 1. Directed Multigraph Representation for Example
1.1. The thin line joins all the edges (branches) in the same
bundle.

The communications allowed in our complete net-
work satisfy the following

1.- During each time unit each proces
mit one message, but such messag
cast to a set of processors; and

Our communication model allows us to transmit
any of the messages in one or more stages. I.e., each
set Ti,- can be partitioned into subsets, and each of
these subsets is transmitted at a different time. Of
course, messages can be sent to all its recipients at the
same time. It is intersting to note that if one forces
every message to be transmitted to all its recipients
at the same time, then there are degree d problem
instances such that all their feasible communication
schedules have a total communication time that can-
not be bounded (above) by any function f (d)- This
situation arises when every pair of messages need to
be transmitted to a common processor, and thus can-
not be sent at the same time. In order to generate
communication schedules with small total communi-
cation time, one needs to be able to partition the set
of destinations of at least some messages and transmit
to each subset at a different time.

A communzcation mode C is a collection of subsets
of branches fkom a subset of the bundles that obey
the following communications rules imposed by our
network:

1.- Branches may emanate from at most one of the

2.- All of the branches end at different processors.

A communication schedde S for a problem instance
I is a sequence of communication modes such that
each branch in each message is in exactly one of the
communication modes. The total communication time
is the latest time at which there is a communication
which is equal to the number of communication modes
in schedule S, and our pmblem consists of construct-
ing a communication schedule with least total com-
munication time. From the communication rules we
know that a degree d problem instance has at least one
processor that requires d time units to send, and/or
receive all its messages. Therefore, d is a trivial lower
bound for the total communication time. To simplify
the analysis of our approximation bound we use this '
simple measure. Another reason for this is that load
balancing procedures executed prior to the multicas-
ting require a simple objective function in terms of
the problem instance it generates. A communication
schedule with total communication time equal to four
for the problem instance given in Example 1.1 is given
in Table 2

Using our multigraph representation we can visual-
ize the M M c problem as a generalized edge coloring
directed multigraph (GECG) problem. This problem
consists of coloring the edges with the least number
of colors (positive integers) so that the communica-
tion rules (now restated in the appropriate format)

bundles in each processor; and

2.- During each time unit each processor may receive
at most one message.

2 12

Time 1
Time 2
Time 2
Time 3
Time 3
Time 4

imposed by our network are satisfied: (1) every pair
of edges &om Herent bundles emanating from the
same vertex must be colored differently; and (2) all
incoming edges to each vertex must be colored Wer-
ently. The colors correspond to Herent time periods.
In what follows we corrupt our notation by using in-
terchangeably colors and time periods; vertices and
processors; and bundles, branches or edges, and mes-
sages.

TIJ : PI + P2 T2,4 : P2 (PI, P3)
T1,2 : PI + P3
T3,2 : P3 + P2
T1,3 : PI + P3
T3,1 : P3 + P2
TI R : PI + P9 I

T2.1 : P2 + PI -
T2,2 : P2 + PI

-
T9 Q : P9 + PQ

1.2. Previous Work and New Results

Gonzalez [7] developed an scient algorithm to
construct for any degree d problem instance a com-
munication schedule with total communication time at
most 8. In Section 2 we present problem instances for
which this upper bound on the communication time
is best possible, i.e. the upper bound is also a lower
bound. We observe that the lower bound applies when
the fan-out is huge, and thus the number of processors
is also huge. Since this environment is not likely in the
near future, we study in subsequent sections important
subproblems.

The basic multicusting problem (BMc) consists of
all the degree d = 1 M M c problem instances. The
B M c problem can be trivially solved by sending all
the messages at time zero. There will be no conAicts
because d = 1, i.e., each processor must send at most
one message and receive at most one message. When
a set of processors is connected via a dynamic network
whose basic switches allow replication, the basic mul-
ticast problem can again be solved in two stages: the
replication step followed by the distribution step ([15],
[HI, [IS]). Let us illustrate this two stage process for
the example given in Figure 2. A B M c problem in-
stance is given on the top of Figure 2. We transmit the
messages in two stages. In the first stage (replication)
we send message a to processors 2 and 3 (processor 1
has this message initially); message b is sent to pro-
cessor 5 (processor 4 has this message initially); and
message c is sent to processors 7 and 8 (processor 6

has this message initially). Then in the distribution
phase, message a in processor 1 is sent to processor 5,
and message a in processor 2 is sent to processor 6,
message a is already in processor 3, and so on. As we
said before, this two stage process can be used in the
MEIKO CS-2 machine.

BASC PROBLEM

DISlTUBUIION

1
REPLIchnON

+

Figure 2. Replication and Distribution.

Let us now consider the case when each message
has fixed fan-out k. When k = 1 (mdtimessage uni-
casting problem MUc) , our problem corresponds to
the Makespan Openshop Preemptive Scheduling prob-
lem which can be solved in polynomial time (Section
3). In this case, each degree d problem instance has
a d color optimal coloration. The interesting point is
that each communication mode translates into a sin-
gle communication step for processors interconnected
via permutation networks (e.g., Benes Network, Meiko
CS-2, etc.), because in these networks all possible one-
to-one communications can be performed in one step.

It is not surprising that several authors have studied
the MUc problem as well as several interesting varia-
tions for which NP-completeness has been established,
subproblems have been shown to be polynomially solv-
able, and approximation algorithms and heuristics
have been developed. Co&nan, Garey, Johnson and
LaPaugh [3] studied a version the multimessage uni-
casting problem when messages have different lengths,

213

each processor can send (receive) a(Pi) 1 1 @(Pi) 2
1) messages simultaneously, and are transmitted with-
out interruption (non-preemptive mode
[20] considered the case when message
indirectly. The preemptive version of these problems
as well as other generalizations were studied by Choi
and Hakimi ([5] , [6], [4]), Hajek and Sasaki 1131, Gopal,
Bongiovanni, Bonuccelli, Tang, and Wong [ll]. Some
of these papers considered the case when the input
and output units axe interchangeable, Le., each pro-
cessor can be involved in at most r(Pi) message trans-
missions (sending and/or receiving). Rivera-Vega,
Varadarajan and Navathe [17] studied, the file trans-
ferring problem, a version the multimessage unicasting
problem for the complete network when every vertex
can send (receive) as many messages as the number
of outgoing (incoming) links. Our M M c problem is
closest to the communication model in the Meiko CS2
machine and it involves multicasting rather than just
unicasting.

The M M c problem is sigrdicantly harder than the
MUG. We show that even when k
version of the M M c problem is N P
tion 4). We also present an algorith
a communication schedule with total communication
time 2d - 1 for the case when the fan-out is two, Le.,
k = 2. Our main result is a linear time algorithm
to construct for problem instances of degree d a com-
municftion schedule with total communication time
qd + k.I (d - l), for any integer k > q 2 2. Our algo-
rithm colors with at most q colors each bundle, and
it is an improvement over the previous algorithm with
time complexity O(n(d(q + k t)) p) [7].

1.3. Applications

Multimessage multicasting arises in many applica-
tions. Suppose that we have a sparse system of linear
equations to be solved via an iterative method (e.g., a
Jacobi-like procedure). We are
and we need to evaluate X (t)
ing the iteration zi(t + 1
system is sparse every f;
A placement procedure assi
the processors. Good placement procedures assign a
large number of fi()s to the processor where the vec-
tor components it requires are being computed, and
therefore can be computed locally. However, the re-
maining fi()s need vector components computed by
other processors. So at each iteration these compo-
nents have to be multicasted (transmitted) to the set
of processors that need them. The strategy is to com-
pute X(l) and multicast the components needed else-

hen compute X (2) , and so on. The same com-
ion schedule can be used at each iteration,

and it can also be used to solve other
the same structure, but different coeffici
proximation bounds are in terms of the lower bound d.
This facilitates the placement procedure since it seeks
a placement that induces a multimessage multicasting
problem with minimum d. Speedups of n for n pro-
cessor systems may be achieved when the processing
and communication load is balanced, by overlapping
the computation and communication time. Another
class of applications include most dynamic program-
ming procedures.

2 . General Approximation Bound

In this Section we present degree d problem in-
stances such that all their communication schedules
have total communication time at least 8. This re-
sult matches nicely with Gonzalez [q linear time algo-
rithm that constructs a schedule with total communi-
cation time @ for every degree d instance of the MMG
problem. For completeness let us discuss Gonzalez [7]
algorithm brie3y

Let P be any n processor instance of the M M c
problem of degree d. The set of @ colors is { (i, j)11 5
i _< d and 1 5 j 5 d}. Now order the incoming edges to

, and order all the bundles emanating from
ex. Assign color- (i , j) to edge e = { p , q } if

the ith bundle eman
and e is the jth incoming edge to

We now show that there are problem instances such
that all their communication schedules have total com-
munication time at least 8. For all d 2 1 the problem
instances Id defined below have the property that all
their communication schedules have total communica-
tion time at least 8. The problem instance 12 is de-
picted in Figure 3. For d 2 l the problem instance, &,
contains two type of processors: s-processors (send-
ing), and r-processors (receiving). The s-processors
(r-processors) send (receive) only messages. The prob-
lem instance has ns s-processors each with d bundles,
where

n s = x i - () + I

Between each subset of d bundles from
, there is a different r-processor
from each of these s-processors. Therefore,

,

8-1 d-1

i=l

For d = 2, n, is 4; for d = 3, n, is 65; and so on.

P
a

the total number of r-processors, nr, is dd
For d = 2, n, is 24; for d = 3, nr is 1179360; and

(2) .

214

so on. Let us now establish our main result of this
section.

Figure 3. Problem instance Id . The triangles represent s-
processors, and the solid circles represent r-pmcessors.

Theorem 2.1 Every communication schedule for eu-
ery problem instance, I d , has total communication
time at least &.

Proof: The proof is by contradiction. Suppose not.
suppose that there is a communication schedule Sd for
problem instance I d with totd communication time
less than 8. For the communication schedule s d , let
&,j be the set of time periods where the communi-
cations of bundle Ti,. take place. We claim that for
1 I 1 < d - 1 there are at most 1 bundles whose cor-
responding transmission time sets (&,j) are identical
and have cardinality 1. The proof is by contradiction.
Suppose that there are 1 + 1 of such sets. Then either
at least two of the corresponding bundles belong to
the same s-processor and hence cannot be assigned to
the same time periods. Or there are 1 + 1 bundles be-
longing to dif€erent s-processors and by the definition
of Id all transmit a message to a common r-processor,
but then this r-processor cannot receive 2 + 1 differ-
ent messages from these 1 + 1 bundles since all these
bundles are transmitted only during the same 1 time
periods. Therefore, there can be at most

bundles having their I&,j with cardinality at most
d - 1. But since ns is greater than this number, it
then follows that there is at least one s-proZessor all
of whose bundles have J&,jI 2 d. Since all the bun-
dles emanating from a node must have disjoint &,j

sets, it then follows that such s-processor requires dL
time periods to communicate, which contradicts the
assumption that S has total communication time less

than &. A contradiction. So all the communication
schedules for problem instance I d have total commu-
nication time at least 8.

CI
To achieve the bound of 8 the problem instance I d

has huge fan-out and as a result of this a huge number
of processors. This is why we concentrate on instances
with small fan-out.

3. Algorithm for the MUc Problem

Let us now consider the multimessage unicasting
problem, Le., we restrict to the case when the fan-out
is equal to 1 (IC = 1). Remember that for this type
of problem instances each message is to be delivered
to exactly one processor, but the degree d of a prob-
lem can be arbitrary large. The problem of Snding a
communication schedule with optimal total communi-
cation time can be reduced to the Makespan Openshop
Preemptive Scheduling problem. This problem can be
solved by the polynomial time algorithm given in [lo].

An openshop consists of m 2 1 machines, and n 2 1
jobs. Each job consists of m tasks. The j t h task of job
i (Ti,j) must be executed by the it" machine for t i j 2
0 time units. A schedule is an assignment of each task
to its corresponding machine for a total of t i , j time
units and in such a way that at each time instance
one task from each job may be assigned to a machine,
and each machine may be assigned at most one task
at a time. Note that the task processing need not be
continuous, that is why we call this type of schedules
preemptive. The finish time for schedule S (f (S)) is
the latest time a task being processed by a machine.
The makespan openshop scheduling problem consists
of finding a schedule, amongst all feasible schedules,
with least finish time.

Let mi be the total time that machine i must be
busy, and tj be the total time that job j needs to
be executed. Let t = mu{mi, t j } . Gonzalez and
Sahni [lo] have shown that there is always a preemp-
tive schedule with finish time t , which is the best pos-
sible one, and one such schedules can be constructed
in O(r(min{r,m2} + m log n)) time, where T is the
number of nonzero tasks. Whermore, when all the
t i j s are integers, there is a schedule where preemp
tions occur only at integer points, and such schedule
is generated by Gonzalez and Sahni's [lo] algorithm.

The MUG problem of degree one is a special case
of the preemptive openshop problem with all the ti,js
are in {0,1,. . . , d} . Each of the n vertices represent
a job, and a machine. The multiset of edges T indi-
cating that processor i must send IT1 messages to pro-

215

cessor j is now translated to e the statement that
he j t h task of job i must be executed by machine
for ti,? = 12’1 time units. Translating the results

from the openshop problem back to the communica-
tion problem, it means that every problem of degree

has a communication schedule with total communi-
cation time equal to d units of time. Furthermore, one
can easily adapt the algorithm for the minimum finish
time openshop problem given in [lo] to construct one
such communication schedule. The time complexity is
O (r (m i n { r , m 2) + m Eog n)) time, r 5 dn, and
m = n. For brevity we omit the pr theorem.

Theorem 3.1 The above informal procedure con-
structs a communication schedule with total communi-
cation t ime equal t o d for any multimessage unicasting
problem of degree d with n processors. The procedure
takes O (r (m i n { r , m 2 } + m log n)) time, where r 5 dn,
and m = n.

4. The M M c Problem wi

First we establish that the decision version of the
M M c problem is NP-complete even when k = 2 .
Then we show that there is
ule with total communicatio
every problem instance of degree d and fan-out k = 2 .

4.1. NP-completeness

In this subsection we show that the decision version
of the M M c problem is NP-complete even when k =
2 . The decision version of our problem is similar to
the the edge coloration (EC)
below and was shown to be

INPUT: Undirected graph
i.e., each vertex has at most d edges incident to it.
QUESTION: Is there an as
ors to each edge in G so that
the same vertex are colored identically?

Theorem 4.1 The decision version of the M M c
problem is NP-complete even when k = 2.

Proo simple to show that the decision version
of the problem is in NP. We now present a poly-
nomial time reduction from the edge graph coloration
problem to the M M c problem with k = 2. We begin
with any instance I N S E ~ of the edge graph coloration
problem, i.e., an undirected h G = (V,E) of de-
gree d. We now construct from I N S E ~ an instance of

(V, E) of degree d,

the M M c problem I N S M M . For each vertex i in V
there is a receive processor (r-processor) i. For each
edge j in E there is a send processor (s-processor)
j‘, and a receive processor (r-processor) j ” . The s-
processor j ’ , that represents ed
vertices p and q, has d bundles.
two directed edges emanating fi
r-processors p and q. This means that an identical
message has to be sent to processor p and g. The
remaining d - 1 bundles each carry exactly one dis-
tinct message to r-processor j”. In Figure 4 we give
an instance INSEC of the edge graph coloration, and
the instance INSMM of the M M c problem generated
from it by our reduction.

Clearly the reduction takes polynomial time with
ct to the number of vertices and edges in the

h G. We now show that the instance I N S M M
of the M M c problem has a communication schedule
with total communication time at most d iff the edges
in G can be colored with d colors in INSEG.

First we prove that if G can be colored with d colors,
then INSMM has a communication schedule with to-
tal communication time equal to d. For any coloration
of G with d colors we can color the edges in the in-

M as follows. If edge j joining vertices
lored with color c, then the two edges

in I N S M M from node j ’ to node p and from j ‘ to q
are colored with color c and the remaining d - 1 edges
emanating from j‘ and ending in j ” are colored with
the remaining d - 1 colors. It is simple to see that this
is a schedule with total communication time equal to
d for INSMM.

We now prove that if INSMM has a communica-
tion schedule with total communication time equal to
d then G can be colored with d colors. It is easy to es-
tablish that in any schedule with total communication
time equal to d for I N S M M the message emanating
at each s-processor j ‘ and ending at r-processors p
and q must be sent at the same time and that all the
messages received by each r-processor i must arrive at
distinct times. These facts together with the property
that each message emanating at each s-processor j’
and ending at ?-processors p and q represents an edge
between vertices p and q in G can be easily combined
to establish that G can be colored with d colors. This
completes the proof of the theorem.

0

4.2. Approximation Algorithm

Let us now discuss our algorithm to color the edges
emanating from each vertex with no more than 2d - 1 .

2 16

Figure 4. Edge graph coloration instance and corresponding
M M c instance.

colors. We present algorithm, GM (General Match-
ing), that colors the edges emanating &om each pro-
cessor at a time using no more than 2d - 1 colors.
First we present our algorithm and then we show that
it always constructs a valid coloration.

This algorithm colors the bundles emanating from
each processor at a time. When considering a proces-
sor it colors a maximal set of bundles with one color.
The remaining bundles are colored with two colors.
This is accomplished by constructing a bipartite graph
in which the left-hand side vertices represent the un-
colored branches and the right-hand side vertices r ep
resent "available" colors. An edge from vertex z to
vertex y indicates that the branch represented by ver-
tex z can be colored y. Then a complete matching that
includes all the left-hand side vertices is constructed.
The existence of the matchiis can be established by
proving that Hall's conditions hold. The matching is
constructed by Hopcroft and Karp's algorithm [12],
and an edge coloration can be easily obtained from
the matching.

GM Procedure
for each processor PZ

Color all the branches from a maximal set of
bundles emanating from Pl with one color;

Construct the bipartite graph G = (X + Y,E)
as follows:

Each vertex in X represents an uncolored
branch, and each vertex in Y represents
a color (2d - 1 colors);

{z E X , y E Y } E E i f "branch" z can be
"colored" y;

Find a matching in G that covers all the
vertices in X;

Construct a schedule with total communication
time 2d - 1 for PI from the maximal set
and the complete matching;

endfor;
end of GM Procedure

Theorem 4.2 Given a degree d problem instance of
the M M c Unth fan-out k = 2 and n processors (or
vertices), Procedure GM constructs a communication
schedule with total communication time at most 2d- 1.
The time complezity of the procedure is O(nd2.5).

Proof: Let a be the maximal number of bundles ema-
nating from processor PZ colored with one color at the
start of the iteration. Let us now establish that CY 2 1.
Let Bi,j, 1 5 j 5 2, be the set of colors that the j t h
branch of the ith bundle can be colored without vio-
lating Rule 2. ClearIy 1Bi.j I 2 d because the branch is
incident to a processor with in-degree d and at most
d - 1 of the other branches incident to it have been
colored and there are 2d - 1 different colors. Since
IBi,jI 2 d at the beginning of the 8 loop, at least
one bundle can be colored with exactly one color that
both of its branches have available, so a 2 1. Since
each time a bundle is colored with one color, each set
Bi,j corresponding to an uncolored branch decreases
by at most one element. It then follows that just af-
ter coloring the maximal number of bundles (a) with
one color, for each uncolored branch, IBi,jj 2 d - CY,

and the total number of uncolored bundles is d - a.
Since no more bundles can be colored with exactly one
color, it then follows that for each uncolored bundle,
Bi,l n Bi,2 = 0. Consider the bipartite graph in which
each node in the left hand side represents an uncolored
branch, and each node in the right hand side is one
of the 2d - 1 colors. There is an edge from the node
representing the j4' uncolored branch of the it' bun-
dle to node g, if€ q E B ~ J . A matching that includes
all the vertices in the left hand side provides us with a
coloration. Let us now show that one such matching
always exists.

217

We now claim that Hall’s theorem holds for the bi-
partite graph just constructed and therefore the above
matching exists. Hall’s condition in this graph is: ev-
ery subset of uncolored branches Q has the property
that / & I 5 I U{. . Bi,jI. The reason for this is sim-
ple. If the se~$?ontains the two branches from a
bundle, then I U{i,jlEQ Bi,jI 2 2(d - a) because for
each uncolored branch, IBij I 1 d- a, and for each un-
colored bundle, &,I n Bi,z = 0. Since /&I 5 2(d - a) ,
Hall’s property follows. On the other hand if the set Q
contains at most one branch for each uncolored bun-
dle, then I & / < d-a . Since for each uncolored branch,
IBi,jI 2 d-a, then I U<i,jlEQ Bi,jI 2 d-cr. Therefore,
Hall’s conditions follows.

By Hall’s theorem, there is an assignment of colors
so that all branches can be colored by using at most
2d - 1 colors.

The for-loop is repeated n times, once for each pro-
cessor. A maximal set of bundles that can be colored
completely with one color can be found in O (8) time.
The construction of the bipartite graph takes O(62)
time, and a complete matching in it can be constructed
in O(cP5) time 1121. Therefore the overall time com-
plexity for procedure GM is O(n8.5).

0

5 . Approximation for k 2 3

Let us now consider our simple approximation al-
gorithms for the M M c problem. The algorithm col-
ors all edges emanating from PI , P2, . . . Pj-1. With
respect to this partial recoloration we define the fol-
lowing terms: Each branch emanating from Pj leads
to a processor with at most d - 1 other edges inci-
dent to it, some of which have already been colored.
These colors are called t j - 1 -forbidden with respect to
a given branch emanating &om Pj. Just after color-
ing a subset of branches emanating from processor Pj,
we say that a color is sj-free if such color has not yet
been used to color any of the branches emanating
processor Pj .

exactly one color may require as m
colors. The reason is that each br
forbidden colors, and none of the tj-1-forbidden col-
ors in a branch can be used to color the correspond-
ing bundle. Therefore, there can be k(d - 1) t j -1-
forbidden colors, none of which can be used to color
the bundle. Since there are at most d bundles ema-
nating from a processor Pj, and every bundle is as-
signed one color, then d + k (d - 1) colors are sufficient

A coloration in which every message is colored with

to color all the bundles emanating from processor Pj ,
and hence the multigraph.

The above upper bound can be decreased substan-
t i d y by assigning up to two colors per message (bun-
dle). Again, each branch has d - 1 tj-1-forbidden
colors. But, two colors that are not tj-1-forbidden
in the same branch of a bundle can be used to color
that bundle. So the question is: What is the largest
number of tj-1-forbidden colors in a bundle such that
no two of them can be used to color the bundle? For
k = 3 and d = 7 it is nine. The tj-1-forbidden colors in
thethreebranchesare: {1,2,4,5,7,S) ,{ l ,3 ,4 ,6 ,7 ,9} ,
and {2,3,5,6,8,9}. Note that no two of the nine colors
can color competely the bundle. We have established
that the largest number of tj-1-forbidden colors in a
bundle such that no two of them can color completely
the bundle is d-1 for IC = 2, about 1.5(d-1) fork = 3,
etc. For brevity we do not include these results.

In what follows we show that it is always possible to
color each of the bundles with at most q colors using
a total of q d f l c : (d - 1) colors. We also show that the
total time complexity for our procedure is O(q - d - e) ,
where e 5 nd is the number of edges in the multigraph.
The procedure is given below.

Procedure q-Coloring (G, q, k, d)
for each processor Pj do

no t k;
for each bundle J emanating from Pj do

ZI t s-free color that is tj-1-forbidden in the;
least number of branches of bundle J ;

let nl be the number of branches of J where
color I1 is tj-1-forbidden;

color with Z1 as many branches of J as possible;
r c 1;
while r 2 q do

T t T S 1

E, c- s-free color that is tj-1-forbidden in the
least number of branches of bundle J
together with 11,12,. . . , E , . - I ;

let nT be the number of branches of J where
color I , is t,-l-forbidden together
with El,E2,...,E,-~;

color with I, as many of the uncolored
branches of J as possible;

while

// Exiting the loop when n, = 0 will also be a

endfor;
correct / /

endfor;
end of Procedure q-Coloring

218

To establish the correctness of procedure q-Coloring
we estabhh an upper bound for nr in the following
lemma.

Lemma 5.1 Just before the condition of the while
statement is tested for the rth time, n, < k y for
1 S r S q .

Proof: The proof is by contradiction. Let r be the
smallest value for which n, 2 k v . The number
of colors used so far to color the bundles emanat-
ing from Pj is at most q(d - 1) + r - 1. Therefore
there are at least q - r + 1 + kf (d -.1) s-free colors,
since the total number of colors is qd + k!(d - 1).
By definition of n, each of these s-free colors is tj-1-

forbidden with ZI, 12,.. -1r-1 in at least k y branches
emanating out of bundle J . Therefore, the total num-
ber of occurrences of tj-1-forbidden colors with colors
11,Z2, ... Z r - l isatleast (q-r+l)k q +k Q (d-1).
Since each branch of bundle J with tj-l-forbiddm c01-
ors Z1,12, ... Z,-1 cas have at most (d - r) other tj-1-

forbidden colors, it then follows that n,-1 > k-.
A contradiction. So, n, < ky for 1 5 r 5 q.

0

(I-r cr--++l
3

S2 3.7
I2 3.3

Theorem 5.1 For every instance of the M M c prob-
lem with fan-out k 2 3, procedure q-Coloring generates
in O(q - d - e) time, where e is the number of edges in
the multigraph, a schedule with total communication
t imeqd+k+(d-l) .

4 5 7 10 20 50 100
4.0 4.2 4.6 5.2 6.5 9.1 12.0
3.5 3.6 4.5 4.6 6.0 8.6 11.5

ProoE The previous lemma implies that n, < 1.
Therefore, n, < 1 for some 1 5 j 5 q, and 11~12, . . .1,
are not tj-i-forbidden in the same branch of bundle
J, and all these colors can be used to color bundle J .
Hence, at most T 5 q colors are needed to color bundle
J , and this property holds for all the bundles.

To establish the time complexity bound is straight
forward. Th proof is based on the observations that
each branch has at most d - 1 tj-1-forbidden colors
and that the edges emanating out of each bundle have
to be considered at most q times because of the for-
loop for r .

0

6. Discussion

All of our approximation algorithms generate a col-
oration that used at most a1 e d + a2 colors. The d u e

of constant a1 for the different methods we have devel-
oped and for Merent values for k is given in Table 3.
The methods labeled “Sn” are for the method in the
previous section, where n is the value for q. The other
methods appear in [7] and [8], and allow for a limited
form of recoloration [19]. The number in the name of
the methods indicate the m a x i ” number of colors
one can use for each bundle. The analysis for all of
these methods is complex, however all the proofs fol-
low similar arguments. For brevity we do not discuss
the other methods in this paper. We should point out
that the method in this paper is among the fastest, and
asymptotically it provides solutions equivalent to the
ones of other methods. Also, our algorithm is straight
forward and its analysis is simple.

Table 3. Number of Colors For The Different Methods.

All the results in this paper are for the case when
forwarding or transmission via indirect routes is not al-
lowed. This problem models applications in fully con-
nected networks where security is an issue. For exam-
ple, one would not like to send a credit card number,
or other sensitive information indirectly. However in
applications where security is not an issue, forwarding
should be allowed. At fist glance it seems that for-
warding does not reduce the total communication time
because all direct routes between every pair of proces-
sors exist. However, Gonzdez [9] has shown that the
total communication time can be significantly reduced
when forwarding is allowed.

Gonzalez [9] has shown that the NP-completeness
reduction given in this paper can be easily modified to
apply in this other case. Clearly, all the approximation
algorithms will also work for the case of forwarding.
However the lower bound 8 for the total communi-
cation time for a class of problem instances, does not
hold even for one problem instance when forwarding
is allowed. The reason for this is that every prob-
lem instance has a communication schedule with total
communication time at most 2d when forwarding is al-
lowed. Gonzalez’ [9] algorithm uses as a subalgorithm

219

one of the algorithms in this paper.
not discuss this new work in detail.
out that the approximation algorithms in this paper,
and in [7] and [SI are faster then the one in [9].

Acknowledgements

Professor Teofilo F. Gonzalez is with the Depart-
ment of Computer Science at the University of Cali-
fornia, Santa Barbara CA 93106 (www.cs.ucsb.edu).

We want to thank an anonymous referee for pro-
viding specific suggestions to improve the readability
of the paper.

References

[l] G. S. Almasi, and A. Gottlieb, Highly Parallel
Computing, The Benjamin/Cummings Publish-
ing Co., Inc., New York, 1994.

[2] V. E. Benes, Mathematical Theory of Connecting
Networks and Telephone Trafic, Academic Press,
New York, 1965.

[3] E. G. Cof€man, Jr, M. R. Garey, D. S. Johnson,
and A. S. LaPaugh, “Scheduling File Transfers in
Distributed Networks,” SIAM Journal on Com-
puting, 14(3) (1985), pp. 744 - 780.

[4] H.-A. Choi, and S. L. Hakimi, “Data Transfers in
Networks,” Algon’thmica, Vol. 3,
- 245.

[5] H.-A. Choi, and S. L. Hakimi, “Scheduling File
Transfers for Trees and Odd Cycles,” SIAM Jour-
nal on Computing, Vol. 16, No. 1, (1987), pp. 162
- 16

[6] H.-A. Choi, and S.
Networks with Tr

akimi, “Data Transfers in
vers,” Networks, Vol. 17,

(1987), pp. 393 - 4

171 T. F. Gonzalez, “Multi-Message Multicasting,”
Proceedings of the Third International Workshop

s for Irregularly Structured
6), Lecture Notes in Com-

puter Science 1117, Springer, (1996), pp. 117 -
228.

[8] T. F. Gonzalez, “Improved Algorithms for Multi-
Message Multicasting,” Proceedings of the Ninth
International Conference on Parallel and Dis-
tributed Computing Systems (PDCS’96) , to ap-
pear.

[9] T. F. Gonzalez, “Multi-Message Multicasting
with Forwarding,” UCSB Department of Com-
puter Science, Technical Report TRCS-96-24,
(1996).

[lo] T. F. Gonzdez, and S. Sahni, “Open Shop
Scheduling to Minimize Finish Time,” Journal of
the ACM, Vol. 23, NO. 4, (1976), pp. 665 - 679.

11 I. S. Gopal, G. Bongiovanni, M. A. Bonuccelli, D.
T. Tang, and C. K. Wong, “An Optimal Switch-
ing Algorithm for Multibean Satellite Systems
with Variable Bandwidth Beams,” IEEE Trans-
actions on Communications, COM-30, 11 (1982)
pp- 2475 - 2481.

[12] A J. Hopcroft, and R. M. Karp, “An n2.5 Al-
gorithm for M a x i “ Matchings in Bipartite
Graphs,” SIAM Journal on Computing, (1973),

[13] B. Hajek, and G. Sasaki, “Link Scheduling in
Polynomial Time,” IEEE Transactions on Infor-
mation Theory, Vol. 34, No. 5, (1988), pp. 910 -
917.

[14] I. Holyer, “The NP-completeness of Edge-
Coloring,” SIAM Journal on Computing, 11

[15] T. T. Lee, “Non-blocking Copy Networks for Mul-
ticast Packet Switching,” IEEE J. Selected Areas
of Communication, Vol. 6, No 9, (1988), pp. 1455

[16] S. C. Liew, “A General Packet Replication
Scheme for Multicasting in Interconnection Net-
works,” Proceedings IEEE INFOCOM ’95, Vol.1

6171 P. I. Rivera-Vega, R, Varadarajan, and S. B. Na-
vathe, “Scheduling File Transfers in Fully Con-
nected Networks,” Networks, Vol. 22, (1992),

[18] J. S. Turner, “A Practical Version of Lee’s Multi-
cast Switch Architecture,” IEEE Transactions on
Communications, Vol. 41, No 8, (1993), pp. 1166

[19] V. G. Vizing, “On an Estimate of the Chromatic
Class of a p-graph,” Diskret. Analiz., 3 (1964),
pp. 25 - 30 (In Russian).

Scheduling with Forwarding,” SIAM Journal on
Computing Vol. 19, No 2, (1990), pp. 222 - 245.

pp. 225-231.

(1982), 117 - 129.

- 1467.

(1995), pp. 394 - 401.

pp- 563-588.

- 1169.

[20] J. Whitehead, “The Complexit

220

