
6
Open Shop Scheduling

Teofilo F. Gonzalez
University of California

6.1 Introduction
6.2 Minimum Makespan Problems

Two Machines • Minimum Preemptive Schedules • Limiting
the Number of Machines, Jobs or Tasks • Nonpreemptive
Schedules

6.3 Minimum Mean Flow Time or Minsum Problems
6.4 Related Objective Functions
6.5 Discussion

6.1 Introduction

The open shop scheduling problem consists of m machines denoted by M1, M2, . . . , Mm that perform
different tasks. There are n jobs (J 1, J 2, . . . , J n) each of which consists of m tasks. The j th task of job J i is
denoted by Ti, j and it must be processed by machine Mj for pi, j ≥ 0 time units. The total processing time
for job J i is pi = ∑

j pi, j , the processing requirement for machine Mj is m j = ∑
i pi, j , and we define

h = max{pi , m j }. The scheduling restrictions in an open shop problem are as follows:

1. Each machine may process at most one task at a time.
2. Each job may be processed by at most one machine at a time.
3. Each task Ti, j must be processed for pi, j time units by machine Mj .

Clearly, the finishing time of every open shop schedule must be at least h. The main difference between
the flow shop and the open shop problems is that in the former problem the tasks for each job need to
be processed in order, i.e., one may not begin processing task Ti, j until task Ti, j−1 has been completed
for 1 < j ≤ m. In the open shop problem the order in which tasks are processed is immaterial. In the job
shop problem jobs may have any number of tasks, rather than just m. Each task of each job is assigned to
one of the machines rather than assigning the j th task to machine Mj as in the flow shop and open shop
problems. But, the order in which tasks must be processed in the job shop problem is sequential as in the
flow shop problem. One may think of the open shop problem as the flow shop problem with the added
flexibility that the order in which tasks are processed is immaterial.

Gonzalez and Sahni [1] introduced the open shop scheduling problem back in 1974 to model several
real-world applications that did not quite fit under the flow shop model. They developed a linear-time
algorithm for the two machine makespan nonpreemptive as well as the preemptive scheduling problems
(O2 || Cmax, and O2 | pmtn | Cmax). This result compares favorably to Johnson’s two machine flow shop
algorithm that takes O(n log n) time. Gonzalez and Sahni [1] also showed that for three or more machines
the nonpreemptive open shop problem (O3 || Cmax) is NP-hard. Their main result was two efficient
algorithms for the preemptive version of the makespan open shop problem (O | pmtn | Cmax). Since 1974
hundreds of open shop papers have been published in all sorts of conference proceedings and journals. The

© 2004 by CRC Press, LLC

minimum makespan open shop preemptive scheduling problem has found applications in many different
fields of study, which is one of the reasons for the popularity of the open shop problem.

The most interesting application of the open shop preemptive scheduling problem is in scheduling
theory where the problem naturally arises as a subproblem in the solution of other scheduling problems.
A typical application arises when one solves (optimally or suboptimally) a scheduling problem via Linear
Programming (LP). In the first step one defines a set of intervals, and a set of LP problems defines the
amount of time each job is to be scheduled in each machine in each time interval. Once the set of LP
programs are solved, we are left with a set of one or more open shop makespan problems. When the
resulting open shop problem is such that preemptions are allowed, one can use the algorithm in Ref. [1]
to construct the final schedule. Lawler and Labetoulle [2] were the first to use the open shop problem
this way. Since then, it has become common practice. The most interesting use of this approach is given
by Queyranne and Sviridenko [3] to generate suboptimal solutions to open shop preemptive scheduling
problems with various objective functions as well as for interesting generalizations of the open shop
problem.

Another application arises in the area of Satellite-Switched Time-Division Multiple Access (SS/TDMA)
[4] where information has to be interchanged between multiple land sites using a multibeam satellite.
The scheduling of the communications has been modeled by an open shop problem [4]. The open shop
problem also arises in the scheduling and wavelength assignment (SWA) problem in optical networks
that are based on the wavelength-division-multiplexing (WDM) technology [5]. Wang and Sahni [6] also
use the open shop problem for routing in OTIS (optical transpose interconnect system) optoelectronic
computers to find efficiently permutation routings. For mesh computers with row and column buses, the
open shop problem is used for routing packets [7]. Even when routing in heterogeneous networks, the
open shop problem has been used to model communications schedules [8]. Iyengar and Chakrabarty [9]
used the makespan open shop preemptive scheduling problem for system-on-a-chip (SOC) testing. The
computational techniques behind the makespan open shop preemptive scheduling algorithm in Ref. [1]
have been applied to the solution of stochastic switching problems [10].

For the multimessage multicasting, Gonzalez [11–13] has developed efficient offline and online approxi-
mation algorithms not only for the fully connected networks but also for Benes-type of networks capable of
replicating data and realizing all permutations. A class of approximation algorithms for the multimessage
multicasting problem generate solutions by solving a couple of problems, one of which is the multimessage
unicasting problem [12]. Gonzalez [11] has shown that the multimessage unicasting problem is equiva-
lent to the unit-processing time makespan open shop scheduling problem [12], which can be solved by
the algorithms given in Ref. [1]. The multimessage unicasting problem is also known as the h-relations
problem [14] and the (h − h)-routing request problem.

The open shop problem is a generalization of the bipartite graph edge coloring problem. A graph consists
of a set of V vertices and a set of edges E . A graph is said to be bipartite when the set of vertices can be
partitioned into two sets A and B such that every edge is incident to a vertex in set A and to a vertex
in set B . The bipartite graph edge coloring problem consists of assigning a color to each edge in the graph
in such a way that no two edges incident upon the same vertex are assigned the same color and the total
number of different colors utilized is least possible. The open shop problem in which all the pi, j values
are 0 or 1 is called the unit-processing time open shop problem. This open shop problem with the objective
function of minimizing the makespan (O | pi, j ∈ {0, 1} | Cmax) corresponds to the bipartite graph edge
coloring problem. To see this, map the set of vertices A to the set of jobs and the set of vertices B to
the set of machines. An edge from a vertex in set A to a vertex in set B represents a task with unit
processing time. Each color represents a time unit. The coloring rules guarantee that an edge coloring for
the graph corresponds to the unit-processing time open shop schedule. The makespan or finishing time
corresponds to the number of different colors used to color the bipartite graph.

When there are multiple edges between at least one pair of nodes, the edge coloring of bipartite graphs
problem is called the bipartite multigraph edge coloring problem. As pointed out in Ref. [4], this problem
can be solved by the constructive proof of Egerváry [15], which uses König-Hall theorem [16–18]. A more
general version of this problem has been defined over an edge-weighted (positive real values) bipartite

graph, and the problem is to find a set of matchings M1, M2, . . . , Mm and positive real-valued weights
w1, w2, . . . , wm such that the bipartite graph is equal to the sum of the weighted matchings. This problem
corresponds to the problem solved by the Birkhoff–von Neumann theorem, which establishes that a doubly
stochastic matrix (i.e., a square nonnegative real matrix with all lines (rows and columns) equal to one) is
a convex combination of permutation matrices. Berge [19] presents a graph-theory based proof for this
theorem and then points out: “The proof illustrates the value of the tool provided by the theory of graphs,
the direct proof of the theorem of Birkhoff and von Neumann is very much longer.”

The timetable problem [20,21] is a generalization of the open shop scheduling problem. The professors
are the machines, the jobs are the classes, and the objective is to find times at which the professors can
instruct their classes without any professor teaching more than one class at a time and any class meeting
with more than one professor at a time. In addition, the classical timetable problem includes constraints
where professors or classes cannot meet during certain time periods.

In Section 6.2 we discuss the open shop problem with the objective function of minimizing the makespan.
We outline a linear-time algorithm for the two machine problem, as well as polynomial-time algorithms
for the general preemptive version of the problem. For the nonpreemptive version of the problem we
present mainly NP-hard results and approximation algorithms. We also discuss the problem of generating
suboptimal solutions to these problems, as well as to the distributed version of the problem. Section 6.3
covers the open shop problem with the objective function of minimizing the mean flow time. We discuss
the NP-hardness results for these problems as well as several approximation algorithms. In Section 6.4 we
briefly discuss the open shop problem under various objective functions as well as generalization of the
basic open shop problem.

6.2 Minimum Makespan Problems

In this section we discuss the open shop problem with the objective function of minimizing the makespan.
We outline a linear-time algorithm for the two machine problem, as well as polynomial-time algorithms
for the general preemptive version of the problem. For the nonpreemptive version of the problem we
discuss mainly NP-hard results. We also discuss the problem of generating suboptimal solutions to these
problems as well as to the distributed version of the problem.

6.2.1 Two Machines

Gonzalez and Sahni [1] developed a very clever algorithm to construct a minimum makespan schedule
for the two machine nonpreemptive version of the problem (O || Cmax). This algorithm also generates an
optimal preemptive schedule (O2 | pmtn | Cmax). Let us now outline a variation of this algorithm.

We represent each job by a pair of positive integers whose first component is the processing time on
machine M1 and the second component is the processing time on machine M2 for the job. We partition
these pairs into two groups: A and B . Group A contains all the tuples whose first component is greater or
equal to the second, and group B contains all the tuples whose second component is larger than the first one.
We will only discuss the case when both sets are nonempty, because the other cases are similar. The group
A is represented as a sequence by A1, A2, . . . , AR and B is represented by the sequence B1, B2, . . . , BL .
The processing time on machine Mj for tuple Ai is denoted by Ai (j). Similarly, we define Bi (j). From
our definitions we know that Ai (1) ≥ Ai (2), and B j (1) < B j (2). We assume without loss of generality that
AR is the job in A with largest processing time on machine M1, i.e., AR(1) is largest. Similarly, BL is the
job in B with largest processing time on machine M2.

Now construct the schedule that processes jobs in the order A1, A2, . . . , AR as shown in Figure 6.1(b).
For each job the task on machine M1 is scheduled immediately after the completion of the previous task
(if any) on machine M1, and the task on machine M2 is processed at the earliest possible time after the
completion of the job’s task on machine M1. Clearly, the only idle time between tasks is on machine M2.
Since AR(1) is the largest value, then AR(1) ≥ AR−1(2). Therefore, the task on machine M2 for job AR

A1

A1

A2 A3 A4 A5 A6

A2 A3 A4 A5 A6

AR

AR

B1B2B3B5BL

BL B5 B4 B3 B2 B1 A1 A2 A3 A4 A5 A6 AR

ARA6A5A4A3A2A1

(a) (b)

(d)(c)

B1

B1B2

B2

B3

B3B4

B5

B5

BL

BL

B4

B4

FIGURE 6.1 Schedule for the jobs in A and B .

B1B2B3B5

BL B5 B4 B3 B2 B1

BL B4

A6 AR

ARA6A5A4A3A2A1

A4A3A2A1 A5

B1B2B3B5

BL B5 B4 B3 B2 B1

BL B4

A1 A2 A3 A4 A5 A6 AR

ARA6A5A4A3A2A1

(a)

(b)

FIGURE 6.2 Schedule after joining the schedules for A and B .

starts at the same time as its task on machine M1 ends. Since every job in A is scheduled so that its task on
machine M1 is completed before the task on machine M2 begins, we can delay the processing of the tasks
scheduled on machine M2 (i.e., move them to the right) until we eliminate all the idle time between tasks
and the schedule of job AR is not changed (see Figure 6.1(d)).

We obtain a similar schedule for B (see Figure 6.1(a)). Note that in this case the idle time between tasks
is only on machine M1, and the tasks are processed in the order B1, B2, . . . , BL but from right to left. In
this case the tasks scheduled on machine M1 are moved to the left to eliminate idle time between tasks (see
Figure 6.1(c)).

Now we concatenate the schedule for B and A in such a way that there is no idle time between the
schedules on machine M1 (Figure 6.2(a)), or machine M2 (Figure 6.2(b)), or both (either of the figures
without idle time between the schedules on both machines).

If one ends up with the schedule in Figure 6.2(a), we move job BL on machine M1 from the front of the
schedule to the back. We then push all the tasks to the left until the block of idle time between the schedules
is eliminated (Figure 6.3(a) or 6.3(b)), or until job BL starts on machine M1 at the time when it finished on
machine M2 (Figure 6.3(c)). In the former case the total makespan is equal to m1 = ∑

Ai (1) + ∑
B j (1)

or m2 = ∑
Ai (2) + ∑

B j (2), and in the latter case it is given by BL (1) + BL (2). On the other hand, if
we end up with the schedule in Figure 6.2(b), a similar operation is performed, but now we move job AR

on machine M2. The resulting schedules are similar to those in Figure 6.3 except that job AR replaces job
BL and the machines are interchanged. Clearly the time complexity of the algorithm is O(n).

BL BL

BL

(a) (b) (c)

BL

BL

BL

FIGURE 6.3 Schedule after moving task BL on machine M1.

Since the finishing time for the schedule constructed is max{m1, m2, AR(1) + AR(2), BL (1) + BL (2)},
which is simply h, there are no preemptions in the schedule, and every schedule must have finishing time
greater than or equal to h, it then follows that the schedule constructed by our procedure is a minimum
makespan nonpreemptive preemptive schedule, i.e., it solves the O || Cmax and O | pmtn | Cmax problems.

6.2.2 Minimum Preemptive Schedules

Now we outline the polynomial-time algorithms developed by Gonzalez and Sahni [1] for the O | pmtn |
Cmax problem. The first step in both of these algorithms consists of transforming the problem, by intro-
ducing dummy machines and jobs, to one in which for all i and j , pi = h and m j = h. Since this first
operation is straightforward, we will omit it and just assume that the above condition holds. We use r to
denote the number of nonzero pi, j values, which we shall refer to as nonzero tasks.

The first algorithm in Ref. [1] begins by constructing an edge-weighted bipartite graph G in which
there is one vertex for each job J i and one vertex for each machine Mj . All the edges join a vertex that
represents a job and a vertex that represents a machine. For every nonzero task Ti, j (i.e., pi, j > 0) there is
an edge with weight pi, j from the vertex representing job J i to the vertex representing Mj .

A matching for G is a set of edges no two of which have a common end point. A complete matching is a
matching in which every vertex in the graph is adjacent to an edge in the matching. Using Hall’s theorem
one can show that G has a complete matching M [1]. Define � as the smallest weight of an edge in the
matching M. The matching M defines for the first � time units the assignment of tasks to machines. Then
in G we decrease by � the weight of every edge in the matching and obtain the new graph G . When the
weight of an edge becomes zero, the edge is deleted from the graph. The whole process is repeated until
there are no edges left in the graph.

It should be clear that at each iteration at least one edge is deleted from the graph. Therefore there are at
most r iterations. Using Hopcroft and Karp’s algorithm [22] the first complete matching can be constructed
in r (n + m)0.5. To find subsequent matchings one resorts to using the previous matching M, after deleting
all the edges with weight �. For each of the edges that were deleted one needs to find one augmenting path.
An augmenting (or alternating) path relative to a matching M is a simple path with an odd number of edges
such that the i th edge in the path, for i odd, is in the graph but not in the matching, and for i even, it is an
edge in the matching. The “even” edges are represented by the set M′ and the “odd” ones are represented
by the set of edges MN . If we delete from M all the edges in M′ and then we add all the edges in MN , we
obtain a new matching that contains one more edge than the matching we had before the operation. The
reader is referred to Gonzalez and Sahni [1] for the precise definitions and procedures to find augmenting
paths. The time required to find an augmenting path is O(r) and it is obtained via breadth first search. So,
if the complete matching M had l edges with weight �, then one needs to construct l augmenting paths to
find the next complete matching. Therefore this technique can be implemented to take O(r 2) time. The
above approach is essentially the typical constructive proof for the Birkoff–von Neumann theorem [18]
and Egerváry theorem [15]. As pointed out by Berge [19], the proof of the Birkoff–von Neumann theorem
when viewing the problem as a graph problem is much simpler than the original one.

The second algorithm given by Gonzalez and Sahni [1] takes O(r (min{r, m2} + m log n)) time. The
algorithm is designed for the case when m < n, and it is better than the first one when r > m2. As in the
first algorithm, the first step adds dummy machines and jobs so that pi = m j = h for all i and j . Then all

the dummy jobs are deleted. As a result of this operation some jobs will have total processing time less than
h. The jobs with pi = h are called critical and those with pi < h are called noncritical. All the machines are
called critical because m j = h for all j . The strategy behind the algorithm is similar to that in the previous
algorithm. The main difference is that the cost of an augmenting path is m2 rather than r . In the first step
we find a matching I that includes all critical jobs and machines. We build this matching by finding and
then using an augmenting path for each critical job, and then finding and using an augmenting path for
each critical machine that is not in the matching. We define the slack time si of a job as h − c − gi , where
c is the current time (this is just the makespan of the schedule so far constructed), and gi is the remaining
processing time for the job. Initially gi = pi and c = 0. A noncritical job becomes critical when its slack
time si becomes zero. Remember that at every point in time t all jobs that are critical at time t must be
scheduled, i.e., must be in the matching I at time t. Therefore the minimum slack time for the jobs that are
not in the matching at time t is greater than zero. We define � as the minimum of the remaining processing
time of a task represented by an edge in the matching I and the minimum slack time of the jobs that are
not in the matching. The minimum slack time can be computed in O(log n) time by storing all the slack
times of the jobs that are not in the matching in a balanced tree. Then we generate the schedule implied by
the matching for the next � time units. We update the slack times for the noncritical jobs in the matching,
which takes O(m) time. We delete all the noncritical jobs from the matching, and delete all the tasks with
remaining processing time zero. Then we add to the resulting matching any critical jobs that are not in the
matching. Each of these additions are carried out by finding and then using an augmenting path that takes
O(m2) time to construct, as shown in Ref. [1]. Now we add to the matching any of the noncritical jobs that
were just deleted. For these jobs we do not find an augmenting path, we just add them if the corresponding
machine for the task that was part of the previous matching is not covered by the current matching. Then
through the augmenting path technique we add all the critical machines that are not in the matching and
we end up with another matching that includes all the critical jobs and critical machines. The whole process
is repeated until all the tasks have been scheduled for the appropriate amount of time. Readers interested
in the complete details (which are complex) are referred to Gonzalez and Sahni [1]. The total number of
iterations (matchings) constructed is at most r + m because at each iteration at least one nonzero task has
been scheduled for its full processing time, or a noncritical job becomes critical. Since r ≥ m and the cost
of each augmenting path is at most m2, all of these operations take O(r min{r, m2}) time. The other factor
in the time complexity bound, r · m log n, originates for the operation of updating the slack time in the
balanced binary search tree of at most m tasks at each iteration. This time also includes the time to find
the smallest slack time of a task that is not in the matching. Therefore, the overall time complexity bound
for the second algorithm is O(r (min{r, m2} + m log n)). The total number of preemptions introduced by
the algorithm is at most r (m − 1) + m2 preemptions.

The algorithm for the minimum makespan open shop preemptive scheduling problem by Vairaktarakis
and Sahni [23] has the same worst case time complexity; however, it is in general faster and requires less
space than the previous two algorithms. This is achieved by not introducing dummy jobs and dummy
machines, and only critical jobs and machines are required to be in the matching at each step. This
eliminates the overhead of dealing with the additional jobs and machines. The added constraints of load
balancing as well as maintenance are incorporated into the algorithms given in Ref. [23]. The former
constraints balance the number of busy machines throughout the schedule, and the latter constraints deal
with machine maintenance with limited personnel. The algorithms in Ref. [23] use linear programming,
max flow as well as additional graph theory properties of bipartite matchings.

The algorithms in Refs. [1,23] are in general much more efficient than the algorithms that were developed
for the corresponding bipartite graph and multigraph edge coloring problems as well as for the doubly
stochastic matrices.

As we mentioned before, Gonzalez [11] has established the equivalence of the makespan open shop
preemptive scheduling problem and the multimessage unicasting problem. In this problem each processor
must send equal size messages to other processors over a fully connected network. The scheduling rules
are that no processor may send more than one message at a time and no processor may receive more than
one message at a time. The objective is to find a schedule with the least total completion time.

In the distributed version of the multimessage unicasting problem every processor only knows the mes-
sages it will be sending and does not know what other processors have to do. Though every processor may
send or receive at most d messages. When this is translated back into the open shop problem we need to
introduce n users each of which is trying to process its corresponding job on the machines without knowing
what the other users are trying to do. At each time unit each user decides which (if any) of its task he/she
will attempt to get processed by the corresponding machine. If more than one user attempts to use the same
machine, then the machine will be idle and both users will be informed that their tasks were not processed
at that time. Gereb-Graus and Tsantilas [24] presented distributed algorithms with �(d + log n log log n)
expected communication steps. The multimessage unicasting and multicasting problems with forwarding
have been studied in the context of optical-communication parallel computers [14,24–26]. Forwarding
means that a message does not need to be sent directly, the message may be sent through another machine.
In Section 6.4 we explain what forwarding means in the context of open shop scheduling.

6.2.3 Limiting the Number of Machines, Jobs or Tasks

First let us consider the open shop preemptive scheduling problem when either the number of jobs or
machines is not part of the problem input, e.g., the number of machines is at most 20 (or any other
constant) but the number of jobs may be any arbitrary number, or vice versa. Gonzalez [27] shows that
these problems can be solved in linear time by using a technique called combine-and-conquer. The main
idea is that any subset of jobs or machines whose total processing time is at most h can be combined into
a super-job or a super-machine. From a solution to the super-problem one can easily solve the original
problem. Obviously this combine-and-conquer approach is not recursive, it is applied just once. The
selection of which jobs to combine is determined by solving an instance of the bin-packing problem. The
bin-packing problem consists of packing into the least number of bins with capacity h a set of objects
whose size corresponds to the job processing times p1, p2, . . . , p1. If k = min{n, m}, then

∑
pi ≤ k · h.

There are simple linear-time algorithms that pack all of these objects in at most 2k − 1 bins each of size h.
The same approach is used for the machines. Therefore we will end up with a problem instance that has at
most 2k − 1 (super) jobs and 2k − 1 (super) machines. Since there is a fixed number of jobs or machines
(independent of the input), the resulting problem has a number of jobs and machines that is bounded by
a constant independent of the input. Any of the algorithms in the previous subsection can be used to solve
this reduced size problem and the solution can be easily used to obtain a solution to the original problem.
The above procedure can be easily implemented to take O(n + m) time.

Let us now discuss algorithms that perform very well when every job has very few tasks, and every
machine needs to process very few tasks. From our previous discussion this problem may be viewed as
the multigraph edge coloring problem. Gabow and Kariv’s [28] algorithm to color the edges of a bipartite
multigraph takes time O(min {m log2 n, n2 log n}), where n is the number of nodes in the graph and m is
the number of edges. Cole and Hopcroft [29] developed a faster algorithm for the same problem with time
complexity bounded by O(m log n). Cole and Hopcroft’s [29] algorithm uses the combine-and-conquer
approach [27] as well as the idea of finding a matching with only critical jobs as in the algorithms in the
previous subsection [1]. These algorithms are the fastest ones when the degree of the multigraph is small.
When the edge multiplicity is large, it is better to use Gonzalez and Sahni’s [1] open shop algorithms,
because multiple edges are treated as a single weighted edge and the schedule for a whole interval may be
generated at each iteration, rather than one for one time unit.

6.2.4 Nonpreemptive Schedules

To establish that the minimum makespan open shop nonpreemptive scheduling problem is NP-hard,
Gonzalez and Sahni [1] reduced the partition problem to three machine problem instances (O3 || Cmax).
Given n objects denoted by a1, a2, . . . , an and a size or weight function s : a → I + the partition problem
is to determine whether or not the set A can be partitioned into two sets, A1 and A2, such that the sum of
the weight (or size) of the objects in each set is equal to T/2, where T = ∑

s (ai).

J3n+1

J3n+1

J3n+1

3T/2T/2 T

(a) (b)

T/2 + n
T + nT/2

Jn+1

Jn+1

Jn+2

Jn+2

FIGURE 6.4 Architecture of reductions from partition.

The reduction to the three machine nonpreemptive open shop makespan problem (O3 || Cmax) con-
structs an instance from partition with 3n + 1 jobs and three machines. The last job, J 3n+1, has processing
time on each machine of T/2 time units. Therefore, if there exists a schedule with makespan equal to 3T/2,
then job J 3n+1 has to be processed without interruptions. Since the schedule cannot have preemptions,
it must be that on one of the machines the task from J 3n+1 is processed from time T/2 to time T (see
Figure 6.4(a)). That leaves two disjoint blocks of idle time each of length T/2 on one machine. These
blocks will be used to process a set of n tasks whose processing time corresponds to the size of the objects
in the instance of partition. Therefore, a schedule with finishing time at most 3T/2 exists iff the instance
of partition we start from has a partition for set A. To make sure that such a set of tasks exists, we need
to introduce 3n jobs as follows. For 1 ≤ j ≤ 3, the j th set of n jobs have only nonzero tasks on machine
Mj and their processing time for the i th job on machine Mj is s (ai). Therefore, the open shop makespan
decision problem is NP-hard even when m = 3 [1].

All the jobs in the above construction have one nonzero task except for the last job that has nonzero
processing time on the three machines. Does the problem remain NP-hard even when each job has at
most two nonzero tasks? Gonzalez and Sahni [1] addressed this problem and showed that it remains
NP-hard when m ≥ 4. The reduction is similar in nature to the previous one. The difference is that now
there are two jobs with processing requirements such that in every schedule with makespan at most
T + n, they leave a block of idle time from time T/2 to T/2 + n on machine M2, and M1 is not utilized
(see Figure 6.4(b)). A set on n jobs is introduced each with processing time of 1 unit on machine M2

and a processing time corresponding to the size of an object in the partition problem on machine M1.
By scaling up the size of the objects we can guarantee that if there is partition with total size between
T/2 and T/2 + n, then there is also a partition of size T/2. This will guarantee that a schedule with
finishing time at most T + n exists iff we start with a yes-instance of partition. Therefore, the minimum
makespan open shop scheduling problem is NP-hard even when every job has at most two nonzero tasks
and m = 4 [1].

The above reductions do not establish that the open shop problem is NP-hard in the strong sense [30],
i.e., the problem is not shown to be NP-hard when the sum of the task times is bounded by a polynomial
of n and m. This is because the partition problem is not NP-complete in the strong sense unless P = NP.
However, Lenstra [31,32] has shown that the open shop problem is NP-hard in the strong sense for an
arbitrary number of machines. To show that this problem is NP-hard in the strong sense we reduce the
3-partition problem to it. In the 3-partition problem we are given m objects and a size or weight function
defined as in the partition problem. The problem is to decide if the set of objects can be partitioned in
m/3 subsets such that the sum of the size of the objects in each subset is identical. Figure 6.5 gives the
architecture of the reduction for the case when m = 18. The main idea is to introduce a set of jobs that
no matter how they are assigned in a schedule with certain finishing time, there will be m/3 equally sized
blocks of idle time on machine M1 whose total size corresponds to the sum of the size of the objects

J1

J1

J2

J2

J2

J3

J3

J3

J4

J4

J5

J5

J6

J7

J7J6

J6

J5J4

FIGURE 6.5 Architecture of reduction from 3-partition.

in the instance of 3-partition we start from. Without further discussion of the details we claim that the
minimum makespan open shop nonpreemptive scheduling problem (O || Cmax) is NP-hard in the strong
sense [31].

Another interesting restricted open shop problem is one in which all the nonzero tasks have the same
processing time (or unit processing time, O | pi, j ∈ {0, 1} | Cmax). For this case it is simple to see that
the preemptive scheduling algorithms presented in the previous section generates a minimum makespan
schedule.

There is a very simple approximation algorithm for the makespan open shop nonpreemptive scheduling
problem (O || Cmax). This algorithm was developed and analyzed by Racsmány (see [33]), but a better
approximation bound for the algorithm is given by Shmoys, Stein, and Wein [33]. The scheduling strategy
mimics Graham’s well-known list scheduling algorithm. Whenever a machine becomes available we assign
to each available machine a task which has not yet been processed on that machine that belongs to a job
that is not currently being processed by another machine. This very simple procedure generates a schedule
with finishing time, which is at most twice the length of an optimal schedule. To see this, consider a job
that finishes at the latest time in the schedule just constructed. Let us say it is job J i and the latest time it is
being processed is on machine Mj . The finishing time on machine Mj (which is the finishing time of the
schedule) is equal to the processing time demands on that machine, which we have previously defined to
be at most h plus the total idle time on machine Mj . Now, when there is idle time on machine Mj it must
be that a task of job J i was being processed by another machine, as otherwise the scheduling algorithm
should have assigned the task of job J i to machine Mj . Therefore the total idle time on machine Mj is less
than the total processing time for job J i , which is equal to pi . Since by definition pi ≤ h, it then follows
that the algorithm generates a schedule with finishing time at most 2h. Clearly, every schedule must have
finishing time at least h. So it follows that the schedule generated by the above procedure has makespan at
most two times the optimal makespan.

Williamson et al. [34] showed that the problem of generating schedules within 5/4 times the length of
the optimal schedule for the open shop nonpreemptive scheduling problem is NP-hard. They also present

a polynomial-time algorithm for the case when for all i and j , pi, j ∈ {0, 1, 2, 3}, and there is an optimal
schedule with finishing time at most 3.

6.3 Minimum Mean Flow Time or Minsum Problems

In this section we discuss the open shop problem with the objective function of minimizing the mean flow
time. Since the minimum mean flow time,

∑
Ci /n, objective function is equivalent to the minsum one,∑

Ci , we use these terms interchangeably. We discuss the NP-hardness results for these problems as well
as several approximation algorithms.

Achugbue and Chin [35] have established that the minsum problem is NP-complete in the strong sense
even for two machines (O2 ||∑ Ci). Their reduction is quite complex and it is similar in architecture to
that for the flow shop by Garey, Johnson, and Sethi [36]. Liu and Bulfin [37] showed that the problem is
NP-hard in the strong sense for three machines when preemptions are allowed by using a reduction from
3-partition (O3 | pmtn |∑ Ci). Subsequently Du and Leung [38] showed that the minsum open shop
preemptive scheduling problem is NP-hard (in the normal sense) even when there are only two machines
(O2 | pmtn |∑ Ci) using a reduction from a restricted version of partition.

The simplest version of the minsum open shop problem is when all the nonzero tasks have equal
processing times (O | pi, j ∈ {0, 1} |∑ Ci and O | pi, j ∈ {0, 1}; pmtn |∑ Ci). Gonzalez [39] showed that
this problem is NP-hard in both the preemptive and nonpreemptive mode. Since the flavor of this reduction
is quite different from most other reductions, we explore it in more detail. The reduction is from the graph
coloring problem. The graph coloring problem is given an undirected graph assign a color to each vertex in
the graph in such a way that the least number of colors is used and no two adjacent vertices are assigned the
same color. The reduction from the graph coloring problem to the open shop problem is as follows. The
set of jobs represents nodes, edges, and node-edge pairs in the graph, and the machines represent nodes
and edges in the graph. Time is partitioned into three different intervals, each corresponds to one color.
The node jobs force the corresponding node-edge job to be confined to one of the three time intervals.
The edge jobs are introduced to simplify the accounting of the objective function value. The node-edge
jobs are defined in such a way that two jobs that represent adjacent nodes in the graph must be scheduled
in different time intervals. The jobs and machines are defined in such a way that if the graph we start
from is three colorable, then one-third of the jobs finish at time 5, another third finish at time 10, and the
remaining third finish at time 15, with a total mean flow time of 10. When the graph is not three colorable,
then all schedules have mean flow time greater than 10. The whole reduction is quite complex, so readers
interested in additional details are referred to Ref. [39]. The reduction does not work for the makespan
problem (O | pi, j ∈ {0, 1} | Cmax) because for graphs that are not three colorable there are schedules with
finishing time equal to 15, though it will not be the case that one-third of the jobs finish at time 5 and the
next third of the jobs finish at time 10. But the reduction does work for the minimum makespan open
ship no-wait scheduling problem. By no-wait scheduling we mean that all the tasks from a job must be
executed contiguously.

Achugbue and Chin [35] showed that any schedule that does not have idle time on all the machines at
the same time for the O ||∑ C j problem has total completion time that is at most n times the optimal
one. They also showed [35] that the simple SPT scheduling rule guarantees that the total completion
time of the schedules generated is no more than m times the optimal one. Hoogeveen, Schuurman, and
Woeginger [40] showed that generating near optimal solutions for the O ||∑ C j problem is as difficult
(computationally) as generating an optimal solution. The approximation bound for which the problem
is NP-hard is somewhere in the 1 + 10−5 range. They showed that this problem is APX-complete, which
means that if the problem has a polynomial-time approximation scheme, then P = NP.

Queyranne and Sviridenko [3] developed a quite sophisticated approximation algorithm for the open
shop preemptive problem (as well as for more general versions of the problem) under different objective
functions. The approximation bound is (2+ε). The idea is to have an interval-indexed formulation, which
may be viewed as a set of intervals defined in terms of ε and another small constant δ over which an LP

problem is defined. From the solution to the LP problem they construct a schedule using the algorithm for
O | pmtn | Cmax given in Ref. [1]. Then randomization is used through Schultz and Skutella’s slow-motion
algorithm with the factor β being randomly chosen with certain properties. After this process there is
a derandomization step. The analysis of this process is quite complex. They showed that this technique
cannot generate solutions with an approximation factor better than 2. However, the algorithm works for
generalized versions of the open shop. For example, when a task may be processed on several machines at
different speeds, or the objective function includes the finishing time of tasks rather than just the finishing
time of the jobs.

6.4 Related Objective Functions

In this section we discuss briefly the open shop problem under various objective functions as well as
generalization of the basic open shop problem.

The open shop problem has been studied under other classical objective functions as well as other
restrictions. All of these results are very important, but for brevity we cannot possibly discuss all of them.
Chapter 9 and Chapter 10 discuss algorithms for other objective functions, and there are several lists of
current results for open shop problems available on the Internet (e.g., Ref. [41]). We will just point to
some polynomial-time algorithms that have received attention in the past: O | pmtn; ri | L max by Cho and
Sahni [42], O | pi j = 1; intree | L max by Brucker [43], O2 | pi j = 1; prec |∑ Ci by Coffman et al. [44],
and O | pi j = 1 |∑ Ti by Liu and Bulfin [37]. Recent NP-hard results for restricted open shop problems
are given by Timkovsky [45].

Vairaktarakis and Sahni [23] also present algorithms for some very interesting extensions of the open
shop problem. One of these problems is called the generalized open shop problem that allows multiple
copies of the same machine, but the same scheduling constraints remain. They also define the flexible
open shop, where a machine is allowed to perform different tasks, not just one as in the open shop. The
algorithms in Ref. [23] use linear programming, max flow, as well as additional graph theory properties
of bipartite matchings.

The multimessage multicasting problem may be viewed as a more general open shop problem. In this
generalization, each task of a job consists of a subset of subtasks each of which is to be processed by a
different machine. But the processing of the subtasks of a task may be concurrent. This problem has been
shown to be NP-hard even when all subtasks have unit-processing time [11]. However, Gonzalez [11,12]
has developed efficient approximation algorithms for this problem. The most efficient ones use message
forwarding. That means that a message that needs to be sent from processor i to processor j may be sent
indirectly. For example, first it may be sent from processor i to processor l , and then from processor l to
processor j . When we translate forwarding to the multimessage unicasting problem, which is equivalent
to the open shop problem, we obtain another new version of the open shop problem that allows for
solutions whose scheduling has an added flexibility. The added flexibility is that if job J i needs to be
processed by machine Mj , it can be replaced by job J i that needs to be processed by machine Ml and
then job J l needs to be processed by machine Mj , provided that the second job is performed after the first
one. Another important point is that the resulting open shop that needs to be solved is such that some
tasks of some jobs may be processed concurrently when forwarding is allowed. This added scheduling
flexibility simplifies the scheduling problem, except when each message is to be delivered to just one
processor.

In the distributed version of the multimessage multicasting problem every processor only knows the
messages it must send. Gonzalez [13] has developed approximation algorithms for this problem, which
reduce the problem to the solution of two problems, one of which is the multimessage unicasting problem
with forwarding, and in the previous paragraph we explained how forwarding is translated into the open
shop problem. In a previous section we discussed the meaning of the distributed version of the problem
in the context of open shop scheduling.

The distributed version of the multimessage unicasting problem with forwarding (which corresponds
to a form of open shop problem) has been studied in the context of optical-communication parallel

computers [14,24–26]. Valiant [26] presented a distributed algorithm with O(d + log n) total expected
communication cost. The algorithm is based in part on the algorithm by Anderson and Miller [25]. The
communication time is optimal, within a constant factor, when d = �(log n), and Gereb-Graus and
Tsantilas [24] raised the question as to whether a faster algorithm for d = o(log n) exists. This question
was answered in part by Goldberg, Jerrum, Leighton, and Rao [14] who show all communication can take
place in O(d + log log n) communication steps with high probability, i.e., if d < log n, then the failure
probability can be made as small as nα for any constant α.

6.5 Discussion

The decision version of all the NP-hard scheduling problems that were discussed in this chapter can be
shown to be NP-complete. For the preemptive scheduling problems one needs to establish the minimum
number of preemptions needed by an optimal solution.

Even though the open shop problem is relatively young, there have been several hundred papers dealing
with this problem. The main popularity of the problem is that it models a large number of real-world
problems. The algorithms are quite interesting and many of NP-hard reductions are quite complex. The
main invariant of all of the work is that as we explore more of the open shop problem we find more
interesting versions, generalizations, as well as applications of the problem.

References

[1] Gonzalez, T.F. and Sahni, S., Open shop scheduling to minimize finish time, J. ACM, 23, 665, 1976.
[2] Lawler, E.L. and Labetoulle, J., On preemptive scheduling of unrelated parallel processors by linear

programming, J. ACM, 25, 612, 1978.
[3] Queyranne, M. and Sviridenko, M., A (2 + ε)-approximation algorithm for generalized preemptive

open shop problem with minsum criteria, J. Algor., 45, 202, 2002.
[4] Dell’Amico, M. and Martello, S., Open shop, satellite communication and a Theorem by Egerváry,

Oper. Res. Lett., 18, 207, 1996.
[5] Bampis, E. and Rouskas, G.N., The scheduling and wavelength assignment problem in optical WDM

networks, IEEE/OSA J. Lightwave Technol., 20, 782, 2002.
[6] Wang, C.F. and Sahni, S., OTIS optoelectronic computers, in Li, K. and Zheng, S.Q. (eds.), Parallel

Computing Using Optical Interconnections, Kluwer, 1998, pp. 99–116.
[7] Suel, T., Permutation routing and sorting on meshes with row and column buses, Parallel Proc. Lett.,

5, 63, 1995.
[8] Bhat, P.B., Prasanna, V.K., and Raghavendra, C.S., Block-cyclic redistribution over heterogeneous

networks, Cluster Comp., 3, 25, 2000.
[9] Iyengar, V. and Chakrabarty, K., System-on-a-chip test scheduling with precedence relationships,

preemption, and power constraints, IEEE CAD, 21, 1088, 2002.
[10] Altman, E., Liu, Z., and Righter, R., Scheduling of an input-queued switch to achieve maximal

throughput, Probab. Eng. Inf. Sci., 14, 327, 2000.
[11] Gonzalez, T.F., Complexity and approximations for multimessage multicasting, J. Par. Dist. Comput.,

55, 215, 1998.
[12] Gonzalez, T.F., Simple multimessage multicasting approximation algorithms with forwarding,

Algorithmica, 29, 511, 2001.
[13] Gonzalez, T.F., Distributed multimessage multicasting, J. Interconnection Networks, 1, 303, 2000.
[14] Goldberg, L.A., Jerrum, M., Leighton, F.T., and Rao, S., Doubly logarithmic communication algo-

rithms for optical-communication parallel computers, SIAM J. Comput., 26, 1100, 1997.
[15] Egerváry, E., Matrixok kombinatorius tulajdonságairol, Matematikai és Fizikai Lapok, 38, 16, 1931.

(English translation by Kuhn, H.W., On combinatorial properties of matrices, Logistic Papers, 11, 1,
1955, George Washington University.)

[16] König, D., Graphos és matrixok, Matematikai és Fizikai Lapok, 38, 116, 1931.
[17] Hall, M., Combinatorial Theory, Blaisdell, Waltham, MA, 1967.
[18] Birkoff, G., Tres observaciones sobre el algebra lineal, Revista Facultad de Ciencias Exactas, Puras y

Aplicadas, Universidad Nacional de Tucuman, Series A (Mathematicas y Ciencias Teoricas), 5, 147,
1946.

[19] Berge, C., The Theory of Graphs and it Applications, Wiley, 1962.
[20] Gotlieb, C.C., The construction of class-teacher timetables, Proc. IFIP Congress, 1962, pp. 73–77.
[21] Even, S., Itai, A., and Shamir, A., On the complexity of timetable and multicommodity flow pro-

blems, SIAM J. Comput., 5, 691, 1976.
[22] Hopcroft, J. and Karp, R.M., An n2.5 algorithm for maximum matchings in bipartite graphs, SIAM

J. Comput., 2, 225, 1973.
[23] Vairaktarakis, G. and Sahni, S., Dual criteria preemptive open shop problems with minimum finish

time, Naval Res. Logistics, 42, 103, 1995.
[24] Gereb-Graus, M. and Tsantilas, T., Efficient optical communication in parallel computers, Proc. 4th

ACM Symp. Parallel Algor. Architect., ACM, New York, Vol. 41, 1992.
[25] Anderson, R.J. and Miller, G.L., Optical communications for pointer based algorithms, TRCS CRI

88 – 14, USC, Los Angeles, 1988.
[26] Valiant, L.G., General purpose parallel architectures, in van Leeuwen, J. (ed.), Handbook of Theo-

retical Computer Science, Elsevier, New York, Chap. 18, 1990, p. 967.
[27] Gonzalez, T.F., A note on open shop preemptive schedules, IEEE Trans. Comput., 28, 782, 1979.
[28] Gabow, H., and Kariv, O., Algorithms for edge coloring bipartite graphs and multigraphs, SIAM J.

Comput., 11, 117, 1982.
[29] Cole, R. and Hopcroft, J., On edge coloring bipartite graphs, SIAM J. Comput., 11, 540, 1982.
[30] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman and Company, New York, 1979.
[31] Lenstra, J.K. (unpublished).
[32] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B., Sequencing and scheduling:

algorithms and complexity, in Graves, S.C., Rinnooy Kan, A.H.G., and Zipkin, P.H. (eds.), Hand-
books in Operations Research and Management Science, Vol. 4: Logistics of Production and Inventory,
North-Holland, 1993.

[33] Shmoys, D.B., Stein, C., and Wein, J., Improved approximation algorithms for shop scheduling
problems, SIAM J. Comput., 23, 617, 1994.

[34] Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K., Sevastianov, S.V., and
Shmoys, D.B., Short shop schedules, Oper. Res., 45, 288, 1997.

[35] Achugbue, J.O. and Chin, F.Y., Scheduling the open shop to minimize mean flow time, SIAM J.
Comput., 11, 709, 1982.

[36] Garey, M.R., Johnson, D.S., and Sethi, R., The complexity of flowshop and jobshop scheduling,
Math. Oper. Res., 1, 117, 1976.

[37] Liu, C.Y. and Bulfin, R.L., On the complexity of preemptive open shop scheduling problems, Oper.
Res. Lett., 4, 71, 1985.

[38] Du, J. and Leung, J.Y.-T., Minimizing mean flow time in two-machine open shops and flow shops,
J. Algor., 14, 24, 1993.

[39] Gonzalez, T.F., Unit execution time shop problems, Math. Oper. Res., 7, 57, 1982.
[40] Hoogeveen, H., Schuurman, P., and Woeginger, G.J., Nonapproximability results for scheduling

problems with minsum criteria, INFORMS J. Comput., 13, 157, 2001.
[41] Brucker, P., Hurink, J., and Jurisch, J., Operations Research: complexity results of scheduling prob-

lems, www.mathematik.uni-osnabrueck.de/research/OR/class/.
[42] Cho, Y. and Sahni, S., Preemptive scheduling of independent jobs with release and due times on

open, flow and job shops, Oper. Res., 29, 511, 1981.
[43] Brucker, P., Jurisch, B., and Jurisch, M., Open shop problems with unit time operations, Z. Oper.

Res., 37, 59, 1993.

[44] Coffman, Jr., E.G. and Timkovsky, V.G., Ideal two-machine schedules of jobs with unit-execution-
time operations, Proc. 8th Inter. Workshop on Proj. Manag. Sched., Valencia, Spain, April 2002.

[45] Timkovsky, V.G., Identical parallel machines vs. unit-time shops, preemptions vs. chains, and other
offsets in scheduling complexity, Technical Report, Star Data Systems, Inc. 1998.

[46] Sahni, S. and Gonzalez, T.F., P-complete approximation problems, J. Assoc. Comput. Machinery, 23,
555, 1976.

	Chapter 6
	Open Shop Scheduling
	6.1 Introduction
	6.2 Minimum Makespan Problems
	6.2.1 Two Machines
	6.2.2 Minimum Preemptive Schedules
	6.2.3 Limiting the Number of Machines, Jobs or Tasks
	6.2.4 Nonpreemptive Schedules

	6.3 Minimum Mean Flow Time or Minsum Problems
	6.4 Related Objective Functions
	6.5 Discussion
	References

